Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = 4,4′-azopyridine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3003 KiB  
Article
Nematic Phases in Photo-Responsive Hydrogen-Bonded Liquid Crystalline Dimers
by Christian Anders, Muhammad Abu Bakar, Tejal Nirgude and Mohamed Alaasar
Crystals 2025, 15(6), 576; https://doi.org/10.3390/cryst15060576 - 18 Jun 2025
Viewed by 350
Abstract
We report on the preparation and characterization of a new family of hydrogen-bonded nematogenic liquid crystalline dimers. The dimers are supramolecular complexes that consist of a benzoic acid derivative, acting as the proton donor, featuring a spacer with seven methylene groups and a [...] Read more.
We report on the preparation and characterization of a new family of hydrogen-bonded nematogenic liquid crystalline dimers. The dimers are supramolecular complexes that consist of a benzoic acid derivative, acting as the proton donor, featuring a spacer with seven methylene groups and a terminal decyloxy chain, paired with an azopyridine derivative as the proton acceptor. The latter was either fluorinated or nonfluorinated with variable alkoxy chain length. The formation of a hydrogen bond between the individual components was confirmed using FTIR and 1H NMR spectroscopy. All supramolecules were investigated for their liquid crystalline behaviour via a polarized optical microscope (POM) and differential scanning calorimetry (DSC). All materials exhibit enantiotropic nematic phases as confirmed by X-ray diffraction (XRD) and POM investigations. The nematic phase range depends strongly on the degree and position of fluorine atoms. Additionally, the supramolecules demonstrated a rapid and reversible transition between the liquid crystal phase and the isotropic liquid state because of trans-cis photoisomerization upon light irradiation. Therefore, this study presents a straightforward approach to design photo-responsive nematic materials, which could be of interest for nonlinear optics applications. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

12 pages, 3700 KiB  
Article
Improvement of Dye-Sensitized Solar Cell Performance via Addition of Azopyridine Derivative in Polymer Gel Electrolytes
by Muhammad Faisal Amin, Paweł Gnida, Jolanta Konieczkowska, Magdalena Szubka and Ewa Schab-Balcerzak
Materials 2024, 17(24), 6107; https://doi.org/10.3390/ma17246107 - 13 Dec 2024
Viewed by 774
Abstract
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied. When [...] Read more.
In this study, a polymer gel electrolyte based on polyacrylonitrile was synthesized with varying polymer-to-liquid-electrolyte ratios. DSSCs incorporating a 1:3 ratio showed optimum PV parameters. Choosing this proportion, the effect of incorporating the photoresponsive AZO dye into this polymer electrolyte was studied. When irradiated with a UV light of 365 nm, the AZO dye underwent photoisomerization, which allowed the gel electrolyte to absorb heat from the UV irradiation and increase its ionic conductivity. It was found that by the addition of azopyridine into the polymer electrolyte, there was an improvement in the photovoltaic parameters of cells. By increasing the dye content from 1% to 10% by weight in the electrolyte, an 11% growth in short current density was observed, resulting in about a 10% rise in cell efficiency. Full article
Show Figures

Figure 1

10 pages, 3247 KiB  
Article
Luminous Self-Assembled Fibers of Azopyridines and Quantum Dots Enabled by Synergy of Halogen Bond and Alkyl Chain Interactions
by Ying Pan, Lulu Xue, Yinjie Chen, Yingjie Hu, Zhicheng Sun, Lixin Mo, Luhai Li and Haifeng Yu
Molecules 2022, 27(23), 8165; https://doi.org/10.3390/molecules27238165 - 23 Nov 2022
Viewed by 1921
Abstract
Herein, a simple approach for the fabrication of luminous self-assembled fibers based on halogen-bonded azopyridine complexes and oleic acid-modified quantum dots (QDs) is reported. The QDs uniformly align on the edge of the self-assembled fibers through the formation of van der Waals force [...] Read more.
Herein, a simple approach for the fabrication of luminous self-assembled fibers based on halogen-bonded azopyridine complexes and oleic acid-modified quantum dots (QDs) is reported. The QDs uniformly align on the edge of the self-assembled fibers through the formation of van der Waals force between the alkyl chain of oleic acid on the QD surface and the alkyl chain of the halogen-bonded complexes, 15Br or 15I. Furthermore, the intermolecular interaction mechanism was elucidated by using Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and density functional theory (DFT) calculations. This approach results in retention of the fluorescence properties of the QDs in the fibers. In addition, the bromine-bonded fibers can be assembled into tailored directional fibers upon evaporation of the solvent (tetrahydrofuran) when using capillaries via the capillary force. Interestingly, the mesogenic properties of the halogen-bonded complexes are preserved in the easily prepared halogen-bonded fluorescent fibers; this provides new insight into the design of functional self-assembly materials. Full article
Show Figures

