Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = AKR1B1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1032 KiB  
Article
Acute Hyperglycemia-Induced Inflammation in MIO-M1 Cells: The Role of Aldose Reductase
by Francesca Felice, Gemma Sardelli, Francesco Balestri, Lucia Piazza, Mario Cappiello, Rossella Mosca, Antonella Del Corso, Martina Avanatti, Simone Allegrini and Roberta Moschini
Int. J. Mol. Sci. 2025, 26(14), 6741; https://doi.org/10.3390/ijms26146741 - 14 Jul 2025
Viewed by 191
Abstract
Diabetic retinopathy (DR), traditionally considered a microvascular complication, is now recognized as a neuroinflammatory disorder involving retinal glial cells. Aldose reductase (AKR1B1), a key enzyme in the polyol pathway, has been implicated in the hyperglycemia-induced inflammatory response in various cell types, although its [...] Read more.
Diabetic retinopathy (DR), traditionally considered a microvascular complication, is now recognized as a neuroinflammatory disorder involving retinal glial cells. Aldose reductase (AKR1B1), a key enzyme in the polyol pathway, has been implicated in the hyperglycemia-induced inflammatory response in various cell types, although its role in retinal Müller glial cells under acute glucose stress remains unclear. This study investigates AKR1B1 activity and its contribution to inflammatory signaling in MIO-M1 human Müller cells exposed to acute hyperglycemia. AKR1B1 expression and activity, as well as NF-κB activation and COX-2 expression, were evaluated. Sorbinil, a specific AKR1B1 inhibitor, was used to determine the enzyme’s contribution to acute hyperglycemia-induced inflammation. Acute high-glucose treatment significantly increased AKR1B1 activity and sorbitol accumulation without affecting cell viability. In addition, activation of NF-κB and increased expression of cyclooxygenase-2 (COX-2) were observed, both of which were significantly reduced by Sorbinil. Our findings highlight the role of macroglia as active contributors to early inflammatory events in DR and suggest that transient hyperglycemic spikes are sufficient to trigger AKR1B1-dependent glial activation. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

20 pages, 1226 KiB  
Article
Transcriptomic Landscape of Paclitaxel-Induced Multidrug Resistance in 3D Cultures of Colon Cancer Cell Line DLD1
by Sandra Dragicevic, Jelena Dinic, Milena Ugrin, Marija Vidovic, Tamara Babic and Aleksandra Nikolic
Int. J. Mol. Sci. 2025, 26(14), 6580; https://doi.org/10.3390/ijms26146580 - 9 Jul 2025
Viewed by 335
Abstract
Multidrug resistance (MDR) significantly contributes to colon cancer recurrence, making it essential to understand its molecular basis for improved therapies. This study aimed to identify genes and pathways involved in resistance to standard chemotherapeutics by comparing transcriptome profiles of sensitive and paclitaxel-induced MDR [...] Read more.
Multidrug resistance (MDR) significantly contributes to colon cancer recurrence, making it essential to understand its molecular basis for improved therapies. This study aimed to identify genes and pathways involved in resistance to standard chemotherapeutics by comparing transcriptome profiles of sensitive and paclitaxel-induced MDR colonospheres. Cell viability and growth were assessed following treatment with 5-fluorouracil, oxaliplatin, irinotecan, bevacizumab, and cetuximab. Drug concentrations in culture media posttreatment were measured using high-performance liquid chromatography (HPLC). RNA sequencing (RNA-seq) of untreated sensitive and resistant colonospheres identified differentially expressed genes linked to baseline resistance. Our results confirmed cross-resistance in the resistant model, showing highest oxaliplatin tolerance may involve mechanisms beyond efflux. Transcriptome analysis highlighted upregulation of PIGR and activation of the ribosomal signaling pathway as potential resistance mediators. Notably, AKR1B10, a gene linked to chemotherapeutic detoxification, was overexpressed, whereas genes related to adhesion and membrane transport were downregulated. The overexpression of ribosomal protein genes suggests ribosome biogenesis plays a key role in acquired resistance. These findings suggest that targeting ribosome biogenesis and specific deregulated genes such as PIGR and AKR1B10 may offer promising strategies to overcome MDR in colon cancer. Full article
(This article belongs to the Special Issue Biological Hallmarks and Therapeutic Strategies in Cancer)
Show Figures

