Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = AMP/SUL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 599 KiB  
Article
Mapping Antimicrobial Resistance in Escherichia coli and Klebsiella pneumoniae from Complicated Urinary Tract Infections in Oman: Phenotypic and Genotypic Insights
by Nawal AL Shizawi, Zaaima AL Jabri, Fatima Khan, Hiba Sami, Turkiya AL Siyabi, Zakariya AL Muharrmi, Srinivasa Rao Sirasanagandla and Meher Rizvi
Diagnostics 2025, 15(9), 1062; https://doi.org/10.3390/diagnostics15091062 - 22 Apr 2025
Viewed by 901
Abstract
Background: Mapping the local etiology and susceptibility of common pathogens causing complicated urinary tract infection (cUTI) is important for promoting evidence-based antimicrobial prescribing. Evaluating the prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase (AmpC), and carbapenemase-producing Enterobacterales (CPEs) is equally important as it informs [...] Read more.
Background: Mapping the local etiology and susceptibility of common pathogens causing complicated urinary tract infection (cUTI) is important for promoting evidence-based antimicrobial prescribing. Evaluating the prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase (AmpC), and carbapenemase-producing Enterobacterales (CPEs) is equally important as it informs treatment guidelines and empiric management. Whole genome sequencing (WGS) enhances antimicrobial resistance (AMR) surveillance by complementing phenotypic antimicrobial susceptibility testing, offering deeper insights into resistance mechanisms, transmissions, and evolutions. Integrating it into routine AMR monitoring can significantly improve global efforts to combat antimicrobial resistance. Methods: Antimicrobial susceptibility profiles of isolates from cUTI were collected from patients presenting with Sultan Qaboos University Hospital, Muscat and Suhar Hospital, Suhar, Oman. Automated systems as well as manual methods were used for detection of ESBL, AmpC, and CPE. ESBLs, AmpC β-lactamases, and CPEs were further detected by manual methods: double-disk synergy test for ESBL; disk approximation assay and D69C AmpC detection set for AmpC, and mCIM and KPC/IMP/NDM/VIM/OXA-48 Combo test kit for CPE. WGS was carried out in 11 FOX-resistant E. coli and (22 carbapenem-resistant K. pneumoniae) isolates with varying susceptibilities to identify circulating clades, AMR genes, and plasmids. Bioinformatic analysis was performed using online tools. Results: The susceptibility patterns of E. coli from cUTI were as follows: nitrofurantoin (96%), fosfomycin (100%), fluoroquinolones (44%), aminoglycosides (93%), piperacillin-tazobactam (95%), and carbapenems (98%). In comparison, susceptibility rates of K. pneumoniae were far lower: nitrofurantoin (38%), fosfomycin (89%), aminoglycosides (82%), piperacillin-tazobactam (72%), and carbapenems (83%). K. pneumoniae, however, was more susceptible to fluoroquinolones at 47% in comparison to E. coli. The prevalence of ESBL among E. coli and K. pneumoniae was 37.2% and CRE was 6.2% while the estimated prevalence of AmpC was 5.4%. It was observed that E. coli was the predominant ESBL and AmpC producer, while K. pneumoniae was the major carbapenem-resistant Enterobacterales (CREs) producer. No predominant multi-locus sequence typing (MLST) lineage was observed in AmpC-producing E. coli with nine E. coli MLST lineages being identified from eleven isolates: ST-10, ST-69, ST-77, ST-131, ST-156, ST-167, ST-361, ST-1125, and ST-2520. On the other hand, a less diverse MLST spectrum (ST-2096, ST-231, ST-147, ST-1770, and ST-111) was observed in the CRE K. pneumoniae. Among the five MLST lineages, ST-2096 (twelve isolates) and ST-147 (seven isolates) predominated. WGS revealed that DHA-1 was the predominant plasmid-mediated AmpC gene in E. coli, while OXA-232 and NDM-5 were the most common carbapenemase genes in K. pneumoniae. All E. coli DHA-1-positive isolates co-harbored the quinolone resistance gene qnrB4 and the sulfonamide resistance gene sul1 while no aminoglycoside resistance genes were detected. The majority of CPE CRE K. pneumoniae carried other β-lactamase genes, such as blaCTX-M-15, blaSHV, and blaTEM; all co-harbored the quinolone resistance gene OqxAB; and 77% carried the aminoglycoside resistance gene armA. Conclusions: Our results suggest that fosfomycin is an excellent empiric choice for treating complicated cystitis caused by both E. coli and K. pneumoniae, while nitrofurantoin is an appropriate choice for E. coli cystitis but not for K. pneumoniae. Aminoglycosides and piperacillin-tazobactam are excellent intravenous alternatives that spare carbapenems. DHA-1 was the predominant AmpC in E. coli, while OXA-232 and NDM-5 were the predominant carbapenemases in K. pneumoniae. In AmpC-producing E. coli, no MLST predominated, suggesting a significant flux in E. coli with lack of stable clades in this region. In contrast, ST-2096 and ST-147 predominated in CRE Klebsiella pneumoniae, suggesting a stable circulation of these in Oman. WGS profiling provides a deeper understanding of the genetic basis of resistance and enhances surveillance and offers comprehensive insights into pathogen evolution and transmission patterns. Full article
Show Figures

