Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = ALK fusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1099 KiB  
Communication
Fluorescent In Situ Hybridization Testing Allows the Diagnosis of NRG1 Gene Fusions in Lung and Pancreas Cancers with No Other Identified Oncogenic Driver
by Clara Bastard, Charline Caumont, Laura Samaison, Isabelle Quintin-Roué, Laurent Doucet, Pascale Marcorelles, Cédric Le Maréchal, Jean-Philippe Merlio, David Cappellen and Arnaud Uguen
Cancers 2025, 17(14), 2347; https://doi.org/10.3390/cancers17142347 - 15 Jul 2025
Viewed by 210
Abstract
Some pancreatic ductal-type (PDADK) and lung adenocarcinomas (LADK) lacking other molecular drivers are reported to harbor NRG1 fusions as potential novel therapeutic targets. We investigated the feasibility of a fluorescent in situ hybridization (FISH)-based diagnosis of NRG1 fusions in a case series of [...] Read more.
Some pancreatic ductal-type (PDADK) and lung adenocarcinomas (LADK) lacking other molecular drivers are reported to harbor NRG1 fusions as potential novel therapeutic targets. We investigated the feasibility of a fluorescent in situ hybridization (FISH)-based diagnosis of NRG1 fusions in a case series of PDADK and LADK lacking other identified oncogenic drivers. First, among a case series of PDADK, KRAS analyses (PCR followed in PCR-negative cases by RNA sequencing—RNAseq) found 27/162 (16.7%) KRAS wild-type cases, among which 1/162 (0.6%) NRG1 fusion was diagnosed using FISH. Secondly, among a case series of LDAK, 191/446 (42.8%) cases had no molecular alterations in EGFR, KRAS, BRAF, HER2, MET, ALK, ROS1 and RET according to NGS and FISH analyses and, among them, 4/446 (0.9%) cases had NRG1 fusions using FISH. Finally, four additional cases out of the two previously mentioned cases series (1 PDADK and 3 LADK) with NRG1 fusions diagnosed by first-line RNAseq were also concluded as NRG1 FISH-positive. The NRG1 FISH tests for the nine NRG1 FISH-positive cases resulted in 50% to 80% of positive tumor nuclei, all with single 3′-NRG1 FISH signals. In our series, of the 22 cases analyzed with both NRG1 FISH (positivity criterion of at least 15% of tumor nuclei with a split between the 5′- and the 3′- parts of the probes and/or isolated single 3′-NRG1 signal) and RNAseq, 17 cases were FISH– RNAseq– and 5 cases were FISH+ RNAseq+ (no FISH+ RNAseq– or FISH– RNAseq+ cases in our study) resulting in 100% sensibility and specificity for the NRG1 FISH test. In the case of no access to RNAseq, NRG1 FISH consists of a valuable tool searching for NRG1 fusions in patients with advanced cancers. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

13 pages, 1141 KiB  
Article
Multi-Cancer Genome Profiling for Neurotrophic Tropomyosin Receptor Kinase (NTRK) Fusion Genes: Analysis of Profiling Database of 88,688 Tumors
by Hinano Nishikubo, Kyoka Kawabata, Saki Kanei, Rika Aoyama, Dongheng Ma, Tomoya Sano, Daiki Imanishi, Takashi Sakuma, Koji Maruo, Canfeng Fan, Yurie Yamamoto and Masakazu Yashiro
Cancers 2025, 17(13), 2250; https://doi.org/10.3390/cancers17132250 - 4 Jul 2025
Viewed by 349
Abstract
Background/Objectives: The neurotrophic tropomyosin receptor kinase (NTRK) genes NTRK1, NTRK2, and NTRK3 encode tyrosine kinase receptors, and their fusion genes are known as the oncogenic driver genes for cancer. This study aimed to compare the diagnostic ability of NTRK fusion [...] Read more.
Background/Objectives: The neurotrophic tropomyosin receptor kinase (NTRK) genes NTRK1, NTRK2, and NTRK3 encode tyrosine kinase receptors, and their fusion genes are known as the oncogenic driver genes for cancer. This study aimed to compare the diagnostic ability of NTRK fusion among five types of multi-cancer genome profiling tests (multi-CGP tests) and determine a useful multi-CGP test for NTRK fusion, recorded in the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database in Japan. This study aimed to compare the diagnostic results for NTRK fusions among the five different CGP tests. Methods: A total of 88,688 tumor cases were enrolled in the C-CAT profiling database from 2019 to 2024. The detection frequency of NTRK fusion genes was compared to the results for five multi-CGP tests: NCC Oncopanel, FoundationOne CDx (F1), FoundationOne Liquid (F1L), GenMineTOP (GMT), and Guardant360. Results: NTRK fusion genes were detected in 175 (0.20%) of the 88,688 total cases. GMT, which is equipped with RNA sequencing function, frequently detected NTRK fusion genes (20 of 2926 cases; 0.68%) in comparison with the other four multi-CGP tests that do not have RNA sequencing analysis. GMT showed significantly (p < 0.05) higher diagnostic ability for NTRK fusions compared with the other four multi-CGP tests. Especially, NTRK2 fusion was significantly (p < 0.001) more highly determined by GMT than it was by the other four multi-CGP tests. The detection rates for FGFR1 and FGFR3 were significantly higher in GMT than in other multi-CGP tests. In contrast, the detection rates of the ALK and RET fusion genes were significantly higher in F1L. Conclusions: GMT, which is equipped with RNA sequencing analysis, might show a useful diagnostic ability for NTRK fusions, especially for NTRK2 fusion genes. Full article
Show Figures