Figure 1

18 pages, 279 KiB  
Article
Steroidomic Changes in the Cerebrospinal Fluid of Women with Multiple Sclerosis
by Radmila Kancheva, Eva Kubala Havrdová, Marta Velíková, Ludmila Kancheva, Josef Včelák, Radek Ampapa, Michal Židó, Ivana Štětkářová, Tereza Škodová and Martin Hill
Int. J. Mol. Sci. 2025, 26(12), 5904; https://doi.org/10.3390/ijms26125904 - 19 Jun 2025
Viewed by 308
Abstract
Multiple sclerosis (MS) is a long-term disease that causes inflammation and damage to the nervous system. This study evaluated steroidomic alterations related to MS in 57 female MS patients during the follicular phase and 17 during the luteal phase, as well as in [...] Read more.
Multiple sclerosis (MS) is a long-term disease that causes inflammation and damage to the nervous system. This study evaluated steroidomic alterations related to MS in 57 female MS patients during the follicular phase and 17 during the luteal phase, as well as in age- and phase-matched controls. The data showed that (1) unconjugated and conjugated steroids were strongly linked between the blood and CSF. (2) MS patients have lower levels of unconjugated steroids compared to controls. However, unchanged levels of conjugated steroids suggest a possible increase in steroid sulfotransferase functioning. (3) MS patients show altered levels of steroids linked to 11β-hydroxylase (CYP11B1) function. While direct enzyme activity was not measured, disrupted cortisol biosynthesis—potentially linked to reduced functioning of both CYP11B1 and 17α-hydroxylase/17,20-lyase—is associated with more severe cases of MS. (4) Reduced levels of 5α/β-steroids and protective GABAergic 3α-hydroxy-5α/β-steroids in MS patients might be linked to the pathophysiology of MS. (5) A potential increase in AKR1C3 function in MS could contribute to inflammation, as this enzyme catalyzes the synthesis of both steroids and prostaglandins. However, direct measurements of enzyme activity are needed to confirm this hypothesis. (6) Lower pregnenolone levels in MS patients might weaken neuroprotection, while higher pregnenolone sulfate levels could support cognitive function. (7) Lower levels of protective pregnenolone, DHEA, and androstenediol were associated with worse MS, suggesting these steroids may help shield against the disease. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
21 pages, 2546 KiB  
Article
Genome-Wide Association Studies and Candidate Genes for Egg Production Traits in Layers from an F2 Crossbred Population Produced Using Two Divergently Selected Chicken Breeds, Russian White and Cornish White
by Natalia A. Volkova, Michael N. Romanov, Alan Yu. Dzhagaev, Polina V. Larionova, Ludmila A. Volkova, Alexandra S. Abdelmanova, Anastasia N. Vetokh, Darren K. Griffin and Natalia A. Zinovieva
Genes 2025, 16(5), 583; https://doi.org/10.3390/genes16050583 - 15 May 2025
Viewed by 764
Abstract
Background/Objectives: Finding single nucleotide polymorphisms (SNPs) and candidate genes that influence the expression of key traits is essential for genomic selection and helps improve the efficiency of poultry production. Here, we aimed to conduct a genome-wide association study (GWAS) for egg production [...] Read more.
Background/Objectives: Finding single nucleotide polymorphisms (SNPs) and candidate genes that influence the expression of key traits is essential for genomic selection and helps improve the efficiency of poultry production. Here, we aimed to conduct a genome-wide association study (GWAS) for egg production traits in an F2 resource population of chickens (Gallus gallus). Methods: The examined F2 population was produced by crossing two divergently selected breeds with contrasting phenotypes for egg performance traits, namely Russian White (of higher egg production) and Cornish White (of lower egg production). Sampled birds (n = 142) were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. Results: In the course of the GWAS analysis, we were able to clarify significant associations with phenotypic traits of interest and economic value by using 47,432 SNPs after the genotype dataset was filtered. At the threshold p < 1.06 × 10−6, we found 23 prioritized candidate genes (PCGs) associated with egg weight at the age of 42–52 weeks (FGF14, GCK), duration of egg laying (CNTN4), egg laying cycle (SAMD12) and egg laying interval (PHF5A, AKR1B1, CALD1, ATP7B, PIK3R4, PTK2, PRKCE, FAT1, PCM1, CC2D2A, BMS1, SEMA6D, CDH13, SLIT3, ATP10B, ISCU, LRRC75A, LETM2, ANKRD24). Moreover, two SNPs were co-localized within the FGF14 gene. Conclusions: Based on our GWAS findings, the revealed SNPs and candidate genes can be used as genetic markers for egg weight and other performance characteristics in chickens to attain genetic enhancement in production and for further genomic selection. Full article
(This article belongs to the Special Issue Genetic Breeding of Poultry)
Show Figures

