Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = 8-hydroxyguanosine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1460 KiB  
Article
Correlation between Oxidative Stress Markers and Periodontal Disease in Dogs
by Cosmin Petru Peștean, Hélène Pocquet, Daria Antonia Dumitraș, Andreea Georgiana Morohoschi, Laura Cristina Ștefănuț and Sanda Andrei
Vet. Sci. 2024, 11(3), 99; https://doi.org/10.3390/vetsci11030099 - 22 Feb 2024
Cited by 2 | Viewed by 3364
Abstract
In dogs, periodontal disease (PD) is a highly common condition whose prevalence rises significantly with age. Studies on rats with experimentally induced PD and human clinical trials have found an association between oxidative stress (OS) and PD, as has been observed in many [...] Read more.
In dogs, periodontal disease (PD) is a highly common condition whose prevalence rises significantly with age. Studies on rats with experimentally induced PD and human clinical trials have found an association between oxidative stress (OS) and PD, as has been observed in many other inflammatory disorders. The objective of this research was to assess the main indicators of oxidative stress detected in the saliva of dogs and to compare them to the degree of inflammation and tartar amount on their teeth and gums. By identifying these correlations, we intended to identify early-stage PD markers that would allow us to diagnose the condition in dogs without requiring for invasive or traumatic procedures. The antioxidant enzyme superoxide dismutase (SOD), total antioxidant capacity (TAC), malondialdehyde (MDA) and 8-hydroxyguanosine (8OHG), matrix metalloproteinase-8 (MMP8), and the quantity of total proteins are the markers that have been investigated in order to accomplish these objectives. The appearance of specific forms of periodontal disease has been confirmed by an increase in the saliva concentration of MMP8, a marker commonly used in the diagnosis of these pathologies in humans. The study was carried out on 22 dogs divided in a control group (C) and study groups (S), the second one being divided into three subgroups according to the severity of the gum inflammation and the presence or absence of tartar: S1—small accumulation of tartar, lack of infection-related signs; S2—moderate accumulation of tartar, gums swollen, red, and bled easily; S3—significant accumulation of tartar; gums bright red and bleeding; marked pain and halitosis. A correlation between the concentration of the tested parameters and the severity of the local appearance of the gum and teeth was noted. In comparison to the results of individuals from the control group, MMP8 reported increases of 1.2, 2, and 3.7 times, respectively, in the case of individuals from subgroups S1, S2, and S3. Oxidative stress is caused by inflammatory processes in the oral cavity. The presence of oxidative stress was demonstrated by the evaluation of different indicators in the saliva: an increase in the general antioxidant status, which was associated with an increase in SOD activity; intensification of the lipid peroxidation processes, as demonstrated by the accumulation of the MDA peroxidation product; and an increase in the DNA oxidation processes, as demonstrated by the accumulation of the oxidation product 8OHdG. In consequence, it was observed that there were up to 2-fold increases in protein levels, total antioxidant activity, SOD, and MDA, and up to 8.6-fold increases in the case of 8-OHdG when comparing dogs from the S3 group (significant tartar accumulation; bright red and bleeding gums; marked pain and halitosis) to those in the control group. Full article
Show Figures