Figure 1

12 pages, 3313 KiB  
Article
The Selective CO2 Adsorption and Photothermal Conversion Study of an Azo-Based Cobalt-MOF Material
by Li-Long Dang, De-Xi Zong, Xiao-Yan Lu, Ting-Ting Zhang, Tian Chen, Jiu-Long Sun, Jiu-Zhou Zhao, Meng-Yang Liu and Shui-Ren Liu
Molecules 2022, 27(20), 6873; https://doi.org/10.3390/molecules27206873 - 13 Oct 2022
Cited by 5 | Viewed by 2615
Abstract
A new metal–organic framework (MOF), [Co2(L)2(azpy)]n (compound 1, H2L = 5-(pyridin-4-ylmethoxy)-isophthalic acid, azpy = 4,4′-azopyridine), was synthesized by a solvothermal method and further characterized by elemental analysis, IR spectra, thermogravimetric analysis, single-crystal and powder X-ray [...] Read more.
A new metal–organic framework (MOF), [Co2(L)2(azpy)]n (compound 1, H2L = 5-(pyridin-4-ylmethoxy)-isophthalic acid, azpy = 4,4′-azopyridine), was synthesized by a solvothermal method and further characterized by elemental analysis, IR spectra, thermogravimetric analysis, single-crystal and powder X-ray diffraction. The X-ray single-crystal diffraction analysis for compound 1 indicated that two cis L22− ligands connected to two cobalt atoms resulted in a macrocycle structure. Through a series of adsorption tests, we found that compound 1 exhibited a high capacity of CO2, and the adsorption capacity could reach 30.04 cm3/g. More interestingly, under 273 K conditions, the adsorption of CO2 was 41.33 cm3/g. In addition, when the Co-MOF was irradiated by a 730 nm laser, rapid temperature increases for compound 1 were observed (temperature variation in 169 s: 26.6 °C), showing an obvious photothermal conversion performance. The photothermal conversion efficiency reached 20.3%, which might be due to the fact that the parallel arrangement of azo units inhibited non-radiative transition and promoted photothermal conversion. The study provides an efficient strategy for designing MOFs for the adsorption of CO2 and with good photothermal conversion performance. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

12 pages, 2371 KiB  
Article
Annellated 1,3,4,2-Triazaphospholenes-Simple Modular Synthesis and a First Exploration of Ligand Properties
by Ferdinand Richter, Nicholas Birchall, Christoph M. Feil, Martin Nieger and Dietrich Gudat
Molecules 2022, 27(15), 4747; https://doi.org/10.3390/molecules27154747 - 25 Jul 2022
Viewed by 1702
Abstract
The successful use of 1,3,4,2-triazaphospholenes (TAPs) as organo-catalysts stresses the need for efficient synthetic routes to these molecules. In this study, we establish the [1 + 4]-cycloaddition of PBr3 to azo-pyridines as a new approach to preparing pyrido-annellated TAPs in a single [...] Read more.
The successful use of 1,3,4,2-triazaphospholenes (TAPs) as organo-catalysts stresses the need for efficient synthetic routes to these molecules. In this study, we establish the [1 + 4]-cycloaddition of PBr3 to azo-pyridines as a new approach to preparing pyrido-annellated TAPs in a single step from easily available precursors. The modular assembly of the azo-component via condensation of primary amines and nitroso compounds along with the feasibility of post-functionalization at the P–Br bond under conservation of the heterocyclic structure allows, in principle, to address a wide range of target molecules, which is illustrated by prototypical examples. The successful synthesis of a transition metal complex confirms for the first time the ability of a TAP to act as a P-donor ligand. Crystallographic studies suggest that hyperconjugation effects and intermolecular interactions induce a qualitatively similar ionic polarization of the P–Br bonds in TAPs as in better known isoelectronic diazaphospholenes. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