Figure 1

19 pages, 2482 KiB  
Article
Modeling the t(2;5) Translocation of Anaplastic Large Cell Lymphoma Using CRISPR-Mediated Chromosomal Engineering
by Robin Khan, Laurent Phely, Sophia Ehrenfeld, Tatjana Schmitz, Pia Veratti, Jakob Wolfes, Khalid Shoumariyeh, Geoffroy Andrieux, Uta S. Martens, Stephan de Bra, Martina Auer, Oliver Schilling, Melanie Boerries, Michael Speicher, Anna L. Illert, Justus Duyster and Cornelius Miething
Cancers 2025, 17(13), 2226; https://doi.org/10.3390/cancers17132226 - 2 Jul 2025
Viewed by 523
Abstract
Background/Objectives: ALK+ Anaplastic Large Cell Lymphoma (ALCL) is an aggressive T-cell lymphoma that is characterized by expression of the Anaplastic Lymphoma Kinase (ALK), which is induced by the t(2;5) chromosomal rearrangement, leading to the expression of the NPM-ALK fusion oncogene. Most previous preclinical [...] Read more.
Background/Objectives: ALK+ Anaplastic Large Cell Lymphoma (ALCL) is an aggressive T-cell lymphoma that is characterized by expression of the Anaplastic Lymphoma Kinase (ALK), which is induced by the t(2;5) chromosomal rearrangement, leading to the expression of the NPM-ALK fusion oncogene. Most previous preclinical models of ALK+ ALCL were based on overexpression of the NPM-ALK cDNA from heterologous promoters. Due to the enforced expression, this approach is prone to artifacts arising from synthetic overexpression, promoter competition and insertional variation. Methods: To improve the existing ALCL models and more closely recapitulate the oncogenic events in ALK+ ALCL, we employed CRISPR/Cas-based chromosomal engineering to selectively introduce translocations between the Npm1 and Alk gene loci in murine cells. Results: By inducing precise DNA cleavage at the syntenic loci on chromosome 11 and 17 in a murine IL-3-dependent Ba/F3 reporter cell line, we generated de novo Npm-Alk translocations in vivo, leading to IL-3-independent cell growth. To verify efficient recombination, we analyzed the expression of the NPM-ALK fusion protein in the recombined cells and could also show the t(11;17) in the IL-3 independent Ba/F3 cells. Subsequent functional testing of these cells using an Alk-inhibitor showed exquisite responsiveness towards Crizotinib, demonstrating strong dependence on the newly generated ALK fusion oncoprotein. Furthermore, a comparison of the gene expression pattern between Ba/F3 cells overexpressing the Npm-Alk cDNA with Ba/F3 cells transformed by CRISPR-mediated Npm-Alk translocation indicated that, while broadly overlapping, a set of pathways including the unfolded protein response pathway was increased in the Npm-Alk overexpression model, suggesting increased reactive changes induced by exogenous overexpression of Npm-Alk. Furthermore, we observed clustered expression changes in genes located in chromosomal regions close to the breakpoint in the new CRISPR-based model, indicating positional effects on gene expression mediated by the translocation event, which are not part of the older models. Conclusions: Thus, CRISPR-mediated recombination provides a novel and more faithful approach to model oncogenic translocations, which may lead to an improved understanding of the molecular pathogenesis of ALCL and enable more accurate therapeutic models of malignancies driven by oncogenic fusion proteins. Full article
(This article belongs to the Special Issue Genomics of Hematologic Cancers (Volume II))
Show Figures