Figure 1

19 pages, 3803 KiB  
Article
Resistomycin Suppresses Prostate Cancer Cell Growth by Instigating Oxidative Stress, Mitochondrial Apoptosis, and Cell Cycle Arrest
by Abeer S. Aloufi, Ola A. Habotta, Mohamed S. Abdelfattah, Marina N. Habib, Mohamed M. Omran, Sally A. Ali, Ahmed E. Abdel Moneim, Shereen M. Korany and Aisha M. Alrajhi
Molecules 2023, 28(23), 7871; https://doi.org/10.3390/molecules28237871 - 30 Nov 2023
Cited by 6 | Viewed by 2420
Abstract
Globally, prostate cancer is among the most threatening and leading causes of death in men. This study, therefore, aimed to search for an ideal antitumor strategy with high efficacy, low drug resistance, and no or few adverse effects. Resistomycin is a natural antibiotic [...] Read more.
Globally, prostate cancer is among the most threatening and leading causes of death in men. This study, therefore, aimed to search for an ideal antitumor strategy with high efficacy, low drug resistance, and no or few adverse effects. Resistomycin is a natural antibiotic derived from marine actinomycetes, and it possesses various biological activities. Prostate cancer cells (PC3) were treated with resistomycin (IC12.5: 0.65 or IC25: 1.3 µg/mL) or 5-fluorouracil (5-FU; IC25: 7 µg/mL) for 24 h. MTT assay and flow cytometry were utilized to assess cell viability and apoptosis. Oxidative stress, apoptotic-related markers, and cell cycle were also assessed. The results revealed that the IC50 of resistomycin and 5-FU on PC3 cells were 2.63 µg/mL and 14.44 µg/mL, respectively. Furthermore, treated cells with the high dose of resistomycin showed an increased number of apoptotic cells compared to those treated with the lower dose. Remarkable induction of reactive oxygen species generation and lactate dehydrogenase (LDH) leakage with high malondialdehyde (MDA), carbonyl protein (CP), and 8-hydroxyguanosine (8-OHdG) contents were observed in resistomycin-treated cells. In addition, marked declines in glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in PC3 cells subjected to resistomycin therapy were observed. Resistomycin triggered observable cell apoptosis by increasing Bax, caspase-3, and cytosolic cytochrome c levels and decreasing Bcl-2 levels. In addition, notable downregulation of proliferating cell nuclear antigen (PCNA) and cyclin D1 was observed in resistomycin-treated cancerous cells. According to this evaluation, the antitumor potential of resistomycin, in a concentration-dependent manner, in prostate cancer cells was achieved by triggering oxidative stress, mitochondrial apoptosis, and cell cycle arrest in cancer cells. In conclusion, our investigation suggests that resistomycin can be considered a starting point for developing new chemotherapeutic agents for human prostate cancer. Full article
Show Figures

Figure 1

13 pages, 2163 KiB  
Article
The Possibility of IPC to Prevent Ischemic-Reperfusion Injury in Skeletal Muscle in a Rat
by Takanori Morikawa, Miyako Shimasaki, Toru Ichiseki, Shusuke Ueda, Yoshimichi Ueda and Kan Takahashi
J. Clin. Med. 2023, 12(4), 1501; https://doi.org/10.3390/jcm12041501 - 14 Feb 2023
Cited by 3 | Viewed by 2240
Abstract
Blood removal with air tourniquets for a long time induces muscle damage after reperfusion. Ischemic preconditioning (IPC) has a protective effect against ischemia-reperfusion injury in striated muscle and myocardium. However, the mechanism of action of IPC on skeletal muscle injury is unclear. Thus, [...] Read more.
Blood removal with air tourniquets for a long time induces muscle damage after reperfusion. Ischemic preconditioning (IPC) has a protective effect against ischemia-reperfusion injury in striated muscle and myocardium. However, the mechanism of action of IPC on skeletal muscle injury is unclear. Thus, this study aimed to investigate the effect of IPC in reducing skeletal muscle damage caused by ischemia-reperfusion injury. The hindlimbs of 6-month-old rats were wounded with air tourniquets at a carminative blood pressure of 300 mmHg on the thighs. Rats were divided into the IPC (−) group and the IPC (+) group. The vascular endothelial growth factor (VEGF), 8-hydroxyguanosine (8-OHdG), and cyclooxygenase 2 (COX-2) were investigated by protein levels. Quantitative analysis of apoptosis was performed using the TUNEL method. Compared with the IPC (−) group, the IPC (+) group retained the VEGF expression, and the COX-2 and 8-OHdG expressions were suppressed. The proportion of apoptosis cells decreased in the IPC (+) group compared with the IPC (−) group. IPC in skeletal muscles proliferated VEGF and suppressed inflammatory response and oxidative DNA damage. IPC has the potential to reduce muscle damage after ischemia-reperfusion. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