Figure 1

13 pages, 1953 KiB  
Article
Screening for Antibiotic Resistance Genes in Bacteria and the Presence of Heavy Metals in the Upstream and Downstream Areas of the Wadi Hanifah Valley in Riyadh, Saudi Arabia
by Norah M. Al-Otaibi, Bassam Alsulaiman, Fahad M. Alreshoodi, Lenah E. Mukhtar, Sulaiman M. Alajel, Norah M. Binsaeedan and Fahad M. Alshabrmi
Antibiotics 2024, 13(5), 426; https://doi.org/10.3390/antibiotics13050426 - 8 May 2024
Cited by 1 | Viewed by 2553
Abstract
Valley surface water is considered a focal public health concern owing to the presence of multi-drug-resistant bacteria. The distribution of antimicrobial resistance (AMR) bacteria in the surface water is affected by the presence of multiple factors, including antibiotics coming from wastewater discharge or [...] Read more.
Valley surface water is considered a focal public health concern owing to the presence of multi-drug-resistant bacteria. The distribution of antimicrobial resistance (AMR) bacteria in the surface water is affected by the presence of multiple factors, including antibiotics coming from wastewater discharge or other contaminant sources such as pharmaceuticals, biocides, and heavy metals. Furthermore, there is evidence suggesting that high levels of antibiotic resistance genes (ARGs) can be transferred within bacterial communities under the influence of heavy metal stress. Hence, the primary aim of this study is to investigate the presence of heavy metals and bacterial ARGs in upstream as well as downstream locations of Wadi Hanifah Valley in Riyadh, Saudi Arabia. Sample collection was conducted at eighteen surface water sites within the valley in total. The selection of ARGs was associated with the most common antibiotics, including β-lactam, tetracycline, erythromycin, gentamicin, sulphonamide, chloramphenicol, vancomycin, trimethoprim, and colistin antibiotics, which were detected qualitatively using polymerase chain reaction (PCR) technology. The tested antibiotic resistance genes (ARGs) included (blaNDM-1 (for the antibiotic class Beta-lactamases), mecA (methicillin-resistant Staphylococcus aureus), tet(M) and tet(B) (for the antibiotic class Tetracycline), ampC (for the antibiotic class Beta-lactamases), vanA (for the antibiotic class vancomycin), mcr-1 (for the antibiotic class colistin), erm(B) (for the antibiotic class erythromycin), aac6′-Ie-aph2-Ia (for the antibiotic class Gentamicin), sulII (for the antibiotic class sulphonamide), catII (for the antibiotic class Chlorophincol), and dfrA1 (for the antibiotic class trimethoprim). Moreover, an assessment of the levels of heavy metals such as lithium (Li), beryllium (Be), chromium (Cr), cobalt (Co), arsenic (As), cadmium (Cd), tin (Sn), mercury (Hg), and lead (Pb) was conducted by using inductively coupled plasma mass spectrometry (ICPMS). According to our findings, the concentrations of sulphonamide, erythromycin, and chloramphenicol ARGs (erm(B), sulII, and catII) were observed to be the most elevated. Conversely, two ARGs, namely mecA and mcr-1, were not detected in the samples. Moreover, our data illustrated a significant rise in ARGs in the bacteria of water samples from the upstream sites as compared with the water samples from the downstream sites of Wadi Hanifah Valley. The mean concentration of Li, Be, Cr, Co, As, Cd, Sn, Hg, and Pb in the water samples was estimated to be 37.25 µg/L, 0.02 µg/L, 0.56 µg/L,0.32 µg/L, 0.93 µg/L, 0.01 µg/L, 200.4 µg/L, 0.027 µg/L, and 0.26 µg/L, respectively, for the selected 18 sites. Furthermore, it was revealed that the concentrations of the screened heavy metals in the water samples collected from various sites did not surpass the maximum limits set by the World Health Organization (WHO). In conclusion, this study offers a concise overview of the presence of heavy metals and ARGs in water samples obtained from the Wadi Hanifah Valley in Riyadh, KSA. Such findings will contribute to the ongoing monitoring and future risk assessment of ARGs spread in surface water. Full article
Show Figures