Figure 1

23 pages, 11692 KiB  
Article
The Role of Claudin-1 in Enhancing Pancreatic Cancer Aggressiveness and Drug Resistance via Metabolic Pathway Modulation
by Daisuke Kyuno, Hinae Asano, Reona Okumura, Kumi Takasawa, Akira Takasawa, Takumi Konno, Yuna Nakamori, Kazufumi Magara, Yusuke Ono, Masafumi Imamura, Yasutoshi Kimura, Takashi Kojima and Makoto Osanai
Cancers 2025, 17(9), 1469; https://doi.org/10.3390/cancers17091469 - 27 Apr 2025
Cited by 1 | Viewed by 962
Abstract
Background/Objectives: Pancreatic ductal adenocarcinoma is a lethal malignancy, necessitating an understanding of its molecular mechanisms for the development of new therapeutic strategies. The tight junction protein claudin-1, known to influence cellular functions in various cancers and is considered a therapeutic target, remains unclear [...] Read more.
Background/Objectives: Pancreatic ductal adenocarcinoma is a lethal malignancy, necessitating an understanding of its molecular mechanisms for the development of new therapeutic strategies. The tight junction protein claudin-1, known to influence cellular functions in various cancers and is considered a therapeutic target, remains unclear in pancreatic cancer. Methods: This study assessed claudin-1 expression in resected pancreatic cancer samples, public databases, and pancreatic cancer cell lines. Claudin-1 knockout with CRISPR/Cas9 on poorly differentiated pancreatic cancer cell lines and a proteome analysis were performed to investigate the intracellular mechanisms of claudin-1. Results: Claudin-1 was markedly overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia compared to normal ducts, and high claudin-1 levels were an independent predictor of poor prognosis. Claudin-1 knockout diminished cell proliferation, migration, invasion, and chemoresistance in pancreatic ductal adenocarcinoma. Proteome analysis revealed the significant downregulation of aldo-keto reductase family proteins (AKR1C2, AKR1C3, and AKR1B1) in claudin-1 knockout cells, which are linked to metabolic pathways. Aldo-keto reductase knockdown reduced chemoresistance, proliferation, and invasion in these cell lines. Conclusions: These findings indicate that the abnormal expression of claudin-1 promotes tumor progression and drug resistance through its interaction with aldo-keto reductase proteins, highlighting claudin-1 and aldo-keto reductase family proteins as potential biomarkers and therapeutic targets for pancreatic cancer. Full article
(This article belongs to the Special Issue Cell Adhesion in Human Cancer)
Show Figures

