Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = APT attacks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1432 KB  
Article
GATransformer: A Network Threat Detection Method Based on Graph-Sequence Enhanced Transformer
by Qigang Zhu, Xiong Zhan, Wei Chen, Yuanzhi Li, Hengwei Ouyang, Tian Jiang and Yu Shen
Electronics 2025, 14(19), 3807; https://doi.org/10.3390/electronics14193807 - 25 Sep 2025
Abstract
Emerging complex multi-step attacks such as Advanced Persistent Threats (APTs) pose significant risks to national economic development, security, and social stability. Effectively detecting these sophisticated threats is a critical challenge. While deep learning methods show promise in identifying unknown malicious behaviors, they often [...] Read more.
Emerging complex multi-step attacks such as Advanced Persistent Threats (APTs) pose significant risks to national economic development, security, and social stability. Effectively detecting these sophisticated threats is a critical challenge. While deep learning methods show promise in identifying unknown malicious behaviors, they often struggle with fragmented modal information, limited feature representation, and generalization. To address these limitations, we propose GATransformer, a new dual-modal detection method that integrates topological structure analysis with temporal sequence modeling. Its core lies in a cross-attention semantic fusion mechanism, which deeply integrates heterogeneous features and effectively mitigates the constraints of unimodal representations. GATransformer reconstructs network behavior representation via a parallel processing framework in which graph attention captures intricate spatial dependencies, and self-attention focuses on modeling long-range temporal correlations. Experimental results on the CIDDS-001 and CIDDS-002 datasets demonstrate the superior performance of our method compared to baseline methods with detection accuracies of 99.74% (nodes) and 88.28% (edges) on CIDDS-001 and 99.99% and 99.98% on CIDDS-002, respectively. Full article
(This article belongs to the Special Issue Advances in Information Processing and Network Security)
Show Figures

Figure 1

29 pages, 3613 KB  
Article
CyberKG: Constructing a Cybersecurity Knowledge Graph Based on SecureBERT_Plus for CTI Reports
by Binyong Li, Qiaoxi Yang, Chuang Deng and Hua Pan
Informatics 2025, 12(3), 100; https://doi.org/10.3390/informatics12030100 - 22 Sep 2025
Viewed by 268
Abstract
Cyberattacks, especially Advanced Persistent Threats (APTs), have become more complex. These evolving threats challenge traditional defense systems, which struggle to counter long-lasting and covert attacks. Cybersecurity Knowledge Graphs (CKGs), enabled through the integration of multi-source CTI, introduce novel approaches for proactive defense. However, [...] Read more.
Cyberattacks, especially Advanced Persistent Threats (APTs), have become more complex. These evolving threats challenge traditional defense systems, which struggle to counter long-lasting and covert attacks. Cybersecurity Knowledge Graphs (CKGs), enabled through the integration of multi-source CTI, introduce novel approaches for proactive defense. However, building CKGs faces challenges such as unclear terminology, overlapping entity relationships in attack chains, and differences in CTI across sources. To tackle these challenges, we propose the CyberKG framework, which improves entity recognition and relation extraction using a SecureBERT_Plus-BiLSTM-Attention-CRF joint architecture. Semantic features are captured using a domain-adapted SecureBERT_Plus model, while temporal dependencies are modeled through BiLSTM. Attention mechanisms highlight key cross-sentence relationships, while CRF incorporates ATT&CK rule constraints. Hierarchical clustering (HAC), based on contextual embeddings, facilitates dynamic entity disambiguation and semantic fusion. Experimental evaluations on the DNRTI and MalwareDB datasets demonstrate strong performance in extraction accuracy, entity normalization, and the resolution of overlapping relations. The constructed knowledge graph supports APT tracking, attack-chain provenance, proactive defense prediction. Full article
Show Figures