12 pages, 1169 KiB  
Article
Mitochondria Specific Antioxidant, MitoTEMPO, Modulates Cd Uptake and Oxidative Response of Soybean Seedlings
by Dalir Fayazipour, Joanna Deckert, Gholamali Akbari, Elias Soltani and Jagna Chmielowska-Bąk
Antioxidants 2022, 11(11), 2099; https://doi.org/10.3390/antiox11112099 - 25 Oct 2022
Cited by 6 | Viewed by 2521
Abstract
Numerous reports find that Cd induces formation of reactive oxygen species (ROS) in plants. However, a general ROS pool is usually studied, without distinction of their production site. In the present study, we applied a mitochondria-specific antioxidant, MitoTEMPO, to elucidate the role of [...] Read more.
Numerous reports find that Cd induces formation of reactive oxygen species (ROS) in plants. However, a general ROS pool is usually studied, without distinction of their production site. In the present study, we applied a mitochondria-specific antioxidant, MitoTEMPO, to elucidate the role of mitochondria-derived ROS in the response of soybean seedlings to short-term (48 h) Cd stress. The obtained results showed that Cd caused a reduction in root length and fresh weight and increase in the level of superoxide anion, hydrogen peroxide, markers of lipid peroxidation (thiobarbituric reactive substances, TBARS) and markers of RNA oxidation (8-hydroxyguanosine, 8-OHG) in seedling roots. Application of MitoTEMPO affected Cd uptake in a dose-dependent manner and diminished the Cd-dependent induction of superoxide anion and lipid peroxidation. Full article
(This article belongs to the Special Issue Antioxidant Mechanisms in Plants)
Show Figures

Figure 1

17 pages, 8138 KiB  
Article
Antioxidant Effects of DPP-4 Inhibitors in Early Stages of Experimental Diabetic Retinopathy
by Hugo Ramos, Patricia Bogdanov, Jordi Huerta, Anna Deàs-Just, Cristina Hernández and Rafael Simó
Antioxidants 2022, 11(7), 1418; https://doi.org/10.3390/antiox11071418 - 21 Jul 2022
Cited by 18 | Viewed by 3539
Abstract
Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovascular unit, an early event in the pathogenesis of DR. The aim of this study was to assess the antioxidant properties of topical administration (eye drops) of sitagliptin in the [...] Read more.
Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovascular unit, an early event in the pathogenesis of DR. The aim of this study was to assess the antioxidant properties of topical administration (eye drops) of sitagliptin in the diabetic retina. For this purpose, db/db mice received sitagliptin or vehicle eye drops twice per day for two weeks. Age-matched db/+ mice were used as the control group. We evaluated retinal mRNA (RT-PCR) and protein levels (Western blotting and immunohistochemistry) of different components from both the antioxidant system (NRF2, CAT, GPX, GR, CuZnSOD, and MnSOD) and the prooxidant machinery (PKC and TXNIP). We also studied superoxide levels (dihydroethidium staining) and oxidative damage to DNA/RNA (8-hydroxyguanosine immunostaining) and proteins (nitrotyrosine immunostaining). Finally, NF-кB translocation and IL-1β production were assessed through Western blotting and/or immunohistochemistry. We found that sitagliptin protected against diabetes-induced oxidative stress by reducing superoxide, TXNIP, PKC, and DNA/RNA/protein oxidative damage, and it prevented the downregulation of NRF2 and antioxidant enzymes, with the exception of catalase. Sitagliptin also exerted anti-inflammatory effects, avoiding both NF-кB translocation and IL-1β production. Sitagliptin prevents the diabetes-induced imbalance between ROS production and antioxidant defenses that occurs in diabetic retinas. Full article
(This article belongs to the Special Issue Oxidative Stress and Retinal Diseases)
Show Figures