Figure 1

18 pages, 965 KiB  
Review
Refining Criteria for Choosing the First-Line Treatment for Real-World Patients with Advanced ALK-Rearranged NSCLC
by Edyta Maria Urbanska, Peter Rindom Koffeldt, Morten Grauslund, Linea Cecilie Melchior, Jens Benn Sørensen and Eric Santoni-Rugiu
Int. J. Mol. Sci. 2025, 26(13), 5969; https://doi.org/10.3390/ijms26135969 - 21 Jun 2025
Viewed by 693
Abstract
Choosing the optimal first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) rearrangements can be challenging in daily practice. Although clinical trials with next-generation ALK-tyrosine kinase inhibitors (TKIs) have played a key role in [...] Read more.
Choosing the optimal first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) rearrangements can be challenging in daily practice. Although clinical trials with next-generation ALK-tyrosine kinase inhibitors (TKIs) have played a key role in evaluating their efficacy and safety, which patients benefit from a specific ALK-TKI may still be questioned. The methodological inconsistencies in these trials, which led to the inclusion of different patient populations, appear to have been inadequately addressed. ALK-rearranged NSCLC is a heterogeneous disease, and co-existing molecular alterations may affect the outcome. The questions explored in these trials appear insufficient to support a personalized approach to the first-line treatment, while defining long-term responders and early progressors would be clinically useful. This narrative review presents several considerations from oncologists’ and pathologists’ perspectives. We propose defining favorable and unfavorable features, such as histology, type of ALK fusion, co-existing molecular alterations, plasma circulating tumor DNA (ctDNA, performance status, and brain metastases, to help identify patients with lower and higher risk of progression. Consequently, the most potent ALK-TKI to date, Lorlatinib, may be considered as the first-line treatment for high-risk patients with unfavorable features, while sequencing of ALK-TKIs may be appropriate for low-risk patients with favorable features. Although ALK signal inhibition is critical in this disease, it may not be sufficient for clinical control due to de novo co-alterations. A more personalized approach to first-line therapy requires consideration of risk factors for each patient. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

51 pages, 9627 KiB  
Review
Molecular Insights into the Diagnosis of Anaplastic Large Cell Lymphoma: Beyond Morphology and Immunophenotype
by Jesús Frutos Díaz-Alejo, Iván Prieto-Potín, Rebeca Manso, Marta Rodríguez, Marcos Rebollo-González, Francisco Javier Díaz de la Pinta, Miriam Morales-Gallego, Socorro María Rodríguez-Pinilla and Arantza Onaindia
Int. J. Mol. Sci. 2025, 26(12), 5871; https://doi.org/10.3390/ijms26125871 - 19 Jun 2025
Viewed by 726
Abstract
Anaplastic Large Cell Lymphoma (ALCL) represents a diverse group of mature T-Cell Lymphomas unified by strong CD30 expression but with different molecular and clinical subtypes. This review summarizes recent molecular advances in ALCL, highlighting key discoveries that have refined its classification, diagnosis, and [...] Read more.
Anaplastic Large Cell Lymphoma (ALCL) represents a diverse group of mature T-Cell Lymphomas unified by strong CD30 expression but with different molecular and clinical subtypes. This review summarizes recent molecular advances in ALCL, highlighting key discoveries that have refined its classification, diagnosis, and therapeutic strategies. ALCL comprises four major entities: systemic ALK-positive ALCL, systemic ALK-negative ALCL, Breast Implant-Associated ALCL (BIA-ALCL), and primary cutaneous ALCL. Each subtype exhibits unique phenotypes, along with cytogenetic and molecular alterations that affect clinical outcomes. Nevertheless, different oncogenic mechanisms mediate STAT3 activation. In ALK-positive ALCL, ALK fusion proteins drive oncogenesis via constitutive activation of STAT3 and other signaling pathways. ALK-negative ALCL comprises heterogeneous genetic subtypes, in which JAK/STAT3 pathway alterations and novel gene fusions are gaining recognition as potential therapeutic targets. This review emphasizes the need for integrative molecular diagnostics to improve stratification of ALCL subtypes and targeted treatment approaches. Future research should focus on elucidating the biological mechanisms underlying these alterations and on translating molecular insights into clinical practice. Full article
Show Figures