Figure 1

20 pages, 2745 KB  
Article
Improving Detectability of Advanced Persistent Threats (APT) by Use of APT Group Digital Fingerprints
by Laszlo Erdodi, Doney Abraham and Siv Hilde Houmb
Information 2025, 16(9), 811; https://doi.org/10.3390/info16090811 - 18 Sep 2025
Viewed by 245
Abstract
Over the last 15 years, cyberattacks have moved from attacking IT systems to targeted attacks on Operational Technology (OT) systems, also known as Cyber–Physical Systems (CPS). The first targeted OT cyberattack was Stuxnet in 2010, at which time the term Advanced Persistent Threat [...] Read more.
Over the last 15 years, cyberattacks have moved from attacking IT systems to targeted attacks on Operational Technology (OT) systems, also known as Cyber–Physical Systems (CPS). The first targeted OT cyberattack was Stuxnet in 2010, at which time the term Advanced Persistent Threat (APT) appeared. An APT often refers to a sophisticated two-stage cyberattack requiring an extensive reconnaissance period before executing the actual attack. Following Stuxnet, a sizable number of APTs have been discovered and documented. APTs are difficult to detect due to the many steps involved, the large number of attacker capabilities that are in use, and the timeline. Such attacks are carried out over an extended time period, sometimes spanning several years, which means that they cannot be recognized using signatures, anomalies, or similar patterns. APTs require detection capabilities beyond what current detection paradigms are capable of, such as behavior-based, signature-based, protocol-based, or other types of Intrusion Detection and Prevention Systems (IDS/IPS). This paper describes steps towards improving the detection of APTs by means of APT group digital fingerprints. An APT group fingerprint is a digital representation of the attacker’s capabilities, their relations and dependencies, and their technical implementation for an APT group. The fingerprint is represented as a directed graph, which models the relationships between the relevant capabilities. This paper describes part of the analysis behind establishing the APT group digital fingerprint for the Russian Cyberspace Operations Group - Sandworm. Full article
Show Figures

Figure 1

19 pages, 659 KB  
Review
Cyber-Attacks on Energy Infrastructure—A Literature Overview and Perspectives on the Current Situation
by Doney Abraham, Siv Hilde Houmb and Laszlo Erdodi
Appl. Sci. 2025, 15(17), 9233; https://doi.org/10.3390/app15179233 - 22 Aug 2025
Viewed by 1713
Abstract
Advanced Persistent Threats (APT) are stealthy multi-step attacks, often executed over an extensive time period and tailored for a specific attack target. APTs represent a “low and slow” type of cyberattack, meaning that they most often remain undetected until the consequence of the [...] Read more.
Advanced Persistent Threats (APT) are stealthy multi-step attacks, often executed over an extensive time period and tailored for a specific attack target. APTs represent a “low and slow” type of cyberattack, meaning that they most often remain undetected until the consequence of the attack becomes evident. Energy infrastructure, including power grids, oil and gas infrastructure, offshore wind installations, etc., form the basis of a modern digital nation. In addition to loss of power, financial systems, banking systems, digital national services, etc., become non-operational without electricity. Loss of power from an APT cyberattack could result in loss of life and the possibility of creating digital chaos. Digital payments becomes unavailable, digital identification is affected, and even POS terminals need to run on emergency power, which is limited in time, resulting in challenges in paying for food and beverages. Examples of Advanced Persistent Threats (APTs) targeting energy infrastructures include Triton, which in 2017 aimed to manipulate the safety systems of a petrochemical plant in Saudi Arabia, potentially leading to catastrophic physical consequences. Another significant incident is the Industroyer2 malware attack in 2022, which targeted a Ukrainian energy provider in an attempt to disrupt operations. The paper combines APT knowledge with energy infrastructure domain expertise, focusing on technical aspects while at the same time providing perspectives on societal consequences that could result from APTs. Full article
(This article belongs to the Special Issue Cyber-Physical Systems Security: Challenges and Approaches)
Show Figures