Figure 1

11 pages, 1942 KiB  
Article
Rare Plasmid-Mediated AmpC Beta-Lactamase DHA-1 Located on Easy Mobilized IS26-Related Genetic Element Detected in Escherichia coli from Livestock and Food in Germany
by Chiara Manfreda, Annemarie Kaesbohrer, Silvia Schmoger, Tanja Skladnikiewicz-Ziemer, Mirjam Grobbel and Alexandra Irrgang
Microorganisms 2024, 12(3), 632; https://doi.org/10.3390/microorganisms12030632 - 21 Mar 2024
Cited by 1 | Viewed by 2163
Abstract
AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 [...] Read more.
AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 are involved. This study investigated the prevalence of the AmpC beta-lactamase DHA-1 in ESBL/AmpC-producing E. coli (n = 4706) collected between 2016 and 2021 as part of a German antimicrobial resistance monitoring program along the food chain. Eight isolates (prevalence < 0.2%) were detected and further characterized by PFGE, transformation and conjugation experiments as well as short-read and long-read sequencing. All eight strains harbored blaDHA-1 together with qnrB4, sul1 and mph(A) resistance genes on an IS26 composite transposon on self-transferable IncFII or IncFIA/FIB/II plasmids. During laboratory experiments, activation of the translocatable unit of IS26-bound structures was observed. This was shown by the variability of plasmid sizes in original isolates, transconjugants or transferred plasmids, and correspondingly, duplications of resistance fragments were found in long-read sequencing. This activation could be artificial due to laboratory handling or naturally occurring. Nevertheless, DHA-1 is a rare AmpC beta-lactamase in livestock and food in Germany, and its dissemination will be monitored in the future. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Foodborne Bacteria)
Show Figures

Figure 1

13 pages, 315 KiB  
Article
Genomic Characterization of Fecal Escherichia coli Isolates with Reduced Susceptibility to Beta-Lactam Antimicrobials from Wild Hogs and Coyotes
by Babafela Awosile, Jason Fritzler, Gizem Levent, Md. Kaisar Rahman, Samuel Ajulo, Ian Daniel, Yamima Tasnim and Sumon Sarkar
Pathogens 2023, 12(7), 929; https://doi.org/10.3390/pathogens12070929 - 11 Jul 2023
Cited by 6 | Viewed by 2587
Abstract
This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 16 Escherichia coli isolates—with reduced susceptibility to ceftazidime and imipenem—that were recovered from the fecal samples of coyotes and wild hogs from West Texas, USA. Whole-genome [...] Read more.
This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 16 Escherichia coli isolates—with reduced susceptibility to ceftazidime and imipenem—that were recovered from the fecal samples of coyotes and wild hogs from West Texas, USA. Whole-genome sequencing data analyses revealed distinct isolates with a unique sequence type and serotype designation. Among 16 isolates, 4 isolates were multidrug resistant, and 5 isolates harbored at least 1 beta-lactamase gene (blaCMY-2, blaCTX-M-55, or blaCTX-M-27) that confers resistance to beta-lactam antimicrobials. Several isolates carried genes conferring resistance to tetracyclines (tet(A), tet(B), and tet(C)), aminoglycosides (aac(3)-IId, ant(3″)-Ia, aph(3′)-Ia, aph(3″)-lb, aadA5, and aph(6)-ld), sulfonamides (sul1, sul2, and sul3), amphenicol (floR), trimethoprim (dfrA1 and dfrA17), and macrolide, lincosamide, and streptogramin B (MLSB) agents (Inu(F), erm(B), and mph(A)). Nine isolates showed chromosomal mutations in the promoter region G of ampC beta-lactamase gene, while three isolates showed mutations in gyrA, parC, and parE quinolone resistance-determining regions, which confer resistance to quinolones. We also detected seven incompatibility plasmid groups, with incF being the most common. Different types of virulence genes were detected, including those that enhance bacterial fitness and pathogenicity. One blaCMY-2 positive isolate (O8:H28) from a wild hog was also a Shiga toxin-producing E. coli and was a carrier of the stx2A virulence toxin subtype. We report the detection of blaCMY-2, blaCTX-M-55, and blaCTX-M-27 beta-lactamase genes in E. coli from coyotes for the first time. This study demonstrates the importance of wildlife as reservoirs of important multi-drug-resistant bacteria and provides information for future comparative genomic analysis with the limited literature on antimicrobial resistance dynamics in wildlife such as coyotes. Full article
(This article belongs to the Special Issue Surveillance and Control of Foodborne Pathogens)
15 pages, 1472 KiB  
Article
Phenotypic and Genotypic Analysis of Antimicrobial Resistance of Commensal Escherichia coli from Dairy Cows’ Feces
by Maksud Kerluku, Marija Ratkova Manovska, Mirko Prodanov, Biljana Stojanovska-Dimzoska, Zehra Hajrulai-Musliu, Dean Jankuloski and Katerina Blagoevska
Processes 2023, 11(7), 1929; https://doi.org/10.3390/pr11071929 - 26 Jun 2023
Cited by 4 | Viewed by 2860
Abstract
Commensal Escherichia coli has the potential to easily acquire resistance to a broad range of antimicrobials, making it a reservoir for its transfer to other microorganisms, including pathogens. The aim of this study was to determine the prevalence of resistant commensal Escherichia coli isolated [...] Read more.
Commensal Escherichia coli has the potential to easily acquire resistance to a broad range of antimicrobials, making it a reservoir for its transfer to other microorganisms, including pathogens. The aim of this study was to determine the prevalence of resistant commensal Escherichia coli isolated from dairy cows’ feces. Phenotypic resistance profiles and categorization were determined by minimum inhibitory concentration (MIC) testing with the broth microdilution method, while the PCR method was used to determine the presence of resistant genes. Out of 159 commensal E. coli isolates, 39 (24.5%) were confirmed to have resistance. According to the MIC values, 37 (97.3%) and 1 (2.7%) isolate were phenotypically categorized as ESBL and ESBL/AmpC, respectively. All isolates showed resistance to ampicillin, while 97.4%, 56.4%, and 36% showed resistance to cefotaxime, ciprofloxacine, and azitromycine, respectively. Not all isolates that showed phenotypic resistance were found to be carrying the corresponding gene. The most prevalent resistant genes were gyrA, tetA, sul2, and tetB, which were present in 61.5%, 64%, 54%, and 49% of the isolates, respectively. The results clearly indicate that, besides their resistance to multiple antimicrobials, the commensal E. coli isolates did not necessarily carry any genes conferring resistance to that particular antimicrobial. Full article
Show Figures