Graphical abstract

13 pages, 717 KiB  
Article
Dissect Gender-Dependent Susceptibility SNPs in Progressive Osteoarthritis Using Regulator Motif Candidate of Genetic Association Strategy (RMCGA)
by Yin-Shiuan Bai, Ding-Lian Wang, Meng-Chang Lee, Chih-Chien Wang, Wen-Hui Fang, Su-Wen Chuang, Yu-Hsuan Chen, Hao Su, Cheng-Jung Chen and Sui-Lung Su
Int. J. Mol. Sci. 2025, 26(9), 4117; https://doi.org/10.3390/ijms26094117 - 26 Apr 2025
Viewed by 565
Abstract
The role of gender in osteoarthritis (OA) has been reported. However, knowledge on whether gender-specific regulatory SNPs are determining factors in OA is limited. We aimed to identify susceptible gender-specific SNPs of transcription factor binding sites in OA. We used a modified NF-κB [...] Read more.
The role of gender in osteoarthritis (OA) has been reported. However, knowledge on whether gender-specific regulatory SNPs are determining factors in OA is limited. We aimed to identify susceptible gender-specific SNPs of transcription factor binding sites in OA. We used a modified NF-κB binding motif from an RNA sequencing data-inferred OA-associated upstream regulator to define genome-wide potential NF-κB binding sites, which were aligned to the Taiwan BioBank SNP database to identify susceptible SNPs. A case-control study was conducted to verify SNPs with OA determined by a logistic model. The functional assessment was validated using the Genotype-Tissue Expression Portal database. We collected 533 OA patients and 614 healthy controls. Two of nine novel OA-associated SNPs were identified to be significant. For males, the variant of rs73164856 in the aldose reductase gene enhancer was identified to be a protective factor of severe OA patients [odds ratio (OR): 0.17, 95% confidence interval (CI): 0.04–0.73]. For females, the variant of the rs545654 in the neuronal NOS (nNOS) gene was identified to be a detrimental factor of severe OA patients (OR: 2.07, 95% CI: 1.15–3.73). The gene expression analysis demonstrated a lower expression of the AKR1B15 gene (p = 0.00019) upon the rs73164856 T allele; meanwhile, it showed a higher expression of the nNOS gene (p = 1.2 × 10−17) upon the rs545654 T allele. This study identifies susceptible gender-specific SNPs of NF-κB binding sites in severe OA and validates the RMCGA, which sheds light on genetic determinants by gender in advanced OA. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 9992 KiB  
Article
The Influence of AQP5 on the Response to Hydrogen Peroxide in Breast Cancer Cell Lines
by Ivan Lučić, Monika Mlinarić, Ana Čipak Gašparović and Lidija Milković
Int. J. Mol. Sci. 2025, 26(7), 3243; https://doi.org/10.3390/ijms26073243 - 31 Mar 2025
Viewed by 935
Abstract
Breast cancer is a heterogeneous disease with varying responses to therapies. While targeted treatments have advanced, conventional therapies inducing oxidative stress remain widely used. H2O2 has emerged as a therapeutic candidate due to its role in signaling and cell-function regulation. [...] Read more.
Breast cancer is a heterogeneous disease with varying responses to therapies. While targeted treatments have advanced, conventional therapies inducing oxidative stress remain widely used. H2O2 has emerged as a therapeutic candidate due to its role in signaling and cell-function regulation. Its transport is tightly regulated through peroxiporins such as AQP5, expression of which is linked to poor prognosis and metastatic spread, and its role in therapy resistance remains underexplored. This study examined AQP5’s role in the acute oxidative stress response. We overexpressed AQP5 in breast cancer cell lines with low basal levels—HR+ (MCF7), HER2+ (SkBr-3), and TNBC (SUM 159)—and exposed them to H2O2 for 24 h. We assessed cell viability, intracellular ROS, changes in AQP3 and AQP5, and key antioxidative and cancer-related pathways (NRF2, PI3K/AKT, FOXOs). AQP5 overexpression elicited a cell-type-specific response. H2O2 treatment reduced viability in SkBr-3-AQP5 and MCF7-AQP5 cells, increased ROS levels in MCF7-AQP5, and decreased ROS in SUM 159-AQP5. It also increased AQP3 in MCF7-AQP5 and differentially affected NRF2, FOXOs, and PI3K/AKT signaling, notably activating NRF2/AKR1B10 axis in MCF7-AQP5 and decreasing FOXO1 in SUM 159-AQP5. These findings highlight the need for further research into AQP5’s role in the oxidative stress response in breast cancer cells. Full article
(This article belongs to the Special Issue New Players in the Research of Oxidative Stress and Cancer)
Show Figures