Figure 1

18 pages, 1061 KB  
Article
Using Causality-Driven Graph Representation Learning for APT Attacks Path Identification
by Xiang Cheng, Miaomiao Kuang and Hongyu Yang
Symmetry 2025, 17(9), 1373; https://doi.org/10.3390/sym17091373 - 22 Aug 2025
Viewed by 659
Abstract
In the cybersecurity attack and defense space, the “attacker” and the “defender” form a dynamic and symmetrical adversarial pair. Their strategy iterations and capability evolutions have long been in a symmetrical game of mutual restraint. We will introduce modern Intrusion Detection Systems (IDSs) [...] Read more.
In the cybersecurity attack and defense space, the “attacker” and the “defender” form a dynamic and symmetrical adversarial pair. Their strategy iterations and capability evolutions have long been in a symmetrical game of mutual restraint. We will introduce modern Intrusion Detection Systems (IDSs) from the defender’s side to counter the techniques designed by the attacker (APT attack). One major challenge faced by IDS is to identify complex attack paths from a vast provenance graph. By constructing an attack behavior tracking graph, the interactions between system entities can be recorded, but the malicious activities of attackers are often hidden among a large number of normal system operations. Although traditional methods can identify attack behaviors, they only focus on the surface association relationships between entities and ignore the deep causal relationships, which limits the accuracy and interpretability of detection. Existing graph anomaly detection methods usually assign the same weight to all interactions, while we propose a Causal Autoencoder for Graph Explanation (CAGE) based on reinforcement learning. This method extracts feature representations from the traceability graph through a graph attention network(GAT), uses Q-learning to dynamically evaluate the causal importance of edges, and highlights key causal paths through a weight layering strategy. In the DARPA TC project, the experimental results conducted on the selected three datasets indicate that the precision of this method in the anomaly detection task remains above 97% on average, demonstrating excellent accuracy. Moreover, the recall values all exceed 99.5%, which fully proves its extremely low rate of missed detections. Full article
(This article belongs to the Special Issue Advanced Studies of Symmetry/Asymmetry in Cybersecurity)
Show Figures

Figure 1

22 pages, 5378 KB  
Article
A Trustworthy Dataset for APT Intelligence with an Auto-Annotation Framework
by Rui Qi, Ga Xiang, Yangsen Zhang, Qunsheng Yang, Mingyue Cheng, Haoyang Zhang, Mingming Ma, Lu Sun and Zhixing Ma
Electronics 2025, 14(16), 3251; https://doi.org/10.3390/electronics14163251 - 15 Aug 2025
Viewed by 463
Abstract
Advanced Persistent Threats (APTs) pose significant cybersecurity challenges due to their multi-stage complexity. Knowledge graphs (KGs) effectively model APT attack processes through node-link architectures; however, the scarcity of high-quality, annotated datasets limits research progress. The primary challenge lies in balancing annotation cost and [...] Read more.
Advanced Persistent Threats (APTs) pose significant cybersecurity challenges due to their multi-stage complexity. Knowledge graphs (KGs) effectively model APT attack processes through node-link architectures; however, the scarcity of high-quality, annotated datasets limits research progress. The primary challenge lies in balancing annotation cost and quality, particularly due to the lack of quality assessment methods for graph annotation data. This study addresses these issues by extending existing APT ontology definitions and developing a dynamic, trustworthy annotation framework for APT knowledge graphs. The framework introduces a self-verification mechanism utilizing large language model (LLM) annotation consistency and establishes a comprehensive graph data metric system for problem localization in annotated data. This metric system, based on structural properties, logical consistency, and APT attack chain characteristics, comprehensively evaluates annotation quality across representation, syntax semantics, and topological structure. Experimental results show that this framework significantly reduces annotation costs while maintaining quality. Using this framework, we constructed LAPTKG, a reliable dataset containing over 10,000 entities and relations. Baseline evaluations show substantial improvements in entity and relation extraction performance after metric correction, validating the framework’s effectiveness in reliable APT knowledge graph dataset construction. Full article
(This article belongs to the Special Issue Advances in Information Processing and Network Security)
Show Figures