Figure 1

13 pages, 6838 KiB  
Article
Prevalence of Antimicrobial Resistance and Clonal Relationship in ESBL/AmpC-Producing Proteus mirabilis Isolated from Meat Products and Community-Acquired Urinary Tract Infection (UTI-CA) in Southern Brazil
by Matheus Silva Sanches, Luana Carvalho Silva, Caroline Rodrigues da Silva, Victor Hugo Montini, Bruno Henrique Dias de Oliva, Gustavo Henrique Migliorini Guidone, Mara Corrêa Lelles Nogueira, Maísa Fabiana Menck-Costa, Renata Katsuko Takayama Kobayashi, Eliana Carolina Vespero and Sergio Paulo Dejato Rocha
Antibiotics 2023, 12(2), 370; https://doi.org/10.3390/antibiotics12020370 - 10 Feb 2023
Cited by 13 | Viewed by 3270
Abstract
The present study aimed to evaluate the prevalence of antimicrobial resistance and clonal relationships in Proteus mirabilis isolated from chicken meat, beef, pork, and community-acquired urinary tract infections (UTI-CA). Chicken meat isolates showed the highest multidrug resistance (MDR), followed by those from pork [...] Read more.
The present study aimed to evaluate the prevalence of antimicrobial resistance and clonal relationships in Proteus mirabilis isolated from chicken meat, beef, pork, and community-acquired urinary tract infections (UTI-CA). Chicken meat isolates showed the highest multidrug resistance (MDR), followed by those from pork and UTI-CA, whereas beef had relatively few MDR strains. All sources had strains that carried blaCTX-M-65, whereas blaCTX-M-2 and blaCMY-2 were only detected in chicken meat and UTI-CA isolates. This indicates that chicken meat should be considered an important risk factor for the spread of P. mirabilis carrying ESBL and AmpC. Furthermore, ESBL/AmpC producing strains were resistant to a greater number of antimicrobials and possessed more resistance genes than non-producing strains. In addition, the antimicrobial resistance genes qnrD, aac(6′)-Ib-cr, sul1, sul2, fosA3, cmlA, and floR were also found. Molecular typing showed a genetic similarity between chicken meat and UTI-CA isolates, including some strains with 100% similarity, indicating that chicken can be a source of P. mirabilis causing UTI-CA. It was concluded that meat, especially chicken meat, can be an important source of dissemination of multidrug-resistant P. mirabilis in the community. Full article
Show Figures

