Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = AFORS-HET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1693 KB  
Article
Unlocking the Potential of Cd-Free SnS2 Electron Transport Layer for High-Efficiency Sb2(S,Se)3 Solar Cells: A Numerical Simulation Study
by Xiaodong Zheng, Muhammad Ishaq, Jianwen Ai and Wahab Ali Shah
Electronics 2025, 14(24), 4926; https://doi.org/10.3390/electronics14244926 - 16 Dec 2025
Viewed by 259
Abstract
Cadmium-free buffer layers are pivotal for the sustainable development of thin-film photovoltaics. This work numerically investigates SnS2 as a high-performance, environmentally benign alternative to CdS for antimony selenosulfide (Sb2(S,Se)3) solar cells using AFORS-HET software. The SnS2/Sb [...] Read more.
Cadmium-free buffer layers are pivotal for the sustainable development of thin-film photovoltaics. This work numerically investigates SnS2 as a high-performance, environmentally benign alternative to CdS for antimony selenosulfide (Sb2(S,Se)3) solar cells using AFORS-HET software. The SnS2/Sb2(S,Se)3 heterojunction exhibits a significantly lower conduction band offset (CBO ≈ 0.23 eV) than its CdS counterpart (CBO ≈ 0.49 eV), which is identified as the primary factor for suppressed interface recombination and enhanced electron injection efficiency. A comprehensive optimization strategy is presented: tuning the S content in Sb2(S,Se)3 to 40% optimizes the trade-off between band gap widening and hole transport barrier at the ETL/absorber interface; adjusting the absorber thickness to 340 nm balances light absorption and carrier collection efficiency; and elevating the SnS2 carrier concentration to 1021 cm−3 strengthens the built-in potential and induces a beneficial hole-blocking “spike” at the front contact. The synergistically optimized device achieves a power conversion efficiency (PCE) of 10.39%, a substantial improvement over the 7.56% efficiency of the CdS-based reference cell in our simulation framework. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

18 pages, 3903 KB  
Article
A Comprehensive Approach to Optimization of Silicon-Based Solar Cells
by Nikolay Chuchvaga, Nazira Aubakirova, Nurlan Tokmoldin, Vasiliy Klimenov and Danil W. Boukhvalov
Surfaces 2024, 7(4), 951-968; https://doi.org/10.3390/surfaces7040062 - 5 Nov 2024
Cited by 1 | Viewed by 2117
Abstract
In this work, we report a detailed scheme of computational optimization of solar cell structures and parameters using PC1D and AFORS-HET codes. Each parameter’s influence on the properties of the components of heterojunction silicon-based solar cells (HIT) has been thoroughly examined. The proposed [...] Read more.
In this work, we report a detailed scheme of computational optimization of solar cell structures and parameters using PC1D and AFORS-HET codes. Each parameter’s influence on the properties of the components of heterojunction silicon-based solar cells (HIT) has been thoroughly examined. The proposed approach follows a stringent sequence of steps to optimize various parameters of the studied HITs. Furthermore, we have revealed the effects of the metal-semiconductor contact, and a model of a photocell with an ohmic contact and a Schottky contact has been simulated. The optimal model of HIT for available materials has been proposed and fabricated based on the results of these simulations. A comparison of predicted and measured performance unequivocally demonstrates the efficiency of the proposed scheme in developing silicon-based HITs, providing reassurance about its practical application. Full article
Show Figures

Figure 1

33 pages, 2647 KB  
Review
A Review of Simulation Tools for Thin-Film Solar Cells
by Lizbeth Salgado-Conrado, Carlos Álvarez-Macías and Bernardo Reyes-Durán
Materials 2024, 17(21), 5213; https://doi.org/10.3390/ma17215213 - 25 Oct 2024
Cited by 12 | Viewed by 3702
Abstract
Unlike current silicon-based photovoltaic technology, the development of last-generation thin-film solar cells has been marked by groundbreaking advancements in new materials and novel structures to increase performance and lower costs. However, physically building each new proposal to evaluate the device’s efficiency can involve [...] Read more.
Unlike current silicon-based photovoltaic technology, the development of last-generation thin-film solar cells has been marked by groundbreaking advancements in new materials and novel structures to increase performance and lower costs. However, physically building each new proposal to evaluate the device’s efficiency can involve unnecessary effort and time. Numerical simulation tools provide a solution by allowing researchers to predict and optimize solar cell performance without physical testing. This paper reviews thirteen of the main numerical simulation tools for thin-film solar cells, including SCAPS, AMPS, AFORS-HET, ASPIN3, GPVDM, SESAME, SILVACO, SENTAURUS, and ADEPT. This review evaluates each tool’s features, modeling methods, numerical approaches, and application contexts. The findings reveal notable differences in material modeling, numerical accuracy, cost, and accessibility among the tools. Each tool’s strengths and limitations in simulating thin-film solar cells are highlighted. This study emphasizes the necessity of selecting suitable simulation tools based on specific research requirements. It provides a comparative analysis to assist researchers in choosing the most effective software for optimizing thin-film solar cells, contributing to advancements in photovoltaic technology. Full article
(This article belongs to the Special Issue Advances in Solar Cell Materials and Structures—Second Edition)
Show Figures

Figure 1

12 pages, 4230 KB  
Article
Analysis of Carrier Transport at Zn1−xSnxOy/Absorber Interface in Sb2(S,Se)3 Solar Cells
by Junhui Lin, Zhijie Xu, Yingying Guo, Chong Chen, Xiaofang Zhao, Xuefang Chen, Juguang Hu and Guangxing Liang
Materials 2024, 17(13), 3214; https://doi.org/10.3390/ma17133214 - 1 Jul 2024
Cited by 1 | Viewed by 1432
Abstract
This work explores the effect of a Zn1−xSnxOy (ZTO) layer as a potential replacement for CdS in Sb2(S,Se)3 devices. Through the use of Afors-het software v2.5, it was determined that the ZTO/Sb2(S,Se)3 [...] Read more.
This work explores the effect of a Zn1−xSnxOy (ZTO) layer as a potential replacement for CdS in Sb2(S,Se)3 devices. Through the use of Afors-het software v2.5, it was determined that the ZTO/Sb2(S,Se)3 interface exhibits a lower conduction band offset (CBO) value of 0.34 eV compared to the CdS/Sb2(S,Se)3 interface. Lower photo-generated carrier recombination can be obtained at the interface of the ZTO/Sb2(S,Se)3 heterojunction. In addition, the valence band offset (VBO) value at the ZTO/Sb2(S,Se)3 interface increases to 1.55 eV. The ZTO layer increases the efficiency of the device from 7.56% to 11.45%. To further investigate the beneficial effect of the ZTO layer on the efficiency of the device, this goal has been achieved by five methods: changing the S content of the absorber, changing the thickness of the absorber, changing the carrier concentration of ZTO, using various Sn/(Zn+Sn) ratios in ZTO, and altering the thickness of the ZTO layer. When the S content in Sb2(S,Se)3 is around 60% and the carrier concentration is about 1018 cm−3, the efficiency is optimal. The optimal thickness of the Sb2(S,Se)3 absorber layer is 260 nm. A ZTO/Sb2(S,Se)3 interface with a Sn/(Zn+Sn) ratio of 0.18 exhibits a better CBO value. It is also found that a ZTO thickness of 20 nm is needed for the best efficiency. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

22 pages, 4587 KB  
Article
HIT Solar Cell Modeling Using Graphene as a Transparent Conductive Layer Considering the Atacama Desert Solar Spectrum
by Henrry Revollo, Pablo Ferrada, Pablo Martin, Aitor Marzo and Valeria del Campo
Appl. Sci. 2023, 13(16), 9323; https://doi.org/10.3390/app13169323 - 17 Aug 2023
Cited by 3 | Viewed by 2928
Abstract
The optical and geometrical properties of transparent conductive oxide (TCO) are crucial factors influencing the efficiency of aSi:H/cSi heterojunction (HIT) solar cells. Graphene is a potential candidate to be used as TCO due to [...] Read more.
The optical and geometrical properties of transparent conductive oxide (TCO) are crucial factors influencing the efficiency of aSi:H/cSi heterojunction (HIT) solar cells. Graphene is a potential candidate to be used as TCO due to its optical and electrical properties. Here, the effect of graphene as TCO is numerically analyzed by varying the number of graphene layers from one to ten. First, the optical properties are calculated based on the transmittance data, and then the HJT cell’s performance is simulated under the AM1.5 standard spectrum and the mean Atacama Desert solar spectral irradiance in Chile. In the modeling, the most relevant properties are calculated with the spectrum of the Atacama Desert. The most relevant values were obtained as follows: open circuit voltage Voc=721.4 mV, short circuit current Jsc=39.6 mA/cm2, fill factor FF=76.5%, and energy conversion efficiency Eff=21.6%. The maximum power of solar panels irradiated with the Atacama Desert spectrum exceeds the results obtained with the AM1.5 standard spectrum by 10%. When graphene is the transparent conducting oxide, quantum efficiency has a higher value in the ultraviolet range, which shows that it may be convenient to use graphene-based solar cells in places where ultraviolet intensity is high. Full article
Show Figures

Figure 1

19 pages, 67892 KB  
Article
A Comparative Study on p- and n-Type Silicon Heterojunction Solar Cells by AFORS-HET
by Wabel Mohammed Alkharasani, Nowshad Amin, Seyed Ahmad Shahahmadi, Ammar Ahmed Alkahtani, Ili Salwani Mohamad, Puvaneswaran Chelvanathan and Tiong Sieh Kiong
Materials 2022, 15(10), 3508; https://doi.org/10.3390/ma15103508 - 13 May 2022
Cited by 12 | Viewed by 4856
Abstract
Despite the increasing trend of n-type silicon wafer utilization in the manufacturing of high-efficiency heterojunction solar cells due to the superior advantages over p-type counterparts, its high manufacturing cost remains to be one of the most crucial factors, which impedes its market share [...] Read more.
Despite the increasing trend of n-type silicon wafer utilization in the manufacturing of high-efficiency heterojunction solar cells due to the superior advantages over p-type counterparts, its high manufacturing cost remains to be one of the most crucial factors, which impedes its market share growth with state-of-the-art silicon heterojunction (SHJ) solar cells demonstrating high conversion efficiencies from various configurations, the prospect of using an n-type wafer is debatable from a cost-efficiency point of view. Hence, a systematic comparison between p- and n-type SHJ solar cells was executed in this work using AFORS-HET numerical software. Front and rear-emitter architectures were selected for each type of wafer with ideal (without defects) and non-ideal (with defects) conditions. For ideal conditions, solar cells with p-type wafers and a front-emitter structure resulted in a maximum conversion efficiency of 28%, while n-type wafers demonstrated a maximum efficiency of 26% from the rear-emitter structure. These high-performance devices were possible due to the optimization of the bandgap and electron-affinity for all passivating and doping layers with values ranging from 1.3 to 1.7 eV and 3.9 to 4 eV, respectively. The correlation between the device structure and the type of wafers as demonstrated here will be helpful for the development of both types of solar cells with comparable performance. Full article
(This article belongs to the Topic Nanomaterials for Sustainable Energy Applications)
Show Figures

Figure 1

11 pages, 2847 KB  
Article
Influence of the Carrier Selective Front Contact Layer and Defect State of a-Si:H/c-Si Interface on the Rear Emitter Silicon Heterojunction Solar Cells
by Sunhwa Lee, Duy Phong Pham, Youngkuk Kim, Eun-Chel Cho, Jinjoo Park and Junsin Yi
Energies 2020, 13(11), 2948; https://doi.org/10.3390/en13112948 - 8 Jun 2020
Cited by 6 | Viewed by 3989
Abstract
In this research, simulations were performed to investigate the effects of carrier selective front contact (CSFC) layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface in silicon heterojunction (SHJ) solar cells employing the Automat for Simulation of hetero-structure (AFORS-HET) [...] Read more.
In this research, simulations were performed to investigate the effects of carrier selective front contact (CSFC) layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface in silicon heterojunction (SHJ) solar cells employing the Automat for Simulation of hetero-structure (AFORS-HET) simulation program. The results demonstrated the effects of band offset determined by band bending at the interface of the CSFC layer/passivation layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field effect passivation. Furthermore, it increased the selectivity of contact. In the experimental cell, nc-SiOx:H was used as the CSFC layer, where efficiency of the SHJ solar cell was 22.77%. Our investigation shows that if a SiOx layer passivation layer is used, the device can achieve efficiency up to 25.26%. This improvement in the cell is mainly due to the enhancement in open circuit voltage (Voc) because of lower interface defect density resulting from the SiOx passivation layer. Full article
(This article belongs to the Special Issue High-Efficiency Crystalline Silicon Solar Cells)
Show Figures

Graphical abstract

12 pages, 2131 KB  
Article
Simulation of Silicon Heterojunction Solar Cells for High Efficiency with Lithium Fluoride Electron Carrier Selective Layer
by Muhammad Quddamah Khokhar, Shahzada Qamar Hussain, Duy Phong Pham, Sunhwa Lee, Hyeongsik Park, Youngkuk Kim, Eun-Chel Cho and Junsin Yi
Energies 2020, 13(7), 1635; https://doi.org/10.3390/en13071635 - 2 Apr 2020
Cited by 22 | Viewed by 6553
Abstract
In this work, to ameliorate the quantum efficiency (QE), we made a valuable development by using wide band gap material, such as lithium fluoride (LiFx), as an emitter that also helped us to achieve outstanding efficiency with silicon heterojunction (SHJ) solar [...] Read more.
In this work, to ameliorate the quantum efficiency (QE), we made a valuable development by using wide band gap material, such as lithium fluoride (LiFx), as an emitter that also helped us to achieve outstanding efficiency with silicon heterojunction (SHJ) solar cells. Lithium fluoride holds a capacity to achieve significant power conversion efficiency because of its dramatic improvement in electron extraction and injection, which was investigated using the AFORS-HET simulation. We used AFORS-HET to assess the restriction of numerous parameters which also provided an appropriate way to determine the role of diverse parameters in silicon solar cells. We manifested and preferred lithium fluoride as an interfacial layer to diminish the series resistance as well as shunt leakage and it was also beneficial for the optical properties of a cell. Due to the wide band gap and better surface passivation, the LiFx encouraged us to utilize it as the interfacial as well as the emitter layer. In addition, we used the built-in electric and band offset to explore the consequence of work function in the LiFx as a carrier selective contact layer. We were able to achieve a maximum power conversion efficiency (PEC) of 23.74%, fill factor (FF) of 82.12%, Jsc of 38.73 mA cm−2, and Voc of 741 mV by optimizing the work function and thickness of LiFx layer. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 4545 KB  
Article
Electro-Physical Interpretation of the Degradation of the Fill Factor of Silicon Heterojunction Solar Cells Due to Incomplete Hole Collection at the a-Si:H/c-Si Thermionic Emission Barrier
by Moustafa Ghannam and Yaser Abdulraheem
Appl. Sci. 2018, 8(10), 1846; https://doi.org/10.3390/app8101846 - 8 Oct 2018
Cited by 7 | Viewed by 4403
Abstract
An electro-physical interpretation for the degradation of the Fill Factor in p+/n silicon heterojunction solar cells (SHJ) due to incomplete hole collection at the thermionic emission barrier at the amorphous/crystalline silicon (a-Si:H/c-Si) hetero-interface is proposed supported by results of AFORS-HET device [...] Read more.
An electro-physical interpretation for the degradation of the Fill Factor in p+/n silicon heterojunction solar cells (SHJ) due to incomplete hole collection at the thermionic emission barrier at the amorphous/crystalline silicon (a-Si:H/c-Si) hetero-interface is proposed supported by results of AFORS-HET device simulations. Under illumination, reflected holes at the thermionic barrier pile up at the hetero-interface which strengthens the dipole with the negative dopant ions in the doped a-Si:H(p+) layer and enhances the electric field passing through the a-Si:H layer. Such an enhanced electric field sweeps back the free holes spilling over in the intrinsic a-Si:H(i) layer from the a-Si:H(p+) layer considerably depleting the double a-Si:H layer and enhancing its resistance and the overall cell series resistance. Therefore, the degradation due to incomplete hole collection at the thermionic emission barrier under illumination can be assimilated to the effect of a series resistance does not affect the cell open circuit voltage but degrades only its fill factor. The resistance enhancement is found to be bias-dependent and to increase with decreasing the doping level in a-Si:H(p+). Predictions of the proposed model for different hole reflection probability at the barrier and for different thicknesses of the intrinsic a-Si:H(i) layer agree perfectly with the results of simulations. Full article
(This article belongs to the Special Issue Next Generation Photovoltaic Solar Cells)
Show Figures

Figure 1

Back to TopTop