Figure 1

29 pages, 2720 KB  
Article
Research on Multi-Stage Detection of APT Attacks: Feature Selection Based on LDR-RFECV and Hyperparameter Optimization via LWHO
by Lihong Zeng, Honghui Li, Xueliang Fu, Daoqi Han, Shuncheng Zhou and Xin He
Big Data Cogn. Comput. 2025, 9(8), 206; https://doi.org/10.3390/bdcc9080206 - 12 Aug 2025
Viewed by 822
Abstract
In the highly interconnected digital ecosystem, cyberspace has become the main battlefield for complex attacks such as Advanced Persistent Threat (APT). The complexity and concealment of APT attacks are increasing, posing unprecedented challenges to network security. Current APT detection methods largely depend on [...] Read more.
In the highly interconnected digital ecosystem, cyberspace has become the main battlefield for complex attacks such as Advanced Persistent Threat (APT). The complexity and concealment of APT attacks are increasing, posing unprecedented challenges to network security. Current APT detection methods largely depend on general datasets, making it challenging to capture the stages and complexity of APT attacks. Moreover, existing detection methods often suffer from suboptimal accuracy, high false alarm rates, and a lack of real-time capabilities. In this paper, we introduce LDR-RFECV, a novel feature selection (FS) algorithm that uses LightGBM, Decision Trees (DTs), and Random Forest (RF) as integrated feature evaluators instead of single evaluators in recursive feature elimination algorithms. This approach helps select the optimal feature subset, thereby significantly enhancing detection efficiency. In addition, a novel optimization algorithm called LWHO was proposed, which integrates the Levy flight mechanism with the Wild Horse Optimizer (WHO) to optimize the hyperparameters of the LightGBM model, ultimately enhancing performance in APT attack detection. More importantly, this optimization strategy significantly boosts the detection rate during the lateral movement phase of APT attacks, a pivotal stage where attackers infiltrate key resources. Timely identification is essential for disrupting the attack chain and achieving precise defense. Experimental results demonstrate that the proposed method achieves 97.31% and 98.32% accuracy on two typical APT attack datasets, DAPT2020 and Unraveled, respectively, which is 2.86% and 4.02% higher than the current research methods, respectively. Full article
Show Figures

Figure 1

25 pages, 1107 KB  
Article
Provenance Graph-Based Deep Learning Framework for APT Detection in Edge Computing
by Tianyi Wang, Wei Tang, Yuan Su and Jiliang Li
Appl. Sci. 2025, 15(16), 8833; https://doi.org/10.3390/app15168833 - 11 Aug 2025
Cited by 1 | Viewed by 727
Abstract
Edge computing builds relevant services and applications on the edge server near the user side, which enables a faster service response. However, the lack of large-scale hardware resources leads to weak defense for edge devices. Therefore, proactive defense security mechanisms, such as Intrusion [...] Read more.
Edge computing builds relevant services and applications on the edge server near the user side, which enables a faster service response. However, the lack of large-scale hardware resources leads to weak defense for edge devices. Therefore, proactive defense security mechanisms, such as Intrusion Detection Systems (IDSs), are widely deployed in edge computing. Unfortunately, most of those IDSs lack causal analysis capabilities and still suffer the threats from Advanced Persistent Threat (APT) attacks. To effectively detect APT attacks, we propose a heterogeneous graph neural networks threat detection model based on the provenance graph. Specifically, we leverage the powerful analysis and tracking capabilities of the provenance graph to model the long-term behavior of the adversary. Moreover, we leverage the predictive power of heterogeneous graph neural networks to embed the provenance graph by a node-level and semantic-level heterogeneous mutual attention mechanism. In addition, we also propose a provenance graph reduction algorithm based on the semantic similarity of graph substructures to improve the detection efficiency and accuracy of the model, which reduces and integrates redundant information by calculating the semantic similarity between substructures. The experimental results demonstrate that the prediction accuracy of our method reaches 99.8% on the StreamSpot dataset and achieves 98.13% accuracy on the NSL-KDD dataset. Full article
Show Figures