Figure 1

12 pages, 540 KiB  
Article
The Genomic Landscape of Romanian Non-Small Cell Lung Cancer Patients: The Insights from Routine NGS Testing with the Oncomine Dx Target Panel at the PATHOS Molecular Pathology Laboratory
by Orsolya I. Gaal, Andrei Ungureanu, Bogdan Pop, Andreea Tomescu, Andreea Cătană, Milena Man, Ruxandra Mioara Râjnoveanu, Emanuel Palade, Marioara Simon, Stefan Dan Luchian, Milan Paul Kubelac, Annamaria Fulop, Zsolt Fekete, Tudor Eliade Ciuleanu, Ion Jentimir, Bogdan Popovici, Calin Cainap, Alexandra Cristina Preda, Cosmina Magdau, Andrei Lesan and Bogdan Feticaadd Show full author list remove Hide full author list
Cancers 2025, 17(12), 1947; https://doi.org/10.3390/cancers17121947 - 11 Jun 2025
Viewed by 752
Abstract
Background: Comprehensive molecular profiling is essential for precision oncology in non-small cell lung cancer (NSCLC). However, genomic data from Eastern European populations, including Romania, remain limited. Methods: We analyzed 398 consecutive NSCLC cases tested at the PATHOS Molecular Pathology Laboratory (Cluj-Napoca, Romania) between [...] Read more.
Background: Comprehensive molecular profiling is essential for precision oncology in non-small cell lung cancer (NSCLC). However, genomic data from Eastern European populations, including Romania, remain limited. Methods: We analyzed 398 consecutive NSCLC cases tested at the PATHOS Molecular Pathology Laboratory (Cluj-Napoca, Romania) between April 2024 and February 2025 using the Ion Torrent™ Genexus™ System and the Oncomine™ Dx Target Test, which evaluates SNVs/indels in 46 genes, fusions in 23 genes, and CNVs in 19 genes from FFPE samples. Results: The cohort was predominantly male (66%) with a median age of 67 years. Adenocarcinoma represented 70% of cases with known histology. Genomic profiling revealed a high frequency of actionable alterations. KRAS mutations were the most common (29.1%), with p.G12C detected in 10.3% of all the cases. EGFR mutations were present in 14.3% of patients, mostly exon 19 deletions and L858R substitutions. BRAF alterations (5.3%) included both V600E and non-V600E variants. RET alterations were detected as eight missense mutations, two canonical fusions (KIF5BRET, CCDC6RET), one amplification, and three transcript imbalances. EML4-ALK fusions (1.77%), ERBB2 mutations/amplifications (3.0%), and FGFR1/FGFR3 amplifications were also observed. Conclusions: This study provides the first large-scale molecular snapshot of NSCLC in Romania. While the overall genomic profiles align with Western populations, the higher frequency of KRAS p.G12C and FGFR amplifications highlights the value of region-specific data to support targeted therapies in Eastern Europe. Full article
Show Figures