28 pages, 10294 KiB  
Review
Recent Progress in Azopyridine-Containing Supramolecular Assembly: From Photoresponsive Liquid Crystals to Light-Driven Devices
by Hao Ren, Peng Yang and Haifeng Yu
Molecules 2022, 27(13), 3977; https://doi.org/10.3390/molecules27133977 - 21 Jun 2022
Cited by 17 | Viewed by 4585
Abstract
Azobenzene derivatives have become one of the most famous photoresponsive chromophores in the past few decades for their reversible molecular switches upon the irradiation of actinic light. To meet the ever-increasing requirements for applications in materials science, biomedicine, and light-driven devices, it is [...] Read more.
Azobenzene derivatives have become one of the most famous photoresponsive chromophores in the past few decades for their reversible molecular switches upon the irradiation of actinic light. To meet the ever-increasing requirements for applications in materials science, biomedicine, and light-driven devices, it is usually necessary to adjust their photochemical property from the molecular level by changing the substituents on the benzene rings of azobenzene groups. Among the diverse azobenzene derivatives, azopyridine combines the photoresponsive feature of azobenzene groups and the supramolecular function of pyridyl moieties in one molecule. This unique feature provides pH-responsiveness and hydrogen/halogen/coordination binding sites in the same chromophore, paving a new way to prepare multi-functional responsive materials through non-covalent interactions and reversible chemical reactions. This review summarizes the photochemical and photophysical properties of azopyridine derivatives in supramolecular states (e.g., hydrogen/halogen bonding, coordination interactions, and quaternization reactions) and illustrates their applications from photoresponsive liquid crystals to light-driven devices. We hope this review can highlight azopyridine as one more versatile candidate molecule for designing novel photoresponsive materials towards light-driven applications. Full article
Show Figures

Figure 1

12 pages, 4672 KiB  
Article
Copper(II)-MOF Containing Glutarate and 4,4′-Azopyridine and Its Antifungal Activity
by Sohyeon Yang, Mayura Veerana, Nannan Yu, Wirinthip Ketya, Gyungsoon Park, Sungjin Kim and Youngmee Kim
Appl. Sci. 2022, 12(1), 260; https://doi.org/10.3390/app12010260 - 28 Dec 2021
Cited by 18 | Viewed by 3200
Abstract
Antifungal activities of MOFs (metal organic frameworks) have been demonstrated in studies, and improvement in efficiency of fungal inactivation is a critical issue in the application of MOFs. In this study, we employed 4,4′-azopyridine (AZPY) in the construction of MOF to improve its [...] Read more.
Antifungal activities of MOFs (metal organic frameworks) have been demonstrated in studies, and improvement in efficiency of fungal inactivation is a critical issue in the application of MOFs. In this study, we employed 4,4′-azopyridine (AZPY) in the construction of MOF to improve its antifungal activity. Three-dimensional (3D) copper metal organic framework containing glutarate (Glu) and AZPY (Cu(AZPY)-MOF) was synthesized by a solvothermal reaction. Glutarates bridge Cu2 dinuclear units to form two-dimensional (2D) layers, and these layers are connected by AZPY to form a 3D framework. When spores of two fungi, Candida albicans and Aspergillus niger, were treated with Cu(AZPY)-MOF for one day, number of CFU (colony forming unit) was continuously reduced over treated MOF concentrations, and maximum 2.3 and 2.5 log10CFU reductions (approximately 99% reduction) were observed in C. albicans and A. niger, respectively. Small amounts of CuII ions and AZPY released from Cu(AZPY)-MOF were not critical for fungal inactivation. Our results indicate that the level of antifungal activity of Cu(AZPY)-MOF is greater than that of Cu-MOF without AZPY constructed in our previous study, and intercalation of AZPY is able to improve the antifungal activity of Cu(AZPY)-MOF. Full article
Show Figures