Figure 1

8 pages, 271 KiB  
Article
Genomic Characterization of an Extensively Drug-Resistant Extra-Intestinal Pathogenic (ExPEC) Escherichia coli Clinical Isolate Co-Producing Two Carbapenemases and a 16S rRNA Methylase
by Mustafa Sadek, Alaaeldin Mohamed Saad, Patrice Nordmann and Laurent Poirel
Antibiotics 2022, 11(11), 1479; https://doi.org/10.3390/antibiotics11111479 - 26 Oct 2022
Cited by 8 | Viewed by 2915
Abstract
An extensively drug-resistant Escherichia coli clinical isolate (N1606) belonging to Sequence Type 361 was recovered from the urine of a patient hospitalized in Switzerland. The strain showed resistance to virtually all β-lactams including the latest generation antibiotics cefiderocol and aztreonam–avibactam. Whole genome sequencing [...] Read more.
An extensively drug-resistant Escherichia coli clinical isolate (N1606) belonging to Sequence Type 361 was recovered from the urine of a patient hospitalized in Switzerland. The strain showed resistance to virtually all β-lactams including the latest generation antibiotics cefiderocol and aztreonam–avibactam. Whole genome sequencing revealed that it possessed two carbapenemase-encoding genes, namely blaNDM-5 and blaKPC-3, and a series of additional β-lactamase genes, including blaCTX-M-15 and blaSHV-11 encoding extended-spectrum β-lactamases (ESBLs), blaCMY-145 encoding an AmpC-type cephalosporinase, and blaOXA-1 encoding a narrow-spectrum class D ß-lactamase. Most of these resistance genes were located on plasmids (IncFII-FIA, IncX3, IncIγ, IncFII). That strain exhibited also a four amino-acid insertion in its penicillin-binding protein 3 (PBP3) sequence, namely corresponding to YRIN. Complete genome analysis revealed that this E. coli isolate carried virulence factors (sitA, gad, hra, terC, traT, and cia) and many other non-β-lactam resistance determinants including rmtB, tet(A), dfrA17 (two copies), aadA1, aadA5 (two copies), sul1 (two copies), qacE (two copies), qepA, mdf(A), catA1, erm(B), mph(A), and qnrS1, being susceptible only to tigecycline, colistin and fosfomycin. In conclusion, we described here the phenotypic and genome characteristics of an extensively drug-resistant (XDR) E. coli ST361 being recognized as an emerging clone worldwide. Full article
(This article belongs to the Special Issue Diversity of Antimicrobial Resistance Genes in Clinical Settings)
20 pages, 1862 KiB  
Article
Detection of Acquired Antibiotic Resistance Genes in Domestic Pig (Sus scrofa) and Common Carp (Cyprinus carpio) Intestinal Samples by Metagenomics Analyses in Hungary
by Balázs Libisch, Sahabi Abdulkadir, Tibor Keresztény, Péter P. Papp, Ferenc Olasz, Hedvig Fébel, Zsuzsanna J. Sándor, Geertrui Rasschaert, Ellen Lambrecht, Marc Heyndrickx, András Szabó, Melinda Kovács and Katalin Posta
Antibiotics 2022, 11(10), 1441; https://doi.org/10.3390/antibiotics11101441 - 20 Oct 2022
Cited by 9 | Viewed by 3732
Abstract
The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs (Sus scrofa) and [...] Read more.
The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs (Sus scrofa) and from a common carp (Cyprinus carpio). Shotgun metagenomic sequencing of DNA purified from the intestinal samples was performed on the Illumina platform. The ResFinder database was applied for detecting acquired ARGs in the assembled metagenomic contigs. Altogether, 59 acquired ARG types were identified, 51 genes from domestic pig and 12 genes from the carp intestinal microbiome. ARG types belonged to the antibiotic classes aminoglycosides (27.1%), tetracyclines (25.4%), β-lactams (16.9%), and others. Of the identified ARGs, tet(E), a blaOXA-48-like β-lactamase gene, as well as cphA4, ampS, aadA2, qnrS2, and sul1, were identified only in carp but not in swine samples. Several of the detected acquired ARGs have not yet been described from food animals in Hungary. The tet(Q), tet(W), tet(O), and mef(A) genes detected in the intestinal microbiome of domestic pigs had also been identified from free-living wild boars in Hungary, suggesting a possible relationship between the occurrence of acquired ARGs in domestic and wild animal populations. Full article
Show Figures