Figure 1

17 pages, 2884 KiB  
Article
Pain Modulation from the Locus Coeruleus in a Model of Hydrocephalus: Searching for Oxidative Stress-Induced Noradrenergic Neuroprotection
by Marta Louçano, Joana Oliveira, Isabel Martins, Rui Vaz and Isaura Tavares
Int. J. Mol. Sci. 2022, 23(7), 3970; https://doi.org/10.3390/ijms23073970 - 2 Apr 2022
Cited by 2 | Viewed by 2893
Abstract
Pain transmission at the spinal cord is modulated by noradrenaline (NA)-mediated actions that arise from supraspinal areas. We studied the locus coeruleus (LC) to evaluate the expression of the cathecolamine-synthetizing enzyme tyrosine hydroxylase (TH) and search for local oxidative stress and possible consequences [...] Read more.
Pain transmission at the spinal cord is modulated by noradrenaline (NA)-mediated actions that arise from supraspinal areas. We studied the locus coeruleus (LC) to evaluate the expression of the cathecolamine-synthetizing enzyme tyrosine hydroxylase (TH) and search for local oxidative stress and possible consequences in descending pain modulation in a model of hydrocephalus, a disease characterized by enlargement of the cerebral ventricular system usually due to the obstruction of cerebrospinal fluid flow. Four weeks after kaolin injection into the cisterna magna, immunodetection of the catecholamine-synthetizing enzymes TH and dopamine-β-hydroxylase (DBH) was performed in the LC and spinal cord. Colocalization of the oxidative stress marker 8-OHdG (8-hydroxyguanosine; 8-OHdG), with TH in the LC was performed. Formalin was injected in the hindpaw both for behavioral nociceptive evaluation and the immunodetection of Fos expression in the spinal cord. Hydrocephalic rats presented with a higher expression of TH at the LC, of TH and DBH at the spinal dorsal horn along with decreased nociceptive behavioral responses in the second (inflammatory) phase of the formalin test, and formalin-evoked Fos expression at the spinal dorsal horn. The expression of 8-OHdG was increased in the LC neurons, with higher co-localization in TH-immunoreactive neurons. Collectively, the results indicate increased noradrenergic expression at the LC during hydrocephalus. The strong oxidative stress damage at the LC neurons may lead to local neuroprotective-mediated increases in NA levels. The increased expression of catecholamine-synthetizing enzymes along with the decreased nociception-induced neuronal activation of dorsal horn neurons and behavioral pain signs may indicate that hydrocephalus is associated with alterations in descending pain modulation. Full article
(This article belongs to the Special Issue The Role of Norepinephrine in Neuroprotection)
Show Figures

Figure 1

19 pages, 1987 KiB  
Article
Elevated Urinary Biomarkers of Oxidative Damage in Photocopier Operators following Acute and Chronic Exposures
by Yipei Zhang, Anila Bello, David K. Ryan, Philip Demokritou and Dhimiter Bello
Nanomaterials 2022, 12(4), 715; https://doi.org/10.3390/nano12040715 - 21 Feb 2022
Cited by 11 | Viewed by 2886
Abstract
Inhalation exposures to nanoparticles (NPs) from printers and photocopiers have been associated with upper airway and systemic inflammation, increased blood pressure, and cases of autoimmune and respiratory disorders. In this study we investigate oxidative stress induced by exposures to copier-emitted nanoparticles using a [...] Read more.
Inhalation exposures to nanoparticles (NPs) from printers and photocopiers have been associated with upper airway and systemic inflammation, increased blood pressure, and cases of autoimmune and respiratory disorders. In this study we investigate oxidative stress induced by exposures to copier-emitted nanoparticles using a panel of urinary oxidative stress (OS) biomarkers representing DNA damage (8-hydroxydeoxyguanosine, 8-OHdG; 8-hydroxyguanosine, 8-OHG; 5-hydroxymethyl uracil 5-OHMeU), lipid peroxidation (8-isoprostane; 4-hydroxynonenal, HNE), and protein oxidation biomarkers (o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine) under conditions of acute (single 6 h exposure, 9 volunteers, 110 urine samples) and chronic exposures (6 workers, 11 controls, 81 urine samples). Urinary biomarkers were quantified with liquid chromatography–tandem mass spectrometry after solid phase extraction sample cleanup. 8-OHdG, 8-OHG, 8-isoprostane, and HNE were significantly elevated in both the acute and chronic exposure study participants relative to the controls. In the acute exposure study, the geometric mean ratios post-/pre-exposure were 1.42, 1.10, 2.0, and 2.25, respectively. Urinary 8-OHG and HNE increased with time to at least 36 h post-exposure (post-/pre-exposure GM ratios increased to 3.94 and 2.33, respectively), suggesting slower generation and/or urinary excretion kinetics for these biomarkers. In chronically exposed operators, the GM ratios of urinary biomarkers relative to controls ranged from 1.52 to 2.94, depending on the biomarker. O-Tyrosine and 5-OHMeU biomarkers were not significantly different from the controls. 3-chlorotyrosine and 3-nitrotyrosine were not detected in the urine samples. We conclude that NPs from photocopiers induce systemic oxidative stress by damaging DNA, RNA, and lipids. Urinary levels of 8-OHdG, 8-OHG, HNE, and 8-isoprostane were orders of magnitude higher than in nanocomposite processing workers, comparable to nano titanium dioxide and fiberglass manufacturing workers, but much lower than in shipyard welding and carbon nanotube synthesis workers. Biomarkers 8-OHdG, 8-OHG, 8-isoprostane, and HNE appear to be more sensitive and robust urinary biomarkers for monitoring oxidative stress to NPs from photocopiers. Full article
Show Figures

Figure 1

32 pages, 6771 KiB  
Article
Anticancer Properties of Platinum Nanoparticles and Retinoic Acid: Combination Therapy for the Treatment of Human Neuroblastoma Cancer
by Sangiliyandi Gurunathan, Muniyandi Jeyaraj, Min-Hee Kang and Jin-Hoi Kim
Int. J. Mol. Sci. 2020, 21(18), 6792; https://doi.org/10.3390/ijms21186792 - 16 Sep 2020
Cited by 39 | Viewed by 5424
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. The different treatments available for neuroblastoma are challenged by high rates of resistance, recurrence, and progression, most notably in advanced cases and highly malignant tumors. Therefore, the development of more targeted therapies, which [...] Read more.
Neuroblastoma is the most common extracranial solid tumor in childhood. The different treatments available for neuroblastoma are challenged by high rates of resistance, recurrence, and progression, most notably in advanced cases and highly malignant tumors. Therefore, the development of more targeted therapies, which are biocompatible and without undesired side effects, is highly desirable. The mechanisms of actions of platinum nanoparticles (PtNPs) and retinoic acid (RA) in neuroblastoma have remained unclear. In this study, the anticancer effects of PtNPs and RA on neuroblastoma were assessed. We demonstrated that treatment of SH-SY5Y cells with the combination of PtNPs and RA resulted in improved anticancer effects. The anticancer effects of the two compounds were mediated by cytotoxicity, oxidative stress (OS), mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and apoptosis-associated networks. Cytotoxicity was confirmed by leakage of lactate dehydrogenase (LDH) and intracellular protease, and oxidative stress increased the level of reactive oxygen species (ROS), 4-hydroxynonenal (HNE), malondialdehyde (MDA), and nitric oxide (NO), and protein carbonyl content (PCC). The combination of PtNPs and RA caused mitochondrial dysfunction by decreasing the mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, number of mitochondria, and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Endoplasmic reticulum-mediated stress and apoptosis were confirmed by upregulation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4), p53, Bax, and caspase-3 and down regulation of B-cell lymphoma 2 (BCl-2). PtNPs and RA induced apoptosis, and oxidative DNA damage was evident by the accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG). Finally, PtNPs and RA increased the differentiation and expression of differentiation markers. Differentiated SH-SY5Y cells pre-treated with PtNPs or RA or the combination of both were more sensitive to the cytotoxic effect of cisplatin than undifferentiated cells. To our knowledge, this is the first study to demonstrate the effect of the combination of PtNPs and RA in neuroblastoma cells. PtNPs may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. The results of this study provide a rationale for clinical evaluation of the combination of PtNPs and RA for the treatment of children suffering from high-risk neuroblastoma. Full article
(This article belongs to the Special Issue Metal Nano/Microparticles for Bioapplications)
Show Figures

Figure 1

28 pages, 5333 KiB  
Article
Melatonin Enhances Palladium-Nanoparticle-Induced Cytotoxicity and Apoptosis in Human Lung Epithelial Adenocarcinoma Cells A549 and H1229
by Sangiliyandi Gurunathan, Muniyandi Jeyaraj, Min-Hee Kang and Jin-Hoi Kim
Antioxidants 2020, 9(4), 357; https://doi.org/10.3390/antiox9040357 - 24 Apr 2020
Cited by 47 | Viewed by 5314
Abstract
Palladium nanoparticles (PdNPs) are increasingly being used in medical and biological applications due to their unique physical and chemical properties. Recent evidence suggests that these nanoparticles can act as both a pro-oxidant and as an antioxidant. Melatonin (MLT), which also shows pro- and [...] Read more.
Palladium nanoparticles (PdNPs) are increasingly being used in medical and biological applications due to their unique physical and chemical properties. Recent evidence suggests that these nanoparticles can act as both a pro-oxidant and as an antioxidant. Melatonin (MLT), which also shows pro- and antioxidant properties, can enhance the efficacy of chemotherapeutic agents when combined with anticancer drugs. Nevertheless, studies regarding the molecular mechanisms underlying the anticancer effects of PdNPs and MLT in cancer cells are still lacking. Therefore, we aimed to investigate the potential toxicological and molecular mechanisms of PdNPs, MLT, and the combination of PdNPs with MLT in A549 lung epithelial adenocarcinoma cells. We evaluated cell viability, cell proliferation, cytotoxicity, oxidative stress, mitochondrial dysfunction, and apoptosis in cells treated with different concentrations of PdNPs and MLT. PdNPs and MLT induced cytotoxicity, which was confirmed by leakage of lactate dehydrogenase, increased intracellular protease, and reduced membrane integrity. Oxidative stress increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), protein carbonyl content (PCC), lipid hydroperoxide (LHP), and 8-isoprostane. Combining PdNPs with MLT elevated the levels of mitochondrial dysfunction by decreasing mitochondrial membrane potential (MMP), ATP content, mitochondrial number, and expression levels of the main regulators of mitochondrial biogenesis. Additionally, PdNPs and MLT induced apoptosis and oxidative DNA damage due to accumulation of 4-hydroxynonenal (HNE), 8-oxo-2′-deoxyguanosine (8-OhdG), and 8-hydroxyguanosine (8-OHG). Finally, PdNPs and MLT increased mitochondrially mediated stress and apoptosis, which was confirmed by the increased expression levels of apoptotic genes. To our knowledge, this is the first study demonstrating the effects of combining PdNPs and MLT in human lung cancer cells. These findings provide valuable insights into the molecular mechanisms involved in PdNP- and MLT-induced toxicity, and it may be that this combination therapy could be a potential effective therapeutic approach. This combination effect provides information to support the clinical evaluation of PdNPs and MLT as a suitable agents for lung cancer treatment, and the combined effect provides therapeutic value, as non-toxic concentrations of PdNPs and MLT are more effective, better tolerated, and show less adverse effects. Finally, this study suggests that MLT could be used as a supplement in nano-mediated combination therapies used to treat lung cancer. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

14 pages, 4096 KiB  
Article
Oxidative Stress and Mitochondrial Abnormalities Contribute to Decreased Endothelial Nitric Oxide Synthase Expression and Renal Disease Progression in Early Experimental Polycystic Kidney Disease
by Alp S. Kahveci, Tania T. Barnatan, Ali Kahveci, Alexis E. Adrian, Jennifer Arroyo, Alfonso Eirin, Peter C. Harris, Amir Lerman, Lilach O. Lerman, Vicente E. Torres and Maria V. Irazabal
Int. J. Mol. Sci. 2020, 21(6), 1994; https://doi.org/10.3390/ijms21061994 - 14 Mar 2020
Cited by 45 | Viewed by 5735
Abstract
Vascular abnormalities are the most important non-cystic complications in Polycystic Kidney Disease (PKD) and contribute to renal disease progression. Endothelial dysfunction and oxidative stress are evident in patients with ADPKD, preserved renal function, and controlled hypertension. The underlying biological mechanisms remain unknown. We [...] Read more.
Vascular abnormalities are the most important non-cystic complications in Polycystic Kidney Disease (PKD) and contribute to renal disease progression. Endothelial dysfunction and oxidative stress are evident in patients with ADPKD, preserved renal function, and controlled hypertension. The underlying biological mechanisms remain unknown. We hypothesized that in early ADPKD, the reactive oxygen species (ROS)-producing nicotinamide adenine dinucleotide phosphate hydrogen (NAD(P)H)-oxidase complex-4 (NOX4), a major source of ROS in renal tubular epithelial cells (TECs) and endothelial cells (ECs), induces EC mitochondrial abnormalities, contributing to endothelial dysfunction, vascular abnormalities, and renal disease progression. Renal oxidative stress, mitochondrial morphology (electron microscopy), and NOX4 expression were assessed in 4- and 12-week-old PCK and Sprague-Dawley (wild-type, WT) control rats (n = 8 males and 8 females each). Endothelial function was assessed by renal expression of endothelial nitric oxide synthase (eNOS). Peritubular capillaries were counted in hematoxylin–eosin (H&E)-stained slides and correlated with the cystic index. The enlarged cystic kidneys of PCK rats exhibited significant accumulation of 8-hydroxyguanosine (8-OHdG) as early as 4 weeks of age, which became more pronounced at 12 weeks. Mitochondria of TECs lining cysts and ECs exhibited loss of cristae but remained preserved in non-cystic TECs. Renal expression of NOX4 was upregulated in TECs and ECs of PCK rats at 4 weeks of age and further increased at 12 weeks. Contrarily, eNOS immunoreactivity was lower in PCK vs. WT rats at 4 weeks and further decreased at 12 weeks. The peritubular capillary index was lower in PCK vs. WT rats at 12 weeks and correlated inversely with the cystic index. Early PKD is associated with NOX4-induced oxidative stress and mitochondrial abnormalities predominantly in ECs and TECs lining cysts. Endothelial dysfunction precedes capillary loss, and the latter correlates with worsening of renal disease. These observations position NOX4 and EC mitochondria as potential therapeutic targets in PKD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 3612 KiB  
Article
Oxidative Stress in Canine Histiocytic Sarcoma Cells Induced by an Infection with Canine Distemper Virus Led to a Dysregulation of HIF-1α Downstream Pathway Resulting in a Reduced Expression of VEGF-B In Vitro
by Federico Armando, Matteo Gambini, Attilio Corradi, Chiara Giudice, Vanessa Maria Pfankuche, Graham Brogden, Friederike Attig, Maren von Köckritz-Blickwede, Wolfgang Baumgärtner and Christina Puff
Viruses 2020, 12(2), 200; https://doi.org/10.3390/v12020200 - 11 Feb 2020
Cited by 17 | Viewed by 4576
Abstract
Histiocytic sarcomas represent malignant tumors which require new treatment strategies. Canine distemper virus (CDV) is a promising candidate due to its oncolytic features reported in a canine histiocytic sarcoma cell line (DH82 cells). Interestingly, the underlying mechanism might include a dysregulation of angiogenesis. [...] Read more.
Histiocytic sarcomas represent malignant tumors which require new treatment strategies. Canine distemper virus (CDV) is a promising candidate due to its oncolytic features reported in a canine histiocytic sarcoma cell line (DH82 cells). Interestingly, the underlying mechanism might include a dysregulation of angiogenesis. Based on these findings, the aim of the present study was to investigate the impact of a persistent CDV-infection on oxidative stress mediated changes in the expression of hypoxia-inducible factor (HIF)-1α and its angiogenic downstream pathway in DH82 cells in vitro. Microarray data analysis, immunofluorescence for 8-hydroxyguanosine, superoxide dismutase 2 and catalase, and flow cytometry for oxidative burst displayed an increased oxidative stress in persistently CDV-infected DH82 cells (DH82Ond pi) compared to controls. The HIF-1α expression in DH82Ond pi increased, as demonstrated by Western blot, and showed an unexpected, often sub-membranous distribution, as shown by immunofluorescence and immunoelectron microscopy. Furthermore, microarray data analysis and immunofluorescence confirmed a reduced expression of VEGF-B in DH82Ond pi compared to controls. In summary, these results suggest a reduced activation of the HIF-1α angiogenic downstream pathway in DH82Ond pi cells in vitro, most likely due to an excessive, unusually localized, and non-functional expression of HIF-1α triggered by a CDV-induced increased oxidative stress. Full article
Show Figures

Figure 1

12 pages, 2434 KiB  
Article
The Exacerbation of Aging and Oxidative Stress in the Epididymis of Sod1 Null Mice
by Anaīs Noblanc, Alicia Klaassen and Bernard Robaire
Antioxidants 2020, 9(2), 151; https://doi.org/10.3390/antiox9020151 - 11 Feb 2020
Cited by 19 | Viewed by 4071
Abstract
There is growing evidence that the quality of spermatozoa decreases with age and that children of older fathers have a higher incidence of birth defects and genetic mutations. The free radical theory of aging proposes that changes with aging are due to the [...] Read more.
There is growing evidence that the quality of spermatozoa decreases with age and that children of older fathers have a higher incidence of birth defects and genetic mutations. The free radical theory of aging proposes that changes with aging are due to the accumulation of damage induced by exposure to excess reactive oxygen species. We showed previously that absence of the superoxide dismutase 1 (Sod1) antioxidant gene results in impaired mechanisms of repairing DNA damage in the testis in young Sod1−/− mice. In this study, we examined the effects of aging and the Sod−/− mutation on mice epididymal histology and the expression of markers of oxidative damage. We found that both oxidative nucleic acid damage (via 8-hydroxyguanosine) and lipid peroxidation (via 4-hydroxynonenal) increased with age and in Sod1−/− mice. These findings indicate that lack of SOD1 results in an exacerbation of the oxidative damage accumulation-related aging phenotype. Full article
(This article belongs to the Special Issue Reactive Oxygen Species and Male Fertility)
Show Figures

Figure 1

23 pages, 4913 KiB  
Article
Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize (Zea mays L.) Seedlings
by Hubert Sytykiewicz, Iwona Łukasik, Sylwia Goławska and Grzegorz Chrzanowski
Int. J. Mol. Sci. 2019, 20(15), 3742; https://doi.org/10.3390/ijms20153742 - 31 Jul 2019
Cited by 26 | Viewed by 3933
Abstract
Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose [...] Read more.
Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Złota Karłowa and Waza cvs—susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2′-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time. Full article
(This article belongs to the Special Issue Plant Innate Immunity 3.0)
Show Figures

Figure 1

29 pages, 17237 KiB  
Article
Reactive Oxygen Species Are Key Mediators of Demyelination in Canine Distemper Leukoencephalitis but not in Theiler’s Murine Encephalomyelitis
by Friederike Attig, Ingo Spitzbarth, Arno Kalkuhl, Ulrich Deschl, Christina Puff, Wolfgang Baumgärtner and Reiner Ulrich
Int. J. Mol. Sci. 2019, 20(13), 3217; https://doi.org/10.3390/ijms20133217 - 30 Jun 2019
Cited by 11 | Viewed by 3899
Abstract
(1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to [...] Read more.
(1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key effector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest differences in the pathogenesis of demyelination in these two animal models. Full article
Show Figures

Figure 1

44 pages, 1016 KiB  
Review
Carotenoids and Markers of Oxidative Stress in Human Observational Studies and Intervention Trials: Implications for Chronic Diseases
by Torsten Bohn
Antioxidants 2019, 8(6), 179; https://doi.org/10.3390/antiox8060179 - 17 Jun 2019
Cited by 143 | Viewed by 9778
Abstract
Carotenoids include C30, C40 and C50 terpenoid-based molecules, many of which constitute coloured pigments. However, >1100 of these are known to occur in nature and only about a dozen are known to play a role in our daily diet. Carotenoids have received much [...] Read more.
Carotenoids include C30, C40 and C50 terpenoid-based molecules, many of which constitute coloured pigments. However, >1100 of these are known to occur in nature and only about a dozen are known to play a role in our daily diet. Carotenoids have received much attention due to their proposed health benefits, including reducing the incidence of chronic diseases, such as cardiovascular disease and diabetes. Many of these diseases are characterized by chronic inflammation co-occurring with oxidative stress, characterized by, for example, enhanced plasma F2-isoprostane concentrations, malondialdehyde, and 8-hydroxyguanosine. Though carotenoids can act as direct antioxidants, quenching, for example, singlet oxygen and peroxide radicals, an important biological function appears to rest also in the activation of the body’s own antioxidant defence system, related to superoxide-dismutase, catalase, and glutathione-peroxidase expression, likely due to the interaction with transcription factors, such as nuclear-factor erythroid 2-related factor 2 (Nrf-2). Though mostly based on small-scale and observational studies which do not allow for drawing conclusions regarding causality, several supplementation trials with isolated carotenoids or food items suggest positive health effects. However, negative effects have also been reported, especially regarding beta-carotene for smokers. This review is aimed at summarizing the results from human observational studies/intervention trials targeting carotenoids in relation to chronic diseases characterized by oxidative stress and markers thereof. Full article
(This article belongs to the Special Issue Antioxidants in Oxidative Stress Diseases)
Show Figures

Figure 1

Back to TopTop