Figure 1

26 pages, 2765 KiB  
Article
Slow Magnetic Relaxation in {[CoCxAPy)] 2.15 H2O}n MOF Built from Ladder-Structured 2D Layers with Dimeric SMM Rungs
by Ana Arauzo, Elena Bartolomé, Javier Luzón, Pablo J. Alonso, Angelica Vlad, Maria Cazacu, Mirela F. Zaltariov, Sergiu Shova, Juan Bartolomé and Constantin Turta
Molecules 2021, 26(18), 5626; https://doi.org/10.3390/molecules26185626 - 16 Sep 2021
Cited by 5 | Viewed by 2791
Abstract
We present the magnetic properties of the metal-organic framework {[CoCxAPy]·2.15 H2O}n (Cx = bis(carboxypropyl)tetramethyldisiloxane; APy = 4,4`-azopyridine) (1) that builds up from the stacking of 2D coordination polymers. The 2D-coordination polymer in the bc plane is formed by [...] Read more.
We present the magnetic properties of the metal-organic framework {[CoCxAPy]·2.15 H2O}n (Cx = bis(carboxypropyl)tetramethyldisiloxane; APy = 4,4`-azopyridine) (1) that builds up from the stacking of 2D coordination polymers. The 2D-coordination polymer in the bc plane is formed by the adjacent bonding of [CoCxAPy] 1D two-leg ladders with Co dimer rungs, running parallel to the c-axis. The crystal packing of 2D layers shows the presence of infinite channels running along the c crystallographic axis, which accommodate the disordered solvate molecules. The Co(II) is six-coordinated in a distorted octahedral geometry, where the equatorial plane is occupied by four carboxylate oxygen atoms. Two nitrogen atoms from APy ligands are coordinated in apical positions. The single-ion magnetic anisotropy has been determined by low temperature EPR and magnetization measurements on an isostructural compound {[Zn0.8Co0.2CxAPy]·1.5 CH3OH}n (2). The results show that the Co(II) ion has orthorhombic anisotropy with the hard-axis direction in the C2V main axis, lying the easy axis in the distorted octahedron equatorial plane, as predicted by the ab initio calculations of the g-tensor. Magnetic and heat capacity properties at very low temperatures are rationalized within a S* = 1/2 magnetic dimer model with anisotropic antiferromagnetic interaction. The magnetic dimer exhibits slow relaxation of the magnetization (SMM) below 6 K in applied field, with a tlf ≈ 2 s direct process at low frequencies, and an Orbach process at higher frequencies with U/kB = 6.7 ± 0.5 K. This compound represents a singular SMM MOF built-up of Co-dimers with an anisotropic exchange interaction. Full article
(This article belongs to the Special Issue 2D Magnetic Molecular Materials)
Show Figures

Figure 1

5 pages, 2187 KiB  
Short Note
Cis-Bis(2,2′-Azopyridinido)dicarbonylruthenium(II)
by Tsugiko Takase, Shuya Kainuma, Takatoshi Kanno and Dai Oyama
Molbank 2021, 2021(1), M1182; https://doi.org/10.3390/M1182 - 18 Jan 2021
Cited by 1 | Viewed by 2436
Abstract
An [Ru(apy)2Cl2] precursor (apy = 2,2′-azopyridine) in 2-methoxyethanol was heated under a pressurized CO atmosphere to afford a diradical complex, [Ru(apy·)2(CO)2], containing one-electron-reduced azo anion radical ligands. The electronic states of the complex [...] Read more.
An [Ru(apy)2Cl2] precursor (apy = 2,2′-azopyridine) in 2-methoxyethanol was heated under a pressurized CO atmosphere to afford a diradical complex, [Ru(apy·)2(CO)2], containing one-electron-reduced azo anion radical ligands. The electronic states of the complex were characterized by spectroscopic techniques and computational studies. Magnetic measurements revealed the existence of antiferromagnetic interactions in the diradical complex. Full article
Show Figures

Figure 1

21 pages, 4608 KiB  
Article
Optical and Geometrical Characterizations of Non-Linear Supramolecular Liquid Crystal Complexes
by Hoda A. Ahmed, Mohamed Hagar, Omaima A. Alhaddad and Ayman A. Zaki
Crystals 2020, 10(8), 701; https://doi.org/10.3390/cryst10080701 - 14 Aug 2020
Cited by 13 | Viewed by 3177
Abstract
Nonlinear architecture liquid crystalline materials of supramolecular 1:1 H-bonded complexes (I/II and I/III) were prepared through a self-assembly intermolecular interaction between azopyridine (I) and 4-n-alkoxybenzoic acid (II) as well as 4-n-alkoxyphenylazo benzoic acid [...] Read more.
Nonlinear architecture liquid crystalline materials of supramolecular 1:1 H-bonded complexes (I/II and I/III) were prepared through a self-assembly intermolecular interaction between azopyridine (I) and 4-n-alkoxybenzoic acid (II) as well as 4-n-alkoxyphenylazo benzoic acid (III). The H-bond formation of the prepared supramolecular hydrogen bonded (SMHB) complexes was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Optical and mesomorphic behaviors of the prepared complexes were studied by polarized optical microscopy (POM) as well as DSC. Theoretical calculations were performed by the density functional theory (DFT) and used to predict the molecular geometries of the synthesized complexes, and the results were used to explain the experimental mesomorphic and optical properties in terms of their estimated thermal parameters. Ordinary and extraordinary refractive indices as well as birefringence at different temperatures were investigated for each sample using an Abbe refractometer and modified spectrophotometer techniques. Microscopic and macroscopic order parameters were calculated for individual compounds and their supramolecular complexes. Full article
(This article belongs to the Special Issue Optical and Molecular Aspects of Liquid Crystals)
Show Figures

Graphical abstract

14 pages, 6696 KiB  
Article
Photomechanical Molecular Crystals of an Azopyridine Derivative and Its Zinc(II) Complex: Synthesis, Crystallization and Photoinduced Motion
by Yanmei Guo, Yunhui Hao, Lei Gao and Hongxun Hao
Crystals 2020, 10(2), 92; https://doi.org/10.3390/cryst10020092 - 6 Feb 2020
Cited by 8 | Viewed by 3651
Abstract
In this work, photomechanical molecular crystals of 4-(4-(6-Hydroxyhexyloxy) phenylazo) pyridine (6cazpy) and its zinc(II) organic complex (complex-I) were synthesized and crystallized. DSC and TGA were used to characterize and compare properties of 6cazpy and its complex-I crystals. Photoinduced motions of 6cazpy crystals and [...] Read more.
In this work, photomechanical molecular crystals of 4-(4-(6-Hydroxyhexyloxy) phenylazo) pyridine (6cazpy) and its zinc(II) organic complex (complex-I) were synthesized and crystallized. DSC and TGA were used to characterize and compare properties of 6cazpy and its complex-I crystals. Photoinduced motions of 6cazpy crystals and its complex-I crystals were investigated and compared by UV/Vis irradiation. Bending away motions from the light source were observed from both 6cazpy crystals and its complex-I crystals. The bending away motion was attributed to the trans-to-cis photoisomerization of azopyridine derivatives in the crystalline phase. It is worth noting that the photomechanical properties of complex-I were enhanced by the formation of the ligand, which might be caused by the looser packing of molecules inside complex-I crystal. In addition, because of the existence of ligand, which combined two photoactive groups in each complex-I molecule, the isomerization reactions of these two photoactive groups in the molecules can increase the photomechanical movement ability of the crystal. It was also found that the crystal size and shape will affect the photoinduced movement of the crystals. PXRD and AFM were used to investigate the molecular mechanism and the surface topological change upon photoisomerization. The corresponding mechanism was proposed. Full article
Show Figures