Figure 1

14 pages, 1410 KiB  
Article
Antimicrobial Resistance Pattern, Clustering Mechanisms and Correlation Matrix of Drug-Resistant Escherichia coli in Black Bengal Goats in West Bengal, India
by Jaydeep Banerjee, Debaraj Bhattacharyya, Md Habib, Siddharth Chaudhary, Suman Biswas, Chinmoy Maji, Pramod Kumar Nanda, Arun K. Das, Premanshu Dandapat, Indranil Samanta, Jose M. Lorenzo, Triveni Dutt and Samiran Bandyopadhyay
Antibiotics 2022, 11(10), 1344; https://doi.org/10.3390/antibiotics11101344 - 1 Oct 2022
Cited by 4 | Viewed by 2844
Abstract
A cross-sectional study covering four agro-climatic zones of West Bengal, India, was carried out to understand the risk-factors, antimicrobial resistance mechanism and clustering of the resistance characteristics of Escherichia coli isolated from healthy (170) and diarrhoeic (74) goats reared under intensive (52) and [...] Read more.
A cross-sectional study covering four agro-climatic zones of West Bengal, India, was carried out to understand the risk-factors, antimicrobial resistance mechanism and clustering of the resistance characteristics of Escherichia coli isolated from healthy (170) and diarrhoeic (74) goats reared under intensive (52) and semi-intensive (192) farming practices. Of the 488 E. coli isolates, the majority, including the extended spectrum (n: 64, 13.11%) and AmpC β-lactamase (ACBL) (n: 86, 17.62%) producers, were resistant to tetracycline (25.2%), followed by enrofloxacin (24.5%), cefotaxime (21.5%) and amikacin (20.5%). Statistical modelling revealed that the isolates from diarrhoeic animals (p < 0.001) are likely to be more ACBL-positive than those from the healthy counterparts. Similarly, cefotaxime (p < 0.05) and enrofloxacin-resistance (p < 0.01) were significantly higher in diarrhoeic goats and in goats reared intensively. The isolates (n = 35) resistant to multiple drugs revealed the presence of β-lactamase [blaCTXM-1-(21), blaSHV-(7), blaTEM-(3), blaCMY-6-(1), blaCITM-(3)]; quinolone [qnrB-(10), qnrS-(7), aac(6’)-Ib-cr-(3)]; tetracycline [tetA-(19), tetB-(4)] and sulphonamide resistance determinants [sul1-(4)]; multiple plasmids, especially those belonging to the IncF and IncI1 replicon types; and active acrAB efflux pumps. Further, two isolates harbored the carbapenem resistance (blaNDM-5) gene and eight were strong biofilm producers. This first ever study conducted to unravel the status of AMR in goat farming reveals that not only the intensive farming practices but also certain clinical ailments such as diarrhoea can increase the shedding of the drug-resistant isolate. The emergence of multi-drug resistant (MDR) E. coli in goats, particularly those that are carbapenem resistant, is a cause for concern that indicates the spread of such pathogens even in the livestock sub-sector generally considered as naive. Full article
Show Figures

Figure 1

17 pages, 2124 KiB  
Article
Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA
by Robert A. Sowah, Marirosa Molina, Ourania Georgacopoulos, Blake Snyder and Mike Cyterski
Microorganisms 2022, 10(9), 1804; https://doi.org/10.3390/microorganisms10091804 - 8 Sep 2022
Cited by 9 | Viewed by 2720
Abstract
The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water [...] Read more.
The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this study, we used direct measurement of sewage-associated molecular markers, the class 1 integron gene, standard water quality parameters, and watershed characteristics to evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear machine learning models developed using generalized boosting show that more than 70% of the variation in ARG loads in the watershed could be explained by fecal source loading, with other factors such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal bacteria in urban streams. Full article
(This article belongs to the Special Issue Foodborne and Waterborne Pathogens)
Show Figures

Figure 1

17 pages, 1335 KiB  
Article
A Ternary Copper (II) Complex with 4-Fluorophenoxyacetic Acid Hydrazide in Combination with Antibiotics Exhibits Positive Synergistic Effect against Salmonella Typhimurium
by Guilherme Paz Monteiro, Roberta Torres de Melo, Micaela Guidotti-Takeuchi, Carolyne Ferreira Dumont, Rosanne Aparecida Capanema Ribeiro, Wendell Guerra, Luana Munique Sousa Ramos, Drielly Aparecida Paixão, Fernanda Aparecida Longato dos Santos, Dália dos Prazeres Rodrigues, Peter Boleij, Patrícia Giovana Hoepers and Daise Aparecida Rossi
Antibiotics 2022, 11(3), 388; https://doi.org/10.3390/antibiotics11030388 - 15 Mar 2022
Cited by 4 | Viewed by 3496
Abstract
Salmonella spp. continues to figure prominently in world epidemiological registries as one of the leading causes of bacterial foodborne disease. We characterised 43 Brazilian lineages of Salmonella Typhimurium (ST) strains, characterized drug resistance patterns, tested copper (II) complex as control options, and proposed [...] Read more.
Salmonella spp. continues to figure prominently in world epidemiological registries as one of the leading causes of bacterial foodborne disease. We characterised 43 Brazilian lineages of Salmonella Typhimurium (ST) strains, characterized drug resistance patterns, tested copper (II) complex as control options, and proposed effective antimicrobial measures. The minimum inhibitory concentration was evaluated for seven antimicrobials, isolated and combined with the copper (II) complex [Cu(4-FH)(phen)(ClO4)2] (4-FH = 4-fluorophenoxyacetic acid hydrazide and phen = 1,10-phenanthroline), known as DRI-12, in planktonic and sessile ST. In parallel, 42 resistance genes were screened (PCR/microarray). All strains were multidrug resistant (MDR). Resistance to carbapenems and polymyxins (86 and 88%, respectively) have drawn attention to the emergence of the problem in Brazil, and resistance is observed also to CIP and CFT (42 and 67%, respectively), the drugs of choice in treatment. Resistance to beta-lactams was associated with the genes blaTEM/blaCTX-M in 39% of the strains. Lower concentrations of DRI-12 (62.7 mg/L, or 100 μM) controlled planktonic and sessile ST in relation to AMP/SUL/TET and AMP/SUL/TET/COL, respectively. The synergistic effect provided by DRI-12 was significant for COL/CFT and COL/AMP in planktonic and sessile ST, respectively, and represents promising alternatives for the control of MDR ST. Full article
Show Figures

Figure 1

9 pages, 2708 KiB  
Article
Antibiofilm Activity of β-Lactam/β-Lactamase Inhibitor Combination against Multidrug-Resistant Salmonella Typhimurium
by Nana Nguefang Laure and Juhee Ahn
Pathogens 2022, 11(3), 349; https://doi.org/10.3390/pathogens11030349 - 13 Mar 2022
Cited by 3 | Viewed by 3063
Abstract
This study was designed to assess the effect of β-lactam/β-lactamase inhibitor combinations on the inhibition of biofilm formation of Salmonella Typhimurium. The anti-planktonic and anti-biofilm activities of ampicillin (AMP), ceftriaxone (CEF), and combination treatments of antibiotics and sulbactam (AMP + SUL and CEF [...] Read more.
This study was designed to assess the effect of β-lactam/β-lactamase inhibitor combinations on the inhibition of biofilm formation of Salmonella Typhimurium. The anti-planktonic and anti-biofilm activities of ampicillin (AMP), ceftriaxone (CEF), and combination treatments of antibiotics and sulbactam (AMP + SUL and CEF + SUL) were evaluated against antibiotic-sensitive S. Typhimurium ATCC 19585 (STAS) and clinically isolated multidrug-resistant (MDR) S. Typhimurium CCARM 8009 (STMDR). Compared to the control, the minimum inhibitory concentrations (MICs) of AMP against STAS and CEF against STMDR were decreased from 32 to 16 μg/mL and 0.25 to 0.125 μg/mL, respectively, in the presence of SUL. The numbers of STMDR treated with AMP + SUL and CEF + SUL were effectively reduced by more than 2 logs after 4 h of incubation at 37 °C. The β-lactamase activities of STAS and STMDR treated with AMP and CEF were reduced from 3.3 to 2.6 μmol/min/mL and from 8.3 to 3.4 μmol/min/mL, respectively, in the presence of SUL. The biofilm cell numbers of STAS and STMDR were reduced at all treatments after 24 h of incubation at 37 °C. The biofilm cell numbers of STAS and STMDR were reduced by more than 2 logs in the presence of SUL compared to the AMP and CEF alone. The lowest relative fitness level was 0.6 in STAS treated with AMP + SUL, while no significant differences in the relative fitness were observed in STMDR. This study suggests that β-lactamase inhibitors (BLIs) could be used for controlling biofilm formation of β-lactamase-producing multidrug-resistant S. Typhimurium. Full article
Show Figures

Figure 1

15 pages, 820 KiB  
Article
Characterization of Escherichia coli from Water and Food Sold on the Streets of Maputo: Molecular Typing, Virulence Genes, and Antibiotic Resistance
by Acácio Salamandane, Suse Alves, Lélia Chambel, Manuel Malfeito-Ferreira and Luísa Brito
Appl. Microbiol. 2022, 2(1), 133-147; https://doi.org/10.3390/applmicrobiol2010008 - 25 Jan 2022
Cited by 18 | Viewed by 4508
Abstract
The aim of this study was to investigate the pathogenic potential and antibiotic resistance of 59 Escherichia coli isolates from ready-to-eat (RTE) street food (n = 31) and drinking water (n = 28) sold in the city of Maputo, Mozambique. The [...] Read more.
The aim of this study was to investigate the pathogenic potential and antibiotic resistance of 59 Escherichia coli isolates from ready-to-eat (RTE) street food (n = 31) and drinking water (n = 28) sold in the city of Maputo, Mozambique. The isolates were characterized by XbaI subtyping analysis via pulsed field gel electrophoresis. Multiplex PCRs were performed targeting five virulence genes (stx, lt, st, astA, and eae) and three groups of antibiotic-resistant genes, namely ß-lactamases (extended-spectrum ß-lactamase and AmpC), tetracycline (tetA, tetB, and tetM) and sulfamethoxazole/trimethoprim (sul1, sul2, and sul3). The stx virulence gene, encoding the Shiga/Vero (VT) toxin produced by the verotoxin-producing E. coli (VTEC), was identified with similar frequency in isolates from food (5/31) and water (6/28). The highest percentages of resistant isolates from food and water were found for ß-lactams imipenem (35.5 and 39.3%, respectively) and ampicillin (39.3 and 46.4%, respectively). Multidrug resistance was observed in 31.3% of the isolates, being higher in E. coli isolates from water (45.5%) compared to RTE street food isolates (19.2%). Virulence genes were detected in 73% of the multidrug-resistant isolates. Concerning antibiotic-resistant genes, ESBL was the most frequent (57.7%) among β-lactamases while tetA was the most frequent (50%) among non-β-lactamases. Full article
Show Figures