Figure 1

22 pages, 3953 KiB  
Case Report
A New Histology-Based Prognostic Index for Acute Myeloid Leukemia: Preliminary Results for the “AML Urayasu Classification”
by Toru Mitsumori, Hideaki Nitta, Haruko Takizawa, Hiroko Iizuka-Honma, Chiho Furuya, Maki Fujishiro, Shigeki Tomita, Akane Hashizume, Tomohiro Sawada, Kazunori Miyake, Mitsuo Okubo, Yasunobu Sekiguchi, Miki Ando and Masaaki Noguchi
J. Clin. Med. 2025, 14(6), 1989; https://doi.org/10.3390/jcm14061989 - 15 Mar 2025
Viewed by 769
Abstract
Background: This study was aimed at elucidating the mechanisms underlying the development of treatment resistance in patients with acute myeloid leukemia (AML) other than M3 myeloid leukemia in order to devise ways to overcome treatment resistance and improve the treatment outcomes in these [...] Read more.
Background: This study was aimed at elucidating the mechanisms underlying the development of treatment resistance in patients with acute myeloid leukemia (AML) other than M3 myeloid leukemia in order to devise ways to overcome treatment resistance and improve the treatment outcomes in these patients. Methods: For this study, we randomly selected 35 patients with AML who had received combined cytarabine plus idarubicin treatment for new-onset AML at our hospital. We performed immunohistochemical analysis of biopsy specimens obtained from the patients to investigate the expressions of 23 treatment-resistance-related proteins, and retrospectively analyzed the correlations between the expression profiles of the resistance proteins and the patient survival. Results: The following four proteins were identified as being particularly significant in relation to treatment resistance and patient prognosis: (1) p53; (2) multidrug resistance-associated protein 1 (MRP1; idarubicin extracellular efflux pump); (3) aldo-keto reductase family 1 member B10 (AKR1B10; idarubicin-inactivating enzyme); and (4) AKR1B1 (competitive inhibitor of AKR1B10). Based on our findings, we propose the following Urayasu classification for AML, which we believe would be very useful for accurately stratifying patients with AML according to the predicted prognosis: Group 1 (n = 22, 63%): p53(-)/MRP1(-) associated with AKR1B10(+)/AKR1B1(+) or AKR1B10(-)/AKR1B1(-); 5-year overall survival (OS), 82%–100%; Group 2 (n = 9, 26%): p53(-)/MRP1(-) associated with AKR1B10(+)/AKR1B1(-); 5-year OS, 68%; Group 3 (n = 4, 11%): p53(+) or MRP1(+); median survival, 12–14 months; 2-year OS, 0%. Conclusions: The Urayasu classification for AML is useful for predicting the prognosis of patients with AML. Group 1 in this classification included twice as many patients as that included in the Favorable prognosis group in the AML prognostic classification proposed by the European Leukemia Net. As the Urayasu classification for AML is based on the mechanisms of resistance to chemotherapy, it is not only useful for prognostic stratification of the patients, but also provides insights for developing more effective treatments for AML. Full article
(This article belongs to the Section Hematology)
Show Figures

Graphical abstract

15 pages, 2922 KiB  
Article
Brief Warm and Aldo-Keto Reductase Family AspiAKR1B1 Contribute to Cold Adaptation of Aleurocanthus spiniferus
by Zhi-Fei Jia, Yan-Ge Cui, Meng-Yuan Liu, Jeremiah Joe Kabissa, Yong-Yu Xu, Zhi-Wei Kang and Zhen-Zhen Chen
Insects 2025, 16(1), 38; https://doi.org/10.3390/insects16010038 - 2 Jan 2025
Viewed by 843
Abstract
Aleurocanthus spiniferus not only damages plant leaves directly but also causes a sooty blotch due to the honeydew secreted by the nymphs and adults. This pest is widespread and seems to be spreading from low latitude to higher latitude areas where winters are [...] Read more.
Aleurocanthus spiniferus not only damages plant leaves directly but also causes a sooty blotch due to the honeydew secreted by the nymphs and adults. This pest is widespread and seems to be spreading from low latitude to higher latitude areas where winters are typically colder, indicating an increase in its cold tolerance. Changes in temperature help insects to anticipate the arrival of winter, allowing them to take defensive measures in advance. This study examines the impacts of brief warm pulses on the low-temperature tolerance of A. spiniferus, and analyzes the physiological and biochemical mechanisms underlying its cold adaptation, utilizing seasonal differences in cold tolerance. Intermittent training at 25 °C significantly improved the survival rate of overwintering nymphs (third and fourth instar) at −7 °C. Analysis of seasonal differences in the supercooling point (SCP) and freezing point (FP) revealed that overwintering nymph had the highest cold tolerance in November. Seasonal variation in levels of cold-resistant substances were also observed, with moisture decreasing during overwintering, while fat and glycerol levels increased. Conversely, glucose, sorbitol, and trehalose levels rose significantly at the end of the overwintering period. The expression profile of cold-resistant genes indicated that the aldo-keto reductase family 1 member B1 in Aleurocanthus spiniferus (AspiAKR1B1) shows a significant decrease at the end of the overwintering period. Knocking down AspiAKR1B1 led to a marked reduction in the cold tolerance of A. spiniferus. Therefore, brief warm pulses and AspiAKR1B1 are key factors contributing to the enhanced cold tolerance of A. spiniferus. This research provides theoretical support for preventing the further spread of A. spiniferus to higher latitudes, and offers technical guidance for developing effective pest control measures. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

19 pages, 7471 KiB  
Article
Single-Cell RNA Sequencing, Cell Communication, and Network Pharmacology Reveal the Potential Mechanism of Senecio scandens Buch.-Ham in Hepatocellular Carcinoma Inhibition
by Jiayi Jiang, Haitao Wu, Xikun Jiang, Qing Ou, Zhanpeng Gan, Fangfang Han and Yongming Cai
Pharmaceuticals 2024, 17(12), 1707; https://doi.org/10.3390/ph17121707 - 18 Dec 2024
Cited by 2 | Viewed by 1206
Abstract
Background: Hepatocellular carcinoma (HCC), a prevalent form of primary liver malignancy, arises from liver-specific hepatocytes. Senecio scandens Buch.-Ham(Climbing senecio) is a bitter-tasting plant of the Compositae family with anti-tumor properties. This study aims to identify the molecular targets and pathways through which Climbing [...] Read more.
Background: Hepatocellular carcinoma (HCC), a prevalent form of primary liver malignancy, arises from liver-specific hepatocytes. Senecio scandens Buch.-Ham(Climbing senecio) is a bitter-tasting plant of the Compositae family with anti-tumor properties. This study aims to identify the molecular targets and pathways through which Climbing senecio regulates HCC. Methods: Active ingredients of Climbing senecio were collected from four online databases and mapped to relevant target databases to obtain predicted targets. After recognizing the key pathways through which Climbing senecio acts in HCC. Gene expression data from GSE54238 Underwent differential expression and weighted gene correlation network analyses to identify HCC-related genes. The “Climbing senecio-Hepatocellular Carcinoma Targets” network was constructed using Cytoscape 3.10.1 software, followed by topology analysis to identify core genes. The expression and distribution of key targets were evaluated, and the differential expression of each key target between normal and diseased samples was calculated. Moreover, single-cell data from the Gene Expression Omnibus (GSE202642) were used to assess the distribution of Climbing senecio’s bioactive targets within major HCC clusters. An intersection analysis of these clusters with pharmacological targets and HCC-related genes identified Climbing senecio’s primary targets for this disease. Cell communication, receiver operating characteristic (ROC)analysis, survival analysis, immune filtration analysis, and molecular docking studies were conducted for detailed characterization. Results: Eleven components of Climbing senecio were identified, along with 520 relevant targets, 300 differentially expressed genes, and 3765 co-expression module genes associated with HCC. AKR1B1, CA2, FOS, CXCL2, SRC, ABCC1, and PLIN1 were identified within the intersection of HCC-related genes and Climbing senecio targets. TGFβ, IL-1, VEGF, and CXCL were identified as significant factors in the onset and progression of HCC. These findings underscore the anti-HCC potential and mode of action of Climbing senecio, providing insights into multi-targeted treatment approaches for HCC. Conclusions: This study revealed that Climbing senecio may target multiple pathways and genes in the process of regulating HCC and exert potential drug effects through a multi-target mechanism, which provides a new idea for the treatment of HCC. However, the research is predicated on network database analysis and bioinformatics, offering insights into HCC therapeutic potential while emphasizing the need for further validation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