Figure 1

18 pages, 3719 KiB  
Article
Experimental and Theoretical Approaches of New Nematogenic Chair Architectures of Supramolecular H-Bonded Liquid Crystals
by O. A. Alhaddad, H. A. Ahmed and M. Hagar
Molecules 2020, 25(2), 365; https://doi.org/10.3390/molecules25020365 - 16 Jan 2020
Cited by 39 | Viewed by 3143
Abstract
New four isomeric chair architectures of 1:1 H-bonded supramolecular complexes were prepared through intermolecular interactions between 4-(2-(pyridin-4-yl)diazenyl-(2-(or 3-)chlorophenyl) 4-alkoxybenzoates and 4-n-alkoxybenzoic acids. The H-bond formation of all complexes was confirmed by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Mesomorphic characterization was [...] Read more.
New four isomeric chair architectures of 1:1 H-bonded supramolecular complexes were prepared through intermolecular interactions between 4-(2-(pyridin-4-yl)diazenyl-(2-(or 3-)chlorophenyl) 4-alkoxybenzoates and 4-n-alkoxybenzoic acids. The H-bond formation of all complexes was confirmed by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Mesomorphic characterization was carried by DSC and polarized optical microscopy (POM). It was found that all prepared laterally chloro-substituted supramolecular complexes were nematogenic, and exhibited nematic phase and low melting temperature. The thermal stability of the nematic mesophase observed depends upon the location and spatial orientation of the lateral Cl atom in as well as the length of terminal chains. Theoretical calculations were carried out within the paradigm of the density functional theory (DFT) in order to establish the molecular conformation for the formed complexes and estimate their thermal parameters. The results of the computational calculations revealed that the H-bonded complexes were in a chair form molecular geometry. Additionally, out of the acquired data, it was possible to designate the influence of the position and orientation of the lateral group as well as the alkoxy chain length on the stability of the nematic phase. Full article
(This article belongs to the Special Issue Current Advances in Liquid Crystals)
Show Figures

Graphical abstract

28 pages, 12582 KiB  
Article
Using Supercritical CO2 in the Preparation of Metal-Organic Frameworks: Investigating Effects on Crystallisation
by Huan V. Doan, Fei Cheng, Thandeka Dyirakumunda, Mark R. J. Elsegood, Jiamin Chin, Oliver Rowe, Carl Redshaw and Valeska P. Ting
Crystals 2020, 10(1), 17; https://doi.org/10.3390/cryst10010017 - 31 Dec 2019
Cited by 9 | Viewed by 6793
Abstract
In this report, we explore the use of supercritical CO2 (scCO2) in the synthesis of well-known metal-organic frameworks (MOFs) including Zn-MOF-74 and UiO-66, as well as on the preparation of [Cu24(OH-mBDC)24]n metal-organic polyhedra [...] Read more.
In this report, we explore the use of supercritical CO2 (scCO2) in the synthesis of well-known metal-organic frameworks (MOFs) including Zn-MOF-74 and UiO-66, as well as on the preparation of [Cu24(OH-mBDC)24]n metal-organic polyhedra (MOPs) and two new MOF structures {[Zn2(L1)(DPE)]∙4H2O}n and {[Zn3(L1)3(4,4′-azopy)]∙7.5H2O}n, where BTC = benzene-1,3,5-tricarboxylate, BDC = benzene-1,4-dicarboxylate, L1 = 4-carboxy-phenylene-methyleneamino-4-benzoate, DPE = 1,2-di(4-pyridyl)ethylene, 4.4′-azopy = 4,4′- azopyridine, and compare the results versus traditional solvothermal preparations at low temperatures (i.e., 40 °C). The objective of the work was to see if the same or different products would result from the scCO2 route versus the solvothermal method. We were interested to see which method produced the highest yield, the cleanest product and what types of morphology resulted. While there was no evidence of additional meso- or macroporosity in these MOFs/MOPs nor any significant improvements in product yields through the addition of scCO2 to these systems, it was shown that the use of scCO2 can have an effect on crystallinity, crystal size and morphology. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

Back to TopTop