Figure 1

11 pages, 730 KiB  
Article
Antimicrobial Susceptibility Profiles among Pseudomonas aeruginosa Isolated from Professional SCUBA Divers with Otitis Externa, Swimming Pools and the Ocean at a Diving Operation in South Africa
by Kevin Maclean, Fernande Olpa J Pankendem Njamo, Mahloro Hope Serepa-Dlamini, Kulsum Kondiah and Ezekiel Green
Pathogens 2022, 11(1), 91; https://doi.org/10.3390/pathogens11010091 - 13 Jan 2022
Cited by 9 | Viewed by 3417
Abstract
SCUBA divers are predisposed to otitis externa caused by Pseudomonas aeruginosa, which is becoming increasingly multi-drug resistant (MDR). The present work assessed the antibiotic resistance profiles of P. aeruginosa obtained from SCUBA divers and their environment in Sodwana Bay, South Africa. Bacterial isolates [...] Read more.
SCUBA divers are predisposed to otitis externa caused by Pseudomonas aeruginosa, which is becoming increasingly multi-drug resistant (MDR). The present work assessed the antibiotic resistance profiles of P. aeruginosa obtained from SCUBA divers and their environment in Sodwana Bay, South Africa. Bacterial isolates from a total of 137 random water and ear swab samples were identified using biochemical and molecular methods. P. aeruginosa strains were further evaluated for antibiotic susceptibility using the Kirby–Bauer assay. Double disk synergy test (DDST) to confirm metallo-β-lactamase (MBL) production and PCR amplification of specific antibiotic resistance genes was performed. All (100%) 22 P. aeruginosa isolates recovered were resistant to 6 of the β-lactams tested including imipenem but exhibited susceptibility to trimethoprim–sulfamethoxazole. MBL production was observed in 77% of isolates while the most prevalent extended-spectrum β-lactamase (ESBL) genes present included blaAmpC (86.9%) followed by blaTEM (82.6%). Sulfonamide resistance was largely encoded by sul1 (63.6%) and sul2 (77.3%) genes with a high abundance of class 1 integrons (77.3%) of which 18.2% carried both Intl1 and Intl2. P. aeruginosa found in Sodwana Bay exhibits multi-drug resistance (MDRce) to several pharmaceutically important drugs with the potential to transfer antibiotic resistance to other bacteria if the judicious use of antibiotics for their treatment is not practiced. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

18 pages, 3929 KiB  
Article
Antibiotic Resistance in Wastewater and Its Impact on a Receiving River: A Case Study of WWTP Brno-Modřice, Czech Republic
by Iva Buriánková, Peter Kuchta, Anna Molíková, Kateřina Sovová, David Výravský, Martin Rulík, David Novák, Jan Lochman and Monika Vítězová
Water 2021, 13(16), 2309; https://doi.org/10.3390/w13162309 - 23 Aug 2021
Cited by 21 | Viewed by 5431
Abstract
Antibiotic resistance has become a global threat in which the anthropogenically influenced aquatic environment represents not only a reservoir for the spread of antibiotic resistant bacteria (ARB) among humans and animals but also an environment where resistance genes are introduced into natural microbial [...] Read more.
Antibiotic resistance has become a global threat in which the anthropogenically influenced aquatic environment represents not only a reservoir for the spread of antibiotic resistant bacteria (ARB) among humans and animals but also an environment where resistance genes are introduced into natural microbial ecosystems. Wastewater is one of the sources of antibiotic resistance. The aim of this research was the evaluation of wastewater impact on the spread of antibiotic resistance in the water environment. In this study, qPCR was used to detect antibiotic resistance genes (ARGs)—blaCTX-M-15, blaCTX-M-32, ampC, blaTEM, sul1, tetM and mcr-1 and an integron detection primer (intl1). Detection of antibiotic resistant Escherichia coli was used as a complement to the observed qPCR results. Our results show that the process of wastewater treatment significantly reduces the abundances of ARGs and ARB. Nevertheless, treated wastewater affects the ARGs and ARB number in the receiving river. Full article
(This article belongs to the Special Issue Health-Related Water Microbiology and Wastewater-Based Epidemiology)
Show Figures

Figure 1

Back to TopTop