13 pages, 2300 KiB  
Brief Report
Methylated DNA Markers in Voided Urine for the Identification of Clinically Significant Prostate Cancer
by Paras Shah, William R. Taylor, Brianna J. Negaard, Benjamin R. Gochanour, Douglas W. Mahoney, Sara S. Then, Mary E. Devens, Patrick H. Foote, Karen A. Doering, Kelli N. Burger, Brandon Nikolai, Michael W. Kaiser, Hatim T. Allawi, John C. Cheville, John B. Kisiel and Matthew T. Gettman
Life 2024, 14(8), 1024; https://doi.org/10.3390/life14081024 - 18 Aug 2024
Cited by 2 | Viewed by 1814
Abstract
Introduction: Non-invasive assays are needed to better discriminate patients with prostate cancer (PCa) to avoid over-treatment of indolent disease. We analyzed 14 methylated DNA markers (MDMs) from urine samples of patients with biopsy-proven PCa relative to healthy controls and further studied discrimination of [...] Read more.
Introduction: Non-invasive assays are needed to better discriminate patients with prostate cancer (PCa) to avoid over-treatment of indolent disease. We analyzed 14 methylated DNA markers (MDMs) from urine samples of patients with biopsy-proven PCa relative to healthy controls and further studied discrimination of clinically significant PCa (csPCa) from healthy controls and Gleason 6 cancers. Methods: To evaluate the panel, urine from 24 healthy male volunteers with no clinical suspicion for PCa and 24 men with biopsy-confirmed disease across all Gleason scores was collected. Blinded to clinical status, DNA from the supernatant was analyzed for methylation signal within specific DNA sequences across 14 genes (HES5, ZNF655, ITPRIPL1, MAX.chr3.6187, SLCO3A1, CHST11, SERPINB9, WNT3A, KCNB2, GAS6, AKR1B1, MAX.chr3.8028, GRASP, ST6GALNAC2) by target enrichment long-probe quantitative-amplified signal assays. Results: Utilizing an overall specificity cut-off of 100% for discriminating normal controls from PCa cases across the MDM panel resulted in 71% sensitivity (95% CI: 49–87%) for PCa detection (4/7 Gleason 6, 8/12 Gleason 7, 5/5 Gleason 8+) and 76% (50–92%) for csPCa (Gleason ≥ 7). At 100% specificity for controls and Gleason 6 patients combined, MDM panel sensitivity was 59% (33–81%) for csPCa (5/12 Gleason 7, 5/5 Gleason 8+). Conclusions: MDMs assayed in urine offer high sensitivity and specificity for detection of clinically significant prostate cancer. Prospective evaluation is necessary to estimate discrimination of patients as first-line screening and as an adjunct to prostate-specific antigen (PSA) testing. Full article
(This article belongs to the Special Issue Novel Approaches to Early Cancer Detection)
Show Figures

Figure 1

15 pages, 2606 KiB  
Article
The Role of AKR1B10 in Lung Cancer Malignancy Induced by Sublethal Doses of Chemotherapeutic Drugs
by Te-Hsuan Jang, Sheng-Chieh Lin, Ya-Yu Yang, Jong-Ding Lay, Chih-Ling Chang, Chih-Jung Yao, Jhy-Shrian Huang and Shuang-En Chuang
Cancers 2024, 16(13), 2428; https://doi.org/10.3390/cancers16132428 - 1 Jul 2024
Cited by 4 | Viewed by 1600
Abstract
Chemotherapy remains a cornerstone in lung cancer treatment, yet emerging evidence suggests that sublethal low doses may inadvertently enhance the malignancy. This study investigates the paradoxical effects of sublethal low-dose chemotherapy on non-small-cell lung cancer (NSCLC) cells, emphasizing the role of Aldo-keto reductase [...] Read more.
Chemotherapy remains a cornerstone in lung cancer treatment, yet emerging evidence suggests that sublethal low doses may inadvertently enhance the malignancy. This study investigates the paradoxical effects of sublethal low-dose chemotherapy on non-small-cell lung cancer (NSCLC) cells, emphasizing the role of Aldo-keto reductase family 1 member B10 (AKR1B10). We found that sublethal doses of chemotherapy unexpectedly increased cancer cell migration approximately 2-fold and invasion approximately threefold, potentially promoting metastasis. Our analysis revealed a significant upregulation of AKR1B10 in response to taxol and doxorubicin treatment, correlating with poor survival rates in lung cancer patients. Furthermore, silencing AKR1B10 resulted in a 1–2-fold reduction in cell proliferation and a 2–3-fold reduction in colony formation and migration while increasing chemotherapy sensitivity. In contrast, the overexpression of AKR1B10 stimulated growth rate by approximately 2-fold via ERK pathway activation, underscoring its potential as a target for therapeutic intervention. The reversal of these effects upon the application of an ERK-specific inhibitor further validates the significance of the ERK pathway in AKR1B10-mediated chemoresistance. In conclusion, our findings significantly contribute to the understanding of chemotherapy-induced adaptations in lung cancer cells. The elevated AKR1B10 expression following sublethal chemotherapy presents a novel molecular mechanism contributing to the development of chemoresistance. It highlights the need for strategic approaches in chemotherapy administration to circumvent the inadvertent enhancement of cancer aggressiveness. This study positions AKR1B10 as a potential therapeutic target, offering a new avenue to improve lung cancer treatment outcomes by mitigating the adverse effects of sublethal chemotherapy. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