Figure 1

21 pages, 1672 KB  
Article
TSE-APT: An APT Attack-Detection Method Based on Time-Series and Ensemble-Learning Models
by Mingyue Cheng, Ga Xiang, Qunsheng Yang, Zhixing Ma and Haoyang Zhang
Electronics 2025, 14(15), 2924; https://doi.org/10.3390/electronics14152924 - 22 Jul 2025
Viewed by 578
Abstract
Advanced Persistent Threat (APT) attacks pose a serious challenge to traditional detection methods. These methods often suffer from high false-alarm rates and limited accuracy due to the multi-stage and covert nature of APT attacks. In this paper, we propose TSE-APT, a time-series ensemble [...] Read more.
Advanced Persistent Threat (APT) attacks pose a serious challenge to traditional detection methods. These methods often suffer from high false-alarm rates and limited accuracy due to the multi-stage and covert nature of APT attacks. In this paper, we propose TSE-APT, a time-series ensemble model that addresses these two limitations. It combines multiple machine-learning models, such as Random Forest (RF), Multi-Layer Perceptron (MLP), and Bidirectional Long Short-Term Memory Network (BiLSTM) models, to dynamically capture correlations between multiple stages of the attack process based on time-series features. It discovers hidden features through the integration of multiple machine-learning models to significantly improve the accuracy and robustness of APT detection. First, we extract a collection of dynamic time-series features such as traffic mean, flow duration, and flag frequency. We fuse them with static contextual features, including the port service matrix and protocol type distribution, to effectively capture the multi-stage behaviors of APT attacks. Then, we utilize an ensemble-learning model with a dynamic weight-allocation mechanism using a self-attention network to adaptively adjust the sub-model contribution. The experiments showed that using time-series feature fusion significantly enhanced the detection performance. The RF, MLP, and BiLSTM models achieved 96.7% accuracy, considerably enhancing recall and the false positive rate. The adaptive mechanism optimizes the model’s performance and reduces false-alarm rates. This study provides an analytical method for APT attack detection, considering both temporal dynamics and context static characteristics, and provides new ideas for security protection in complex networks. Full article
(This article belongs to the Special Issue AI in Cybersecurity, 2nd Edition)
Show Figures

Figure 1

22 pages, 2434 KB  
Article
Sylph: An Unsupervised APT Detection System Based on the Provenance Graph
by Kaida Jiang, Zihan Gao, Siyu Zhang and Futai Zou
Information 2025, 16(7), 566; https://doi.org/10.3390/info16070566 - 2 Jul 2025
Viewed by 632
Abstract
Traditional detection methods and security defenses are gradually insufficient to cope with evolving attack techniques and strategies, and have coarse detection granularity and high memory overhead. As a result, we propose Sylph, a lightweight unsupervised APT detection method based on a provenance graph, [...] Read more.
Traditional detection methods and security defenses are gradually insufficient to cope with evolving attack techniques and strategies, and have coarse detection granularity and high memory overhead. As a result, we propose Sylph, a lightweight unsupervised APT detection method based on a provenance graph, which not only detects APT attacks but also localizes APT attacks with a fine event granularity and feeds possible attacks back to system detectors to reduce their localization burden. Sylph proposes a whole-process architecture from provenance graph collection to anomaly detection, starting from the system audit logs, and dividing subgraphs based on time slices of the provenance graph it transforms into to reduce memory overhead. Starting from the system audit logs, the provenance graph it transforms into is divided into subgraphs based on time slices, which reduces the memory occupation and improves the detection efficiency at the same time; on the basis of generating the sequence of subgraphs, the full graph embedding of the subgraphs is carried out by using Graph2Vec to obtain their feature vectors, and the anomaly detection based on unsupervised learning is carried out by using an autoencoder, which is capable of detecting new types of attacks that have not yet appeared. After the experimental evaluation, Sylph can realize the APT attack detection with higher accuracy and achieve an accuracy rate. Full article
(This article belongs to the Special Issue Emerging Research on Neural Networks and Anomaly Detection)
Show Figures

Figure 1

31 pages, 2292 KB  
Article
Symmetric Dual-Phase Framework for APT Attack Detection Based on Multi-Feature-Conditioned GAN and Graph Convolutional Network
by Qi Liu, Yao Dong, Chao Zheng, Hualin Dai, Jiaxing Wang, Liyuan Ning and Qiqi Liang
Symmetry 2025, 17(7), 1026; https://doi.org/10.3390/sym17071026 - 30 Jun 2025
Viewed by 539
Abstract
Advanced persistent threat (APT) attacks present significant challenges to cybersecurity due to their covert nature, high complexity, and ability to operate across multiple temporal and spatial scales. Existing detection techniques often struggle with issues like class imbalance, insufficient feature extraction, and the inability [...] Read more.
Advanced persistent threat (APT) attacks present significant challenges to cybersecurity due to their covert nature, high complexity, and ability to operate across multiple temporal and spatial scales. Existing detection techniques often struggle with issues like class imbalance, insufficient feature extraction, and the inability to capture complex attack dependencies. To address these limitations, we propose a dual-phase framework for APT detection, combining multi-feature-conditioned generative adversarial networks (MF-CGANs) for data reconstruction and a multi-scale convolution and channel attention-enhanced graph convolutional network (MC-GCN) for improved attack detection. The MF-CGAN model generates minority-class samples to resolve the class imbalance problem, while MC-GCN leverages advanced feature extraction and graph convolution to better model the intricate relationships within network traffic data. Experimental results show that the proposed framework achieves significant improvements over baseline models. Specifically, MC-GCN outperforms traditional CNN-based IDS models, with accuracy, precision, recall, and F1-score improvements ranging from 0.47% to 13.41%. The MC-GCN model achieves an accuracy of 99.87%, surpassing CNN (86.46%) and GCN (99.24%), while also exhibiting high precision (99.87%) and recall (99.88%). These results highlight the proposed model’s superior ability to handle class imbalance and capture complex attack behaviors, establishing it as a leading approach for APT detection. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 3691 KB  
Article
A Syntax-Aware Graph Network with Contrastive Learning for Threat Intelligence Triple Extraction
by Zhenxiang He, Ziqi Zhao and Zhihao Liu
Symmetry 2025, 17(7), 1013; https://doi.org/10.3390/sym17071013 - 27 Jun 2025
Viewed by 631
Abstract
As Advanced Persistent Threats (APTs) continue to evolve, constructing a dynamic cybersecurity knowledge graph requires precise extraction of entity–relationship triples from unstructured threat intelligence. Existing approaches, however, face significant challenges in modeling low-frequency threat associations, extracting multi-relational entities, and resolving overlapping entity scenarios. [...] Read more.
As Advanced Persistent Threats (APTs) continue to evolve, constructing a dynamic cybersecurity knowledge graph requires precise extraction of entity–relationship triples from unstructured threat intelligence. Existing approaches, however, face significant challenges in modeling low-frequency threat associations, extracting multi-relational entities, and resolving overlapping entity scenarios. To overcome these limitations, we propose the Symmetry-Aware Prototype Contrastive Learning (SAPCL) framework for joint entity and relation extraction. By explicitly modeling syntactic symmetry in attack-chain dependency structures and its interaction with asymmetric adversarial semantics, SAPCL integrates dependency relation types with contextual features using a type-enhanced Graph Attention Network. This symmetry–asymmetry fusion facilitates a more effective extraction of multi-relational triples. Furthermore, we introduce a triple prototype contrastive learning mechanism that enhances the robustness of low-frequency relations through hierarchical semantic alignment and adaptive prototype updates. A non-autoregressive decoding architecture is also employed to globally generate multi-relational triples while mitigating semantic ambiguities. SAPCL was evaluated on three publicly available CTI datasets: HACKER, ACTI, and LADDER. It achieved F1-scores of 56.63%, 60.21%, and 53.65%, respectively. Notably, SAPCL demonstrated a substantial improvement of 14.5 percentage points on the HACKER dataset, validating its effectiveness in real-world cyber threat extraction scenarios. By synergizing syntactic–semantic multi-feature fusion with symmetry-driven dynamic representation learning, SAPCL establishes a symmetry–asymmetry adaptive paradigm for cybersecurity knowledge graph construction, thus enhancing APT attack tracing, threat hunting, and proactive cyber defense. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Artificial Intelligence for Cybersecurity)
Show Figures

Figure 1

30 pages, 3165 KB  
Article
Exploring the Role of Artificial Intelligence in Detecting Advanced Persistent Threats
by Pedro Ramos Brandao
Computers 2025, 14(7), 245; https://doi.org/10.3390/computers14070245 - 23 Jun 2025
Viewed by 954
Abstract
The rapid evolution of cyber threats, particularly Advanced Persistent Threats (APTs), poses significant challenges to the security of information systems. This paper explores the pivotal role of Artificial Intelligence (AI) in enhancing the detection and mitigation of APTs. By leveraging machine learning algorithms [...] Read more.
The rapid evolution of cyber threats, particularly Advanced Persistent Threats (APTs), poses significant challenges to the security of information systems. This paper explores the pivotal role of Artificial Intelligence (AI) in enhancing the detection and mitigation of APTs. By leveraging machine learning algorithms and data analytics, AI systems can identify patterns and anomalies that are indicative of sophisticated cyber-attacks. This study examines various AI-driven methodologies, including anomaly detection, predictive analytics, and automated response systems, highlighting their effectiveness in real-time threat detection and response. Furthermore, we discuss the integration of AI into existing cybersecurity frameworks, emphasizing the importance of collaboration between human analysts and AI systems in combating APTs. The findings suggest that the adoption of AI technologies not only improves the accuracy and speed of threat detection but also enables organizations to proactively defend against evolving cyber threats, probably achieving a 75% reduction in alert volume. Full article
(This article belongs to the Section ICT Infrastructures for Cybersecurity)
Show Figures

Figure 1

35 pages, 1485 KB  
Article
Detecting Cyber Threats in UWF-ZeekDataFall22 Using K-Means Clustering in the Big Data Environment
by Sikha S. Bagui, Germano Correa Silva De Carvalho, Asmi Mishra, Dustin Mink, Subhash C. Bagui and Stephanie Eager
Future Internet 2025, 17(6), 267; https://doi.org/10.3390/fi17060267 - 18 Jun 2025
Viewed by 668
Abstract
In an era marked by the rapid growth of the Internet of Things (IoT), network security has become increasingly critical. Traditional Intrusion Detection Systems, particularly signature-based methods, struggle to identify evolving cyber threats such as Advanced Persistent Threats (APTs)and zero-day attacks. Such threats [...] Read more.
In an era marked by the rapid growth of the Internet of Things (IoT), network security has become increasingly critical. Traditional Intrusion Detection Systems, particularly signature-based methods, struggle to identify evolving cyber threats such as Advanced Persistent Threats (APTs)and zero-day attacks. Such threats or attacks go undetected with supervised machine-learning methods. In this paper, we apply K-means clustering, an unsupervised clustering technique, to a newly created modern network attack dataset, UWF-ZeekDataFall22. Since this dataset contains labeled Zeek logs, the dataset was de-labeled before using this data for K-means clustering. The labeled data, however, was used in the evaluation phase, to determine the attack clusters post-clustering. In order to identify APTs as well as zero-day attack clusters, three different labeling heuristics were evaluated to determine the attack clusters. To address the challenges faced by Big Data, the Big Data framework, that is, Apache Spark and PySpark, were used for our development environment. In addition, the uniqueness of this work is also in using connection-based features. Using connection-based features, an in-depth study is done to determine the effect of the number of clusters, seeds, as well as features, for each of the different labeling heuristics. If the objective is to detect every single attack, the results indicate that 325 clusters with a seed of 200, using an optimal set of features, would be able to correctly place 99% of attacks. Full article
Show Figures

Figure 1

19 pages, 1057 KB  
Article
APT Detection via Hypergraph Attention Network with Community-Based Behavioral Mining
by Qijie Song, Tieming Chen, Tiantian Zhu, Mingqi Lv, Xuebo Qiu and Zhiling Zhu
Appl. Sci. 2025, 15(11), 5872; https://doi.org/10.3390/app15115872 - 23 May 2025
Viewed by 945
Abstract
Advanced Persistent Threats (APTs) challenge cybersecurity due to their stealthy, multi-stage nature. For the provenance graph based on fine-grained kernel logs, existing methods have difficulty distinguishing behavior boundaries and handling complex multi-entity dependencies, which exhibit high false positives in dynamic environments. To address [...] Read more.
Advanced Persistent Threats (APTs) challenge cybersecurity due to their stealthy, multi-stage nature. For the provenance graph based on fine-grained kernel logs, existing methods have difficulty distinguishing behavior boundaries and handling complex multi-entity dependencies, which exhibit high false positives in dynamic environments. To address this, we propose a Hypergraph Attention Network framework for APT detection. First, we employ anomaly node detection on provenance graphs constructed from kernel logs to select seed nodes, which serve as starting points for discovering overlapping behavioral communities via node aggregation. These communities are then encoded as hyperedges to construct a hypergraph that captures high-order interactions. By integrating hypergraph structural semantics with nodes and hyperedge dual attention mechanisms, our framework achieves robust APT detection by modeling complex behavioral dependencies. Experiments on DARPA and Unicorn show superior performance: 97.73% accuracy, 98.35% F1-score, and a 0.12% FPR. By bridging hypergraph theory and adaptive attention, the framework effectively models complex attack semantics, offering a robust solution for real-time APT detection. Full article
Show Figures

Figure 1

Back to TopTop