Figure 1

16 pages, 3596 KiB  
Article
Central Nervous System Metastases from Primary Lung Carcinoma: Significance of RNA Fusion Testing and Early Versus Late Metastases
by Michelle Garlin Politis, Mahesh Mansukhani, Benjamin O. Herzberg, Lanyi N. Chen, Mark Stoopler, Maelle Saliba, Markus Siegelin, Zhe Zhu, Joshua Sonett, Brian S. Henick, Simon K. Cheng, Swarnali Acharyya, Catherine A. Shu, Michael L. Miller, Benjamin Izar, Helen Fernandes, Susan Hsiao and Anjali Saqi
J. Pers. Med. 2025, 15(5), 181; https://doi.org/10.3390/jpm15050181 - 1 May 2025
Viewed by 569
Abstract
Background/Objectives: While the genomic landscape of primary lung carcinomas is well characterized, there is a relative scarcity of fusion data on corresponding central nervous system (CNS) metastases. This study aimed to elucidate the molecular profiles of CNS metastases to (1) assess the significance [...] Read more.
Background/Objectives: While the genomic landscape of primary lung carcinomas is well characterized, there is a relative scarcity of fusion data on corresponding central nervous system (CNS) metastases. This study aimed to elucidate the molecular profiles of CNS metastases to (1) assess the significance of a combined DNA–reflex RNA fusion testing approach and (2) compare the mutational landscape between patients who present initially [early (≤2 months)] with CNS metastases and those who develop CNS metastases thereafter [late (>2 months)]. Methods: We performed a retrospective search of CNS metastases of adenocarcinoma of probable lung origin interrogated by targeted DNA–reflex RNA next-generation sequencing (NGS). The DNA NGS panel included the driver mutations EGFR, BRAF, KRAS, MET, and ERBB2. RNA NGS included ALK, RET, ROS1, and MET. Additionally, mutational profiles were examined between those with early versus late CNS metastases. Results: Of the 58 patients, 44 (75.9%) had mutations or alterations, including 34 identified by DNA NGS [EGFR (n = 17; 50.0%), KRAS (n = 15; 44.1%), MET (n = 2; 5.9%)] and 10/24 by RNA NGS [ALK (n = 7; 70%), MET (n = 2; 20%), ROS1 (n = 1; 10%)]. Of all patients, 32 (55%) presented with early and 26 (45%) with late CNS metastases. Although patients with early metastases had worse survival compared to those with late metastases (p < 0.001), there were no statistically significant differences in the mutational profiles between the two cohorts. Conclusions: A significant proportion of CNS metastases without driver mutations identified by DNA NGS had targetable alterations identified by RNA NGS (10/24, 41.7%). In summary, a combined DNA with reflex RNA fusion testing approach plays a significant role in detecting and potentially managing CNS metastases. Comprehensive prospective studies are essential to elucidate the differences between early and late CNS metastases. Full article
Show Figures

Figure 1

24 pages, 2910 KiB  
Article
TFCP2 Fusion-Positive Rhabdomyosarcomas: A Report of 10 Cases and a Review of the Literature
by Madison P. Ginn, Ryan A. Denu, Davis R. Ingram, Khalida M. Wani, Alexander J. Lazar, Douglas J. Harrison, Michael S. Nakazawa, Anthony P. Conley, Shreyaskumar Patel and John Andrew Livingston
Cancers 2025, 17(9), 1441; https://doi.org/10.3390/cancers17091441 - 25 Apr 2025
Viewed by 736
Abstract
Background/Objectives: The fusion of the TFCP2 gene with either EWSR1 or FUS typically results in a spindle cell and/or epithelioid variant of rhabdomyosarcoma. This is an ultra-rare type of sarcoma, with most of our knowledge about these coming from case reports and small [...] Read more.
Background/Objectives: The fusion of the TFCP2 gene with either EWSR1 or FUS typically results in a spindle cell and/or epithelioid variant of rhabdomyosarcoma. This is an ultra-rare type of sarcoma, with most of our knowledge about these coming from case reports and small case series. Herein, we describe the clinical characteristics and treatment course of 10 patients with TFCP2 fusion sarcomas. Methods: We identified 10 patients in our hospital system with TFCP2 fusion sarcomas and 43 previously reported cases in the literature. We assessed primary tumor characteristics, treatment regimens, and survival rates among all cases. Results: We find that TFCP2 fusion sarcomas most commonly occur in young adults (median age: 33 years) and arise in craniofacial bones (7/10, 70%). Concomitant ALK alterations and ALK overexpression is nearly universal, and two of our patients were treated with ALK inhibitors; one patient had a near complete response before eventual progression, while the other patient had progressive disease after 2 months. For most, the prognosis was poor. The median overall survival in this cohort was 24.7 months (range: 5.9–29.7 months). Four patients were treated with upfront surgery, and all four developed recurrent disease. The median time to recurrence following upfront surgery was 2.1 months (range: 0.73–6.9 months). Five patients received systemic therapy, and the median progression-free survival from the start of treatment to progression was 1.6 months (range: 0.97–2.7). We also review the 53 total cases of TFCP2 fusion sarcomas in the literature, again highlighting the dismal outcomes in this disease. Conclusions:TFCP2 fusion sarcomas are proven to be aggressive and have poor prognosis. Additional work is needed to define the optimal treatment course for TFCP2 fusion sarcomas. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

9 pages, 2008 KiB  
Case Report
Pediatric Cutaneous Anaplastic Lymphoma Kinase-Positive Histiocytosis with DCTN1::ALK Fusion: A Case Report and Literature Search
by Kristóf Levente Korpás, Attila Mokánszki, Lívia Beke, Gábor Méhes and Yi-Che Chang Chien
Diagnostics 2025, 15(9), 1057; https://doi.org/10.3390/diagnostics15091057 - 22 Apr 2025
Viewed by 899
Abstract
Background and Clinical Significance: Anaplastic lymphoma kinase (ALK)-positive histiocytosis is a relatively novel entity, affecting single or multiple organ systems; it is characterized by aggregates of neoplastic cells of the histiocytic lineage, harboring molecular alterations in the ALK gene and exhibiting excellent [...] Read more.
Background and Clinical Significance: Anaplastic lymphoma kinase (ALK)-positive histiocytosis is a relatively novel entity, affecting single or multiple organ systems; it is characterized by aggregates of neoplastic cells of the histiocytic lineage, harboring molecular alterations in the ALK gene and exhibiting excellent response to systemic tyrosine kinase inhibitors. Case presentation: Herein, we present a pediatric case with cutaneous-only involvement: the 6-month-old male patient presented with an elevated, tan-colored lesion on his left forearm. Following surgical excision, histopathological evaluation reported spindle cells with wide eosinophilic cytoplasm and Touton-type giant cells. The tumor cells were positive for CD163, ALK, phosphorylated ERK, and cyclin D1. Fluorescent in situ hybridization revealed ALK rearrangement, whereas, upon next-generation sequencing, a DCTN1::ALK fusion was identified. Conclusion: Our case serves as a great addition to the limited number of cases reported in the literature, and it represents the first published pediatric case with the rare DCTN1::ALK fusion. The novelty of this genetic alteration and the lack of knowledge about its potential effects on the clinical aspects of ALK-positive histiocytosis highlight the importance of ancillary molecular testing, when available. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

18 pages, 295 KiB  
Review
Oncogenic Fusions in NSCLC: From Mechanisms to Clinical Applications
by Nyein Wint Yee Theik, Suset Almuinas De Armas, Daniel Rosas, Amy Kiamos, Nyein Nyein Thaw Dar, Ahmed Shoreibah, Atif Hussein and Luis E. Raez
Int. J. Mol. Sci. 2025, 26(8), 3802; https://doi.org/10.3390/ijms26083802 - 17 Apr 2025
Viewed by 909
Abstract
Non-small cell lung cancer (NSCLC) is operated commonly by diverse genetic alterations, and oncogenic fusions represent a significant therapeutic role. Common fusions include ALK, ROS1, RET, and NTRK, signaling pathways in tumorigenesis. Recent advances in investigating tumor molecular biology include underlying fusions, including [...] Read more.
Non-small cell lung cancer (NSCLC) is operated commonly by diverse genetic alterations, and oncogenic fusions represent a significant therapeutic role. Common fusions include ALK, ROS1, RET, and NTRK, signaling pathways in tumorigenesis. Recent advances in investigating tumor molecular biology include underlying fusions, including chromosomal rearrangements, highlighting their role as oncogenic drivers. The development of targeted therapies, such as tyrosine kinase inhibitors (TKIs), has impacted most patients’ NSCLC treatment. Despite the greater profiles, such as remarkable efficiency and tolerable side effects compared to traditional chemotherapy, challenges, such as acquired mutations, lead to more ongoing research-optimized future NSCLC therapies. Full article
6 pages, 6684 KiB  
Interesting Images
Lung Adenocarcinoma Exhibiting Thanatosomes (Hyaline Bodies), Cytoplasmic Clearing, and Nuclear Pleomorphism, with a KRAS Mutation
by Mitsuhiro Tachibana, Yutaro Ito, Ryo Fujikawa, Kei Tsukamoto, Masahiro Uehara, Jun Kobayashi and Takuo Hayashi
Diagnostics 2025, 15(7), 894; https://doi.org/10.3390/diagnostics15070894 - 1 Apr 2025
Viewed by 608
Abstract
Since epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors were introduced in 2004, various driver gene mutations have been identified in non-small cell lung cancer, particularly adenocarcinoma, where mutations are typically mutually exclusive. EGFR and Kirsten rat sarcoma viral oncogene (KRAS) mutations are [...] Read more.
Since epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors were introduced in 2004, various driver gene mutations have been identified in non-small cell lung cancer, particularly adenocarcinoma, where mutations are typically mutually exclusive. EGFR and Kirsten rat sarcoma viral oncogene (KRAS) mutations are most prevalent in Japan, with routine testing now standard. However, hematoxylin and eosin staining often fails to detect mutations, except in cases such as ALK fusion lung cancer. We report a 76-year-old non-smoking Japanese woman diagnosed with adenocarcinoma confirmed as KRAS G12D/S-positive. Histological features, including thanatosomes (hyaline globules), nuclear pleomorphism, and cytoplasmic clearing, may aid in identifying mutations. Numerous thanatosomes were identified, some containing nuclear dust. Thanatosomes revealed periodic acid–Schiff reactivity with diastase resistance, fuchsinophilia with Masson’s trichrome stain, and dark blue-black color with Mallory’s PTAH stain. This is the first report linking thanatosomes in KRAS-mutant pulmonary adenocarcinoma to apoptosis via cleaved caspase-3 staining. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

13 pages, 2375 KiB  
Article
Presence of On-Target Resistant Mutation in Pre-Treatment Samples of ALK Fusion Gene Positive Lung Cancer Patients
by Weiting Li, Fenneke Zwierenga, Katarina D. Andini, Justyna M. Bucher, Frank Scherpen, T. Jeroen N. Hiltermann, Harry J. M. Groen, Anthonie J. van der Wekken, Klaas Kok and Anke van den Berg
Cancers 2025, 17(7), 1090; https://doi.org/10.3390/cancers17071090 - 25 Mar 2025
Viewed by 654
Abstract
A subset of ALK+ non-small cell lung cancer (NSCLC) patients relapse on ALK inhibitor (ALKi) treatment due to on-target resistance mutations affecting the tyrosine kinase domain. Objective: In this study, we investigated the presence of minor resistant clones in pre-treatment tissue samples and [...] Read more.
A subset of ALK+ non-small cell lung cancer (NSCLC) patients relapse on ALK inhibitor (ALKi) treatment due to on-target resistance mutations affecting the tyrosine kinase domain. Objective: In this study, we investigated the presence of minor resistant clones in pre-treatment tissue samples and assessed their predictive value for subsequent resistance mechanisms. Methods: Using the highly sensitive digital droplet (dd)PCR technique, we analyzed 40 tissue samples obtained from 17 patients who had developed on-target resistance mutations after receiving ALKi between 2013 and 2022. We focused on 10 on-target ALKi resistant mutations identified in our patient cohort. Results: Fifteen ALKi resistance mutations were detected in 13 samples from 11/17 patients. Among these, four mutations were observed as resistance mutations in follow-up biopsies taken after first or subsequent lines of ALKi. Comparison of the test results from two subsequent biopsies, before and directly after therapy, revealed presence of the resistance mutation identified upon relapse in the pre-treatment sample of three cases that were all taken from the same tumor location. In six cases taken from different tumor locations, the resistant mutations were not found in the pre-treatment sample. Conclusions: By using the highly sensitive ddPCR approach, we detected minor clones with on-target resistant mutations in both treatment-naive and relapse biopsies from ALK-positive NSCLC patients. The predictive value of these mutations as the potential resistance-causing mechanism was limited to relapses occurring at the same tumor location as the pre-treatment sample. Full article
(This article belongs to the Special Issue The Genetic Analysis and Clinical Therapy in Lung Cancer)
Show Figures

Figure 1

10 pages, 7524 KiB  
Case Report
A Recurrent Small Cell Lung Carcinoma Harboring an EML4–ALK Fusion Mutation with Sustained Response to Ensartinib: A Case Report
by Hao Jiang, Tengfei Zhu, Zenghao Chang, Ziyu Liu, Wei Ou and Siyu Wang
Curr. Oncol. 2025, 32(3), 163; https://doi.org/10.3390/curroncol32030163 - 13 Mar 2025
Cited by 2 | Viewed by 973
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor. Lung cancer patients with ALK and EML4 fusions respond significantly to ALK inhibitors. The EML4-ALK fusion gene mutation is the result of an inversion of chromosome 2, which juxtaposes the 5 end of [...] Read more.
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor. Lung cancer patients with ALK and EML4 fusions respond significantly to ALK inhibitors. The EML4-ALK fusion gene mutation is the result of an inversion of chromosome 2, which juxtaposes the 5 end of the EML4 gene with the 3 end of the ALK gene. In SCLC, the frequency of fusion genes is very low, and to the best of our knowledge, only four cases of ALK fusion gene mutations in SCLC have been reported. In this report, we describe the treatment of a 74-year-old female patient with SCLC who developed recurrence of hilar lymph node metastasis three years after surgical resection. Postoperative NGS showed that this patient is a SCLC patient harboring a rare EML4-ALK fusion mutation, and a satisfactory 43-month overall survival (OS) was achieved after treatment with ensartinib targeting the EML4-ALK fusion gene mutation. The ALK-TKI may be a new treatment option for these patients. This article provides a therapeutic reference. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Figure 1

15 pages, 264 KiB  
Review
Lung Cancer: Targeted Therapy in 2025
by Nicole Bouchard and Nathalie Daaboul
Curr. Oncol. 2025, 32(3), 146; https://doi.org/10.3390/curroncol32030146 - 2 Mar 2025
Cited by 3 | Viewed by 7434
Abstract
Lung cancer treatment has changed in the last twenty years since the discovery of EGFR mutations. In this article, we will review the current state of the art for non-small cell lung cancer (NSCLC) actionable genomic alterations (AGA). AGAs are mostly found in [...] Read more.
Lung cancer treatment has changed in the last twenty years since the discovery of EGFR mutations. In this article, we will review the current state of the art for non-small cell lung cancer (NSCLC) actionable genomic alterations (AGA). AGAs are mostly found in lung adenocarcinomas, a subtype of non-small cell lung cancers. We will focus on the current treatment for EGFR mutations, ALK fusions, ROS1 fusions, BRAF V600E mutations, MET exon 14-skipping mutations, RET fusions, KRAS G12C mutations, ERBB2 mutations (also called HER2 mutations), and NTRK fusions. We will also touch on the key toxicities associated with these medications. Treatments are mostly available for the metastatic stage, but we will also discuss adjuvant therapy for EGFR mutations and ALK fusions, as well as stage III post-chemoradiotherapy treatment for EGFR lung cancer. Full article
(This article belongs to the Special Issue Clinical Management and Outcomes of Lung Cancer Patients)
23 pages, 4959 KiB  
Article
Microtubule Association of EML4–ALK V3 Is Key for the Elongated Cell Morphology and Enhanced Migration Observed in V3 Cells
by Savvas Papageorgiou, Sarah L. Pashley, Laura O’Regan, Kees R. Straatman and Andrew M. Fry
Cells 2024, 13(23), 1954; https://doi.org/10.3390/cells13231954 - 25 Nov 2024
Viewed by 1319
Abstract
The EML4–ALK oncogene drives tumour progression in approximately 5% of cases of non-small-cell lung cancers. At least 15 EML4–ALK variants have been identified, which elicit differential responses to conventional ALK inhibitors. Unfortunately, most, if not all, patients eventually acquire resistance to these inhibitors [...] Read more.
The EML4–ALK oncogene drives tumour progression in approximately 5% of cases of non-small-cell lung cancers. At least 15 EML4–ALK variants have been identified, which elicit differential responses to conventional ALK inhibitors. Unfortunately, most, if not all, patients eventually acquire resistance to these inhibitors and succumb to the disease, which warrants the need for alternative targets to be identified. The most aggressive variant, EML4–ALK variant 3 (V3), assembles into a complex on interphase microtubules together with the NEK9 and NEK7 kinases, which leads to the downstream phosphorylation of NEK7 substrates. Overall, this promotes an elongated cell morphology and an enhanced migratory phenotype, which likely contributes to the increased metastasis often seen in V3 patients. Here, using two separate approaches to displace V3 from microtubules and a variety of in vitro assays, we show that microtubule association of EML4–ALK V3 is required for both V3 phenotypes, as removal of the oncogenic fusion protein from microtubules led to the dissociation of the V3–NEK9–NEK7 complex and the reversal of both phenotypic changes. Overall, we propose that targeting the interaction between EML4–ALK V3 and microtubules might offer a novel therapeutic option, independent of ALK activity, for V3+ NSCLC patients with acquired resistance to ALK inhibitors. Full article
Show Figures

Figure 1

Back to TopTop