18 pages, 3308 KiB  
Article
Chlorogenic Acid as a Potential Therapeutic Agent for Cholangiocarcinoma
by Jiabao Liang, Tong Wen, Xiaojian Zhang and Xiaoling Luo
Pharmaceuticals 2024, 17(6), 794; https://doi.org/10.3390/ph17060794 - 17 Jun 2024
Cited by 4 | Viewed by 1678
Abstract
Chlorogenic acid (CGA) has demonstrated anti-tumor effects across various cancers, but its role in cholangiocarcinoma (CCA) remains unclear. Our study revealed CGA’s potent anti-tumor effects on CCA, significantly suppressing cell proliferation, migration, colony formation, and invasion while inhibiting the epithelial–mesenchymal transition. CGA induced [...] Read more.
Chlorogenic acid (CGA) has demonstrated anti-tumor effects across various cancers, but its role in cholangiocarcinoma (CCA) remains unclear. Our study revealed CGA’s potent anti-tumor effects on CCA, significantly suppressing cell proliferation, migration, colony formation, and invasion while inhibiting the epithelial–mesenchymal transition. CGA induced apoptosis, modulated cell cycle progression, and exhibited a stable binding affinity to AKR1B10 in CCA. AKR1B10 was highly expressed in RBE cells, and CGA treatment reduced AKR1B10 expression. Knocking out AKR1B10 inhibited the proliferation of RBE cells, whereas the overexpression of AKR1B10 promoted their proliferation. Additionally, CGA suppressed the proliferation of RBE cells with AKR1B10 overexpression. Mechanistically, AKR1B10 activated AKT, and CGA exerted its inhibitory effect by reducing AKR1B10 levels, thereby suppressing AKT activation. Furthermore, CGA facilitated the polarization of tumor-associated macrophages towards an anti-tumor phenotype and enhanced T-cell cytotoxicity. These findings underscore CGA’s potential as a promising therapeutic agent for CCA treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

18 pages, 9700 KiB  
Article
Secukinumab and Dead Sea Climatotherapy Impact Resolved Psoriasis Skin Differently Potentially Affecting Disease Memory
by Thomas Emmanuel, Borislav Ignatov, Trine Bertelsen, Thomas Litman, Morten Muhlig Nielsen, Mikkel Bo Brent, Toke Touborg, Anders Benjamin Rønsholdt, Annita Petersen, Mette Boye, Ida Kaaber, Daniel Sortebech, Dorte Lybæk, Torben Steiniche, Anne Bregnhøj, Liv Eidsmo, Lars Iversen and Claus Johansen
Int. J. Mol. Sci. 2024, 25(11), 6086; https://doi.org/10.3390/ijms25116086 - 31 May 2024
Cited by 4 | Viewed by 2367
Abstract
Secukinumab and Dead Sea treatment result in clear skin for many psoriasis patients, through distinct mechanisms. However, recurrence in the same areas after treatments suggests the existence of a molecular scar. We aimed to compare the molecular and genetic differences in psoriasis patients [...] Read more.
Secukinumab and Dead Sea treatment result in clear skin for many psoriasis patients, through distinct mechanisms. However, recurrence in the same areas after treatments suggests the existence of a molecular scar. We aimed to compare the molecular and genetic differences in psoriasis patients who achieved complete response from secukinumab and Dead Sea climatotherapy treatments. We performed quantitative immunohistochemical and transcriptomic analysis, in addition to digital spatial profiling of skin punch biopsies. Histologically, both treatments resulted in a normalization of the lesional skin to a level resembling nonlesional skin. Interestingly, the transcriptome was not normalized by either treatments. We revealed 479 differentially expressed genes between secukinumab and Dead Sea climatotherapy at the end of treatment, with a psoriasis panel identifying SERPINB4, SERPINB13, IL36G, IL36RN, and AKR1B10 as upregulated in Dead Sea climatotherapy compared with secukinumab. Using digital spatial profiling, pan-RAS was observed to be differentially expressed in the microenvironment surrounding CD103+ cells, and IDO1 was differentially expressed in the dermis when comparing the two treatments. The differences observed between secukinumab and Dead Sea climatotherapy suggest the presence of a molecular scar, which may stem from mechanistically different pathways and potentially contribute to disease recurrence. This may be important for determining treatment response duration and disease memory. Full article
Show Figures

Figure 1

18 pages, 5673 KiB  
Article
Molecular Regulation of Fetal Brain Development in Inbred and Congenic Mouse Strains Differing in Longevity
by Maliha Islam and Susanta K. Behura
Genes 2024, 15(5), 604; https://doi.org/10.3390/genes15050604 - 9 May 2024
Cited by 1 | Viewed by 1983
Abstract
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J [...] Read more.
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop