Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = 4 × 4 MIMO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7092 KiB  
Article
Slotted Circular-Patch MIMO Antenna for 5G Applications at Sub-6 GHz
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Telecom 2025, 6(3), 53; https://doi.org/10.3390/telecom6030053 - 28 Jul 2025
Viewed by 273
Abstract
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input [...] Read more.
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input multiple-output (MIMO) systems to achieve adequate channel capacity. In this article, a 2-port MIMO system using two flipped parallel 1 × 2 arrays and a 2-port MIMO system using two opposite 1 × 4 arrays designed and fabricated antennas for 5G wireless communication in the sub-6 GHz band, are presented, overcoming the limitations of previous designs in gain, radiation efficiency and MIMO performance. The designed and fabricated single-element antenna features a circular microstrip patch design based on ROGER 5880 (RT5880) substrate, which has a thickness of 1.57 mm, a permittivity of 2.2, and a tangential loss of 0.0009. The 2-port MIMO of two 1 × 2 arrays and the 2-port MIMO of two 1 × 4 arrays have overall dimensions of 132 × 66 × 1.57 mm3 and 140 × 132 × 1.57 mm3, respectively. The MIMO of two 1 × 2 arrays and MIMO of two 1 × 4 arrays encompass maximum gains of 8.3 dBi and 10.9 dBi, respectively, with maximum radiation efficiency reaching 95% and 97.46%. High MIMO performance outcomes are observed for both the MIMO of two 1 × 2 arrays and the MIMO of two 1 × 4 arrays, with the channel capacity loss (CCL) ˂ 0.4 bit/s/Hz and ˂0.3 bit/s/Hz, respectively, an envelope correlation coefficient (ECC) ˂ 0.006 and ˂0.003, respectively, directivity gain (DG) about 10 dB, and a total active reflection coefficient (TARC) under −10 dB, ensuring impedance matching and effective mutual coupling among neighboring parameters, which confirms their effectiveness for 5G applications. The three fabricated antennas were experimentally tested and implemented using the MIMO Application Framework version 19.5 for 5G systems, demonstrating operational effectiveness in 5G applications. Full article
Show Figures

Figure 1

18 pages, 495 KiB  
Article
Performance Analysis of Maximum Likelihood Detection in Cooperative DF MIMO Systems with One-Bit ADCs
by Tae-Kyoung Kim
Mathematics 2025, 13(15), 2361; https://doi.org/10.3390/math13152361 - 23 Jul 2025
Viewed by 233
Abstract
This paper investigates the error performance of cooperative decode-and-forward (DF) multiple-input multiple-output (MIMO) systems employing one-bit analog-to-digital converters (ADCs) over Rayleigh fading channels. In cooperative DF MIMO systems, detection errors at the relay may propagate to the destination, thereby degrading overall detection performance. [...] Read more.
This paper investigates the error performance of cooperative decode-and-forward (DF) multiple-input multiple-output (MIMO) systems employing one-bit analog-to-digital converters (ADCs) over Rayleigh fading channels. In cooperative DF MIMO systems, detection errors at the relay may propagate to the destination, thereby degrading overall detection performance. Although joint maximum likelihood detection can efficiently mitigate error propagation by leveraging probabilistic information from a source-to-relay link, its computational complexity is impractical. To address this issue, an approximate maximum likelihood (AML) detection scheme is introduced, which significantly reduces complexity while maintaining reliable performance. However, its analysis under one-bit ADCs is challenging because of its nonlinearity. The main contributions of this paper are summarized as follows: (1) a tractable upper bound on the pairwise error probability (PEP) of the AML detector is derived using Jensen’s inequality and the Chernoff bound, (2) the asymptotic behavior of the PEP is analyzed to reveal the achievable diversity gain, (3) the analysis shows that full diversity is attained only when symbol pairs in the PEP satisfy a sign-inverted condition and the relay correctly decodes the source symbol, and (4) the simulation results verify the accuracy of the theoretical analysis and demonstrate the effectiveness of the proposed analysis. Full article
(This article belongs to the Special Issue Computational Methods in Wireless Communication)
Show Figures

Figure 1

23 pages, 5776 KiB  
Article
An In-Depth Statistical Analysis of the TARC Parameter to Evaluate the Real Impact of Random Phases in MIMO Antennas
by Angel Perez-Miguel, Hildeberto Jardon-Aguilar, Jose Alfredo Tirado-Mendez, Ricardo Gomez-Villanueva, Ruben Flores-Leal and Erik Fritz-Andrade
Sensors 2025, 25(13), 4171; https://doi.org/10.3390/s25134171 - 4 Jul 2025
Viewed by 301
Abstract
A detailed statistical analysis of the total active reflection coefficient (TARC) is carried out in this paper for three 4-port MIMO antennas featuring different levels of isolation across its ports. This analysis is very useful to determine the most likely performance of a [...] Read more.
A detailed statistical analysis of the total active reflection coefficient (TARC) is carried out in this paper for three 4-port MIMO antennas featuring different levels of isolation across its ports. This analysis is very useful to determine the most likely performance of a MIMO antenna in a real communications scenario. The TARC parameter is commonly evaluated for only several combinations of the random phase with which a signal reaches every input port of a MIMO antenna. By contrast, we have evaluated a million combinations to obtain the probability density function of the TARC, using frequency as its parameter. In this way, an expected value of the TARC is obtained for each frequency, as well as a confidence interval (ΔCITARC) where the TARC values occur with 90% probability. Additionally, we have introduced the term “TARC shadow”, a visual representation of the TARC as a function of the frequency where the probability function is projected into this 2D graphic with different colors to identify the most likely values of the TARC. To demonstrate these concepts, a full TARC evaluation was performed for three 4-port MIMO antennas with increasing isolation of 12.9 dB, 25.4 dB, and 37 dB between elements, and different values of the Snn and Snm parameters, with n and m= 1 to 4. From this study, the importance of the isolation among ports and its comparison with the return losses becomes evident in achieving a MIMO antenna array insensitive to random phase variations occurring in the communication channel. Full article
(This article belongs to the Special Issue Intelligent Massive-MIMO Systems and Wireless Communications)
Show Figures

Figure 1

24 pages, 553 KiB  
Article
Worst-Case Robust Training Design for Correlated MIMO Channels in the Presence of Colored Interference
by Jae-Mo Kang and Sangseok Yun
Mathematics 2025, 13(13), 2168; https://doi.org/10.3390/math13132168 - 2 Jul 2025
Viewed by 192
Abstract
The covariance information at the transmitter side is often subject to mismatches due to various impairments. This paper considers a training design problem for multiple-input multiple-output (MIMO) systems when both channel and interference covariance matrices are imperfect at the transmitter side. We first [...] Read more.
The covariance information at the transmitter side is often subject to mismatches due to various impairments. This paper considers a training design problem for multiple-input multiple-output (MIMO) systems when both channel and interference covariance matrices are imperfect at the transmitter side. We first derive the structure of the optimal training signal, minimizing the worst-case mean square error (MSE). With the training structure, the original problem becomes a simple power allocation problem. We propose a numerical optimal power allocation scheme and a closed-form suboptimal power allocation scheme. Simulation results show that the proposed schemes considerably outperform the conventional schemes in terms of the worst-case MSE and bit error rate (BER) performances, and the proposed closed-form training scheme has comparable performance to that of the optimal one. For example, the proposed schemes yield more than 2.5 dB signal-to-interference ratio (SIR) gains at a BER of 104. Full article
Show Figures

Figure 1

24 pages, 5732 KiB  
Article
Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels
by Vishnu Vardhan Gudla, Vinoth Babu Kumaravelu, Agbotiname Lucky Imoize, Francisco R. Castillo Soria, Anjana Babu Sujatha, Helen Sheeba John Kennedy, Hindavi Kishor Jadhav, Arthi Murugadass and Samarendra Nath Sur
Information 2025, 16(5), 396; https://doi.org/10.3390/info16050396 - 12 May 2025
Viewed by 948
Abstract
Reconfigurable intelligent surfaces (RIS) and massive multiple input and multiple output (M-MIMO) are the two major enabling technologies for next-generation networks, capable of providing spectral efficiency (SE), energy efficiency (EE), array gain, spatial multiplexing, and reliability. This work introduces an RIS-assisted millimeter wave [...] Read more.
Reconfigurable intelligent surfaces (RIS) and massive multiple input and multiple output (M-MIMO) are the two major enabling technologies for next-generation networks, capable of providing spectral efficiency (SE), energy efficiency (EE), array gain, spatial multiplexing, and reliability. This work introduces an RIS-assisted millimeter wave (mmWave) M-MIMO system to harvest the advantages of RIS and mmWave M-MIMO systems that are required for beyond fifth-generation (B5G) systems. The performance of the proposed system is evaluated under 3GPP TR 38.901 V16.1.0 5G channel models. Specifically, we considered indoor hotspot (InH)—indoor office and urban microcellular (UMi)—street canyon channel environments for 28 GHz and 73 GHz mmWave frequencies. Using the SimRIS channel simulator, the channel matrices were generated for the required number of realizations. Monte Carlo simulations were executed extensively to evaluate the proposed system’s average bit error rate (ABER) and sum rate performances, and it was observed that increasing the number of transmit antennas from 4 to 64 resulted in a better performance gain of ∼10 dB for both InH—indoor office and UMi—street canyon channel environments. The improvement of the number of RIS elements from 64 to 1024 resulted in ∼7 dB performance gain. It was also observed that ABER performance at 28 GHz was better compared to 73 GHz by at least ∼5 dB for the considered channels. The impact of finite resolution RIS on the considered 5G channel models was also evaluated. ABER performance degraded for 2-bit finite resolution RIS compared to ideal infinite resolution RIS by ∼6 dB. Full article
(This article belongs to the Special Issue Advances in Telecommunication Networks and Wireless Technology)
Show Figures

Figure 1

29 pages, 5292 KiB  
Article
Parameter Estimation of Noise-Disturbed Multivariate Systems Using Support Vector Regression Integrated with Random Search and Bayesian Optimization
by Jiawei Zheng and Xinchun Jie
Processes 2025, 13(3), 773; https://doi.org/10.3390/pr13030773 - 7 Mar 2025
Cited by 1 | Viewed by 630
Abstract
To achieve accurate control of Multi-Input and Multi-Output (MIMO) physical plants, it is crucial to obtain correct model expressions. In practice, the prevalence of both outliers and colored noise can cause serious interference with the industrial process, thus reducing the accuracy of the [...] Read more.
To achieve accurate control of Multi-Input and Multi-Output (MIMO) physical plants, it is crucial to obtain correct model expressions. In practice, the prevalence of both outliers and colored noise can cause serious interference with the industrial process, thus reducing the accuracy of the identification algorithm. The algorithm of support vector regression (SVR) is proposed to address the problem of parameter estimation for MIMO systems under interference from outliers and colored noise. In order to further improve the speed of parameter estimation, random search and Bayesian optimization algorithms were introduced, and the support vector regression combining stochastic search and Bayesian optimization (RSBO-SVR) algorithm was proposed. It was verified by simulation and tank experiments. The results showed that the method has strong anti-interference ability and can achieve high-precision parameter identification. The maximum relative error of the RSBO-SVR algorithm did not exceed 4% in both the simulation and experiment. It had a maximum reduction of 99.38% in runtime compared to SVR. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

24 pages, 6353 KiB  
Article
A Performance Study of Mobility Speed Effects on Vehicle Following Control via V2V MIMO Communications
by Jerawat Sopajarn, Apidet Booranawong, Surachate Chumpol, Nattha Jindapetch, Okuyama Yuichi and Hiroshi Saito
Sensors 2025, 25(4), 1193; https://doi.org/10.3390/s25041193 - 15 Feb 2025
Viewed by 772
Abstract
Vehicle-to-vehicle (V2V) communications are important for intelligent transportation system (ITS) development for driving safety, traffic efficiency, and the development of autonomous vehicles. V2V communication channels, environments, mobility patterns, and mobility speed significantly affect the accuracy of autonomous vehicle control. In this paper, we [...] Read more.
Vehicle-to-vehicle (V2V) communications are important for intelligent transportation system (ITS) development for driving safety, traffic efficiency, and the development of autonomous vehicles. V2V communication channels, environments, mobility patterns, and mobility speed significantly affect the accuracy of autonomous vehicle control. In this paper, we propose a versatile system-level framework that can be used for investigation, experimentation, and verification to expedite the development of autonomous vehicles. Once vehicle functionality, communication channels, and driving scenarios were modelled, experiments with different mobility speeds and communication channels were set up to measure the communication quality and the effects on the vehicle’s following control. In our experiment, the leader vehicle was set to travel through a high-building environment with a constant speed of 36 km/h and suddenly changed lanes in front of the follower vehicle. The speed of the follower vehicle ranged from 40 km/h to 80 km/h. The experimental results show that the quality of single-input and single-output (SISO) communication is less efficient than multiple-input and multiple-output (MIMO) communication. The quality of SISO communication between vehicles with a speed difference of 4 km/h (leader 36 km/h and follower 40 km/h) had a link quality worse than 0.85, which caused unstable control in the follower vehicle speed. However, it was also found that if the speed of the follower vehicle increased to 80 km/h, the link quality of SISO communication was better, close to 0.95, due to the decreased distance between the vehicles, resulting in better control. Moreover, it was found that the impact of SISO communication can be overcome by using the MIMO communication technique and selecting the best input signal at each time. MIMO communication has less signal loss, allowing the follower vehicle to make correct decisions throughout the movement. Full article
(This article belongs to the Special Issue Computer Vision and Sensors-Based Application for Intelligent Systems)
Show Figures

Figure 1

26 pages, 1166 KiB  
Article
Preamble-Based Signal-to-Noise Ratio Estimation for Adaptive Modulation in Space–Time Block Coding-Assisted Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing System
by Shahid Manzoor, Noor Shamsiah Othman and Mohammed W. Muhieldeen
Algorithms 2025, 18(2), 97; https://doi.org/10.3390/a18020097 - 9 Feb 2025
Viewed by 1052
Abstract
This paper presents algorithms to estimate the signal-to-noise ratio (SNR) in the time domain and frequency domain that employ a modified Constant Amplitude Zero Autocorrelation (CAZAC) synchronization preamble, denoted as CAZAC-TD and CAZAC-FD SNR estimators, respectively. These SNR estimators are invoked in a [...] Read more.
This paper presents algorithms to estimate the signal-to-noise ratio (SNR) in the time domain and frequency domain that employ a modified Constant Amplitude Zero Autocorrelation (CAZAC) synchronization preamble, denoted as CAZAC-TD and CAZAC-FD SNR estimators, respectively. These SNR estimators are invoked in a space–time block coding (STBC)-assisted multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. These SNR estimators are compared to the benchmark frequency domain preamble-based SNR estimator referred to as the Milan-FD SNR estimator when used in a non-adaptive 2×2 STBC-assisted MIMO-OFDM system. The performance of the CAZAC-TD and CAZAC-FD SNR estimators is further investigated in the non-adaptive 4×4 STBC-assisted MIMO-OFDM system, which shows improved bit error rate (BER) and normalized mean square error (NMSE) performance. It is evident that the non-adaptive 2×2 and 4×4 STBC-assisted MIMO-OFDM systems that invoke the CAZAC-TD SNR estimator exhibit superior performance and approach closer to the normalized Cramer–Rao bound (NCRB). Subsequently, the CAZAC-TD SNR estimator is invoked in an adaptive modulation scheme for a 2×2 STBC-assisted MIMO-OFDM system employing M-PSK, denoted as the AM-CAZAC-TD-MIMO system. The AM-CAZAC-TD-MIMO system outperformed the non-adaptive STBC-assisted MIMO-OFDM system using 8-PSK by about 2 dB at BER = 104. Moreover, the AM-CAZAC-TD-MIMO system demonstrated an SNR gain of about 4 dB when compared with an adaptive single-input single-output (SISO)-OFDM system with M-PSK. Therefore, it was shown that the spatial diversity of the MIMO-OFDM system is key for the AM-CAZAC-TD-MIMO system’s improved performance. Full article
Show Figures

Figure 1

25 pages, 15082 KiB  
Article
A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Electronics 2025, 14(3), 411; https://doi.org/10.3390/electronics14030411 - 21 Jan 2025
Cited by 2 | Viewed by 1493
Abstract
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, [...] Read more.
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, and data throughput (up to 20 Gbps) is considered one of the most essential factors for wireless networks. To meet these objectives, a sub-6 5G wideband multiple-input multiple-output (MIMO) array microstrip antenna for 5G Worldwide Interoperability for Microwave Access (WiMAX) applications on hotspot devices has been proposed in this research. The 1 × 4 MIMO array radiating element antenna with a partial ground proposed in this research complies with the 5G application standard set out by the Federal Communications Commission. The planned antenna configuration consists of a hollow, regular circular stub patch antenna shaped like a crescent with a rectangular defect at the top of the patch. The suggested structure is mounted on an FR-4 substrate with a thickness “h” of 1.6, a permittivity “εr” of 4.4, and a tangential loss of 0.02. The proposed antenna achieves a high radiation gain and offers a frequency spectrum bandwidth of 3.01 GHz to 6.5 GHz, covering two 5G resonant frequencies “fr” of 3.5 and 5.8 GHz as the mid-band, which yields a gain of 7.66 dBi and 7.84 dBi, respectively. MIMO antenna parameters are examined and introduced to assess the system’s performance. Beneficial results are obtained, with the channel capacity loss (CCL) tending to 0.2 bit/s/Hz throughout the operating frequency band, the envelope correlation coefficient (ECC) yielding 0.02, a mean effective gain (MEG) of less than −6 dB over the operating frequency band, and a total active reflection coefficient (TARC) of less than −10 dB; the radiation efficiency is equal to 71.5%, maintaining impedance matching as well as good mutual coupling among the adjacent parameters. The suggested antenna has been implemented and experimentally tested using the 5G system Open Air Interface (OAI) platform, which operates at sub-6 GHz, yielding −67 dBm for the received signal strength indicator (RSSI), and superior frequency stability, precision, and reproducibility for the signal-to-interference-plus-noise ratio (SINR) and a high level of positivity in the power headroom report (PHR) 5G system performance report, confirming its operational effectiveness in 5G WiMAX (Worldwide Interoperability for Microwave Access) application. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

23 pages, 6035 KiB  
Article
A Study of Downlink Power-Domain Non-Orthogonal Multiple Access Performance in Tactile Internet Employing Sensors and Actuators
by Vaibhav Fanibhare, Nurul I. Sarkar and Adnan Al-Anbuky
Sensors 2024, 24(22), 7220; https://doi.org/10.3390/s24227220 - 12 Nov 2024
Viewed by 1304
Abstract
The Tactile Internet (TI) characterises the transformative paradigm that aims to support real-time control and haptic communication between humans and machines, heavily relying on a dense network of sensors and actuators. Non-Orthogonal Multiple Access (NOMA) is a promising enabler of TI that enhances [...] Read more.
The Tactile Internet (TI) characterises the transformative paradigm that aims to support real-time control and haptic communication between humans and machines, heavily relying on a dense network of sensors and actuators. Non-Orthogonal Multiple Access (NOMA) is a promising enabler of TI that enhances interactions between sensors and actuators, which are collectively considered as users, and thus supports multiple users simultaneously in sharing the same Resource Block (RB), consequently offering remarkable improvements in spectral efficiency and latency. This article proposes a novel downlink power domain Single-Input Single-Output (SISO) NOMA communication scenario for TI by considering multiple users and a base station. The Signal-to-Interference Noise Ratio (SINR), sum rate and fair Power Allocation (PA) coefficients are mathematically derived in the SISO-NOMA system model. The simulations are performed with two-user and three-user scenarios to evaluate the system performance in terms of Bit Error Rate (BER), sum rate and latency between SISO-NOMA and traditional Orthogonal Multiple Access (OMA) schemes. Moreover, outage probability is analysed with varying fixed Power Allocation (PA) coefficients in the SISO-NOMA scheme. In addition, we present the outage probability, sum rate and latency analyses for fixed and derived fair PA coefficients, thus promoting dynamic PA and user fairness by efficiently utilising the available spectrum. Finally, the performance of 4 × 4 Multiple-Input Multiple-Output (MIMO) NOMA incorporating zero forcing-based beamforming and a round-robin scheduling process is compared and analysed with SISO-NOMA in terms of achievable sum rate and latency. Full article
(This article belongs to the Special Issue Wireless Sensor Network and IoT Technologies for Smart Cities)
Show Figures

Figure 1

21 pages, 13387 KiB  
Article
Eight Element Wideband Antenna with Improved Isolation for 5G Mid Band Applications
by Deepthi Mariam John, Shweta Vincent, Sameena Pathan, Alexandros-Apostolos A. Boulogeorgos, Jaume Anguera, Tanweer Ali and Rajiv Mohan David
Technologies 2024, 12(10), 200; https://doi.org/10.3390/technologies12100200 - 17 Oct 2024
Viewed by 2346
Abstract
Modern wireless communication systems have undergone a radical change with the introduction of multiple-input multiple-output (MIMO) antennas, which provide increased channel capacity, fast data rates, and secure connections. To achieve real-time requirements, such antenna technology needs to have good gains, wider bandwidths, satisfactory [...] Read more.
Modern wireless communication systems have undergone a radical change with the introduction of multiple-input multiple-output (MIMO) antennas, which provide increased channel capacity, fast data rates, and secure connections. To achieve real-time requirements, such antenna technology needs to have good gains, wider bandwidths, satisfactory radiation characteristics, and high isolation. This article presents an eight-element CPW-fed antenna for the 5G mid-band. The proposed antenna consists of eight symmetrical, modified circular monopole antennas with a connected CPW-fed ground plane that offers 24 dB isolation over the operating range. The antenna is further investigated in terms of the scattering parameters, and radiation characteristics under both the x and y-axis bending scenarios. The antenna holds a volume of 83 × 129 × 0.1 mm3 and covers a measured impedance bandwidth of 4.5–5.5 GHz (20%) with an average gain of 4 dBi throughout the operating band. MIMO diversity performance of the antenna is performed, and the antenna exhibits good performance suitable for MIMO applications. Furthermore, the channel capacity (CC) is estimated, and the antenna gives a value of 41.8–42.6 bps/Hz within the operating bandwidth, which is very close to an ideal 8 × 8 MIMO system. The antenna shows an excellent match between the simulated and measured findings. Full article
(This article belongs to the Special Issue Perpetual Sensor Nodes for Sustainable Wireless Network Applications)
Show Figures

Figure 1

23 pages, 9727 KiB  
Article
DGD-CNet: Denoising Gated Recurrent Unit with a Dropout-Based CSI Network for IRS-Aided Massive MIMO Systems
by Amina Abdelmaksoud, Bassant Abdelhamid, Hesham Elbadawy, Hadia El Hennawy and Sherif Eldyasti
Sensors 2024, 24(18), 5977; https://doi.org/10.3390/s24185977 - 14 Sep 2024
Cited by 2 | Viewed by 1479
Abstract
For the deployment of Sixth Generation (6G) networks, integrating Massive Multiple-Input Multiple-Output (Massive MIMO) systems with Intelligent Reflecting Surfaces (IRS) is highly recommended due to its significant benefits in reducing communication losses for Non-Line-of-Sight (NLoS) conditions. However, the use of passive IRS presents [...] Read more.
For the deployment of Sixth Generation (6G) networks, integrating Massive Multiple-Input Multiple-Output (Massive MIMO) systems with Intelligent Reflecting Surfaces (IRS) is highly recommended due to its significant benefits in reducing communication losses for Non-Line-of-Sight (NLoS) conditions. However, the use of passive IRS presents challenges in channel estimation, mainly due to the significant feedback overhead required in Frequency Division Duplex (FDD)-based Massive MIMO systems. To address these challenges, this paper introduces a novel Denoising Gated Recurrent Unit with a Dropout-based Channel state information Network (DGD-CNet). The proposed DGD-CNet model is specifically designed for FDD-based IRS-aided Massive MIMO systems, aiming to reduce the feedback overhead while improving the channel estimation accuracy. By leveraging the Dropout (DO) technique with the Gated Recurrent Unit (GRU), the DGD-CNet model enhances the channel estimation accuracy and effectively captures both spatial structures and time correlation in time-varying channels. The results show that the proposed DGD-CNet model outperformed existing models in the literature, achieving at least a 26% improvement in Normalized Mean Square Error (NMSE), a 2% increase in correlation coefficient, and a 4% in system accuracy under Low-Compression Ratio (Low-CR) in indoor situations. Additionally, the proposed model demonstrates effectiveness across different CRs and in outdoor scenarios. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

39 pages, 20241 KiB  
Article
Simulation and Design of Three 5G Antennas
by Keyu Li, Dongsheng Wu, Dapeng Chu and Lanlan Ping
Appl. Sci. 2024, 14(17), 8032; https://doi.org/10.3390/app14178032 - 8 Sep 2024
Cited by 2 | Viewed by 2629
Abstract
In the context of 5G networks, this paper investigates microstrip array antennas and mobile terminal MIMO array antennas. It introduces two innovative designs and, based on these, develops and fabricates a mobile terminal antenna. The first of these designs, a 4 × 4 [...] Read more.
In the context of 5G networks, this paper investigates microstrip array antennas and mobile terminal MIMO array antennas. It introduces two innovative designs and, based on these, develops and fabricates a mobile terminal antenna. The first of these designs, a 4 × 4 microstrip array antenna operating in the LTE band 42 (3.4–3.6 GHz), is researched and fabricated and an innovative approach, combining embedded and coaxial feeding methods, is proposed and employed. Measurement results indicate a bandwidth of 373 MHz (3.321–3.694 GHz), achieving a relative bandwidth of 10.7%. The antenna exhibits a high gain of 12.7 dBi, with an undistorted radiation pattern, demonstrating excellent directional characteristics. The second of these designs, a “loop-slot” MIMO antenna designed for 5G mobile devices with metal frames, is investigated. By opening slots in the metal frame and integrating them into the antenna’s feeding structure, the decoupling principle is analyzed from the perspective of characteristic mode theory. This design shares resonant modes between the loop and slot antennas, allowing for the overlapping placement of the two antenna units. Experimental results confirm an isolation level exceeding 21 dB, with significantly reduced dimensions. Finally, an eight-unit MIMO antenna is designed and fabricated for 5G mobile devices with metal frames. Continuous optimization of the “loop-slot” module layout and unit spacing leads to a compact and miniaturized antenna structure. Measurement results show an isolation level exceeding 17 dB, radiation efficiency ranging from 65.8% to 73.7%, and an envelope correlation coefficient (ECC) below 0.03. Finally, an analysis of specific absorption rate (SAR) demonstrates excellent MIMO performance in terms of human body radiation exposure. Full article
Show Figures

Figure 1

25 pages, 1173 KiB  
Article
Parallel Implementation of K-Best Quadrature Amplitude Modulation Detection for Massive Multiple Input Multiple Output Systems
by Bhargav Gokalgandhi, Jonathan Ling, Zoran Latinović, Dragan Samardzija and Ivan Seskar
Electronics 2024, 13(14), 2775; https://doi.org/10.3390/electronics13142775 - 15 Jul 2024
Viewed by 1151
Abstract
Massive MIMO (Multiple Input Multiple Output) systems impose significant processing burdens along with strict latency requirements. The combination of large-scale antenna arrays and wide bandwidth requirements for next-generation wireless systems creates an exponential increase in frontend to backend data. Balancing the processing latency [...] Read more.
Massive MIMO (Multiple Input Multiple Output) systems impose significant processing burdens along with strict latency requirements. The combination of large-scale antenna arrays and wide bandwidth requirements for next-generation wireless systems creates an exponential increase in frontend to backend data. Balancing the processing latency and reliability is critical for baseband processing tasks such as QAM detection. While linear detection algorithms have low computational complexity, their use in Massive MIMO scenario has heavy degradation in error performance. Nonlinear detection methods such as Maximum Likelihood and Sphere Decoding have good error performance, but they suffer from high, variable, and uncontrollable computational complexity. For such cases, the K-best QAM detection algorithm can provide required control over the system performance while maintaining near-ML error performance. In this paper, hard-output, as well as soft-output K-best QAM detection, is implemented in a CPU by utilizing the multiple cores combined with vector processing. Similarly, hard-output detection in a GPU is implemented by leveraging the SIMD (Single Instruction, Multiple Data) architecture and Warp-based execution model. The processing time per bit and the energy consumption per bit are compared for CPU and GPU implementations for QAM constellation density and MIMO array size. The GPU implementation shows up to 5× processing latency per bit improvement and up to 120× energy consumption per bit improvement over the CPU implementation for typical QAM constellations such as 4, 16, and 64 QAM. GPU implementation also shows up to 125× improvement over CPU implementation in energy consumption per bit for larger MIMO configurations such as 24 × 24 and 32 × 32. Finally, the soft-output detector is combined with a LDPC (Low-Density Parity Check) decoder to obtain the FER (Frame Error Rate) performance for CPU implementation. The FER is then combined with frame processing latency to form a Goodput metric to demonstrate the latency and reliability tradeoff. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 16746 KiB  
Article
Quad-Band 1 × 4 Linear MIMO Antenna for Millimeter-Wave, Wearable and Biomedical Telemetry Applications
by Rakesh N. Tiwari, K. Geetha Malya, Girigari Nandini, P. Baby Nikhitha, Deepti Sharma, Prabhakar Singh and Pradeep Kumar
Sensors 2024, 24(14), 4427; https://doi.org/10.3390/s24144427 - 9 Jul 2024
Cited by 4 | Viewed by 2412
Abstract
In this paper, we present the design of a millimeter-wave 1 × 4 linear MIMO array antenna that operates across multiple resonance frequency bands: 26.28–27.36 GHz, 27.94–28.62 GHz, 32.33–33.08 GHz, and 37.59–39.47 GHz, for mm-wave wearable biomedical telemetry application. The antenna is printed [...] Read more.
In this paper, we present the design of a millimeter-wave 1 × 4 linear MIMO array antenna that operates across multiple resonance frequency bands: 26.28–27.36 GHz, 27.94–28.62 GHz, 32.33–33.08 GHz, and 37.59–39.47 GHz, for mm-wave wearable biomedical telemetry application. The antenna is printed on a flexible substrate with dimensions of 11.0 × 44.0 mm2. Each MIMO antenna element features a modified slot-loaded triangular patch, incorporating ‘cross’-shaped slots in the ground plane to improve impedance matching. The MIMO antenna demonstrates peak gains of 6.12, 8.06, 5.58, and 8.58 dBi at the four resonance frequencies, along with a total radiation efficiency exceeding 75%. The proposed antenna demonstrates excellent diversity metrics, with an ECC < 0.02, DG > 9.97 dB, and CCL below 0.31 bits/sec/Hz, indicating high performance for mm-wave applications. To verify its properties under flexible conditions, a bending analysis was conducted, showing stable S-parameter results with deformation radii of 40 mm (Rx) and 25 mm (Ry). SAR values for the MIMO antenna are calculated at 28.0/38.0 GHz. The average SAR values for 1 gm/10 gm of tissues at 28.0 GHz are found to be 0.0125/0.0079 W/Kg, whereas, at 38.0 GHz, average SAR values are 0.0189/0.0094 W/Kg, respectively. Additionally, to demonstrate the telemetry range of biomedical applications, a link budget analysis at both 28.0 GHz and 38.0 GHz frequencies indicated strong signal strength of 33.69 dB up to 70 m. The fabricated linear MIMO antenna effectively covers the mm-wave 5G spectrum and is suitable for wearable and biomedical applications due to its flexible characteristics. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop