Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = 3D-chromatin organization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3111 KiB  
Article
Ectopic Recruitment of the CTCF N-Terminal Domain with Two Proximal Zinc-Finger Domains as a Tool for 3D Genome Engineering
by Eugenia A. Tiukacheva, Artem V. Luzhin, Natalia Kruglova, Anastasia S. Shtompel, Grigorii Antonov, Anna Tvorogova, Yegor Vassetzky, Sergey V. Ulianov and Sergey V. Razin
Int. J. Mol. Sci. 2025, 26(15), 7446; https://doi.org/10.3390/ijms26157446 - 1 Aug 2025
Viewed by 181
Abstract
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated [...] Read more.
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated CTCF fused with programmable DNA-binding module dCas9 and fluorescent tracker EGFP. We found that the recruitment of a chimeric protein based on the CTCF N-terminal domain and two zinc-finger domains to the human HOXD locus leads to the de novo formation of a spatial contact with a nearby cohesin/CTCF-bound region, anchoring several chromatin loops. This chimeric protein did not show binding to CTCF motifs and did not affect the epigenetic and transcription profile of the locus. Recruitment of this chimeric protein is also able to restore chromatin loops, lost after deletion of an endogenous CTCF-binding site. Together, our data indicate that the ectopic recruitment of the CTCF N-terminal part could be an appropriate tool for 3D genome engineering. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 14030 KiB  
Article
Impact of Type 1 Diabetes on Testicular Microtubule Dynamics, Sperm Physiology, and Male Reproductive Health in Rat
by Alessandra Biasi, Maria Rosaria Ambruosi, Maria Zelinda Romano, Serena Boccella, Sara Falvo, Francesca Guida, Francesco Aniello, Sabatino Maione, Massimo Venditti and Sergio Minucci
Int. J. Mol. Sci. 2025, 26(10), 4579; https://doi.org/10.3390/ijms26104579 - 10 May 2025
Viewed by 738
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease defined by sustained hyperglycemia, leading to oxidative stress (OS) and systemic complications, including male subfertility. This study investigates the potential impact of T1D-induced OS on microtubule (MTs) dynamics and microtubule-associated proteins (MAPs) in the [...] Read more.
Type 1 diabetes (T1D) is a chronic metabolic disease defined by sustained hyperglycemia, leading to oxidative stress (OS) and systemic complications, including male subfertility. This study investigates the potential impact of T1D-induced OS on microtubule (MTs) dynamics and microtubule-associated proteins (MAPs) in the testis and spermatozoa (SPZ). Using a streptozotocin-induced T1D rat model, we examined the expression and localization of key MAPs, including Microtubule Affinity-Regulating Kinase 4 (MARK4), Microtubule-Associated Protein 1A (MAP1A), Dynein Light Chain LC8-Type 1 (DYNLL1), Prolyl Endopeptidase (PREP), and Radial Spoke Head 6 Homolog A (RSPH6A), alongside sperm functional parameters. Our findings showed that T1D significantly impaired the expression and distribution of these proteins, which may affect MTs organization and be associated with cytoskeletal disorganization, and impaired germ cell differentiation. Moreover, T1D rats exhibited reduced sperm count, viability, and motility, accompanied by increased DNA fragmentation and chromatin defects. Elevated levels of 4-hydroxy-2-nonenal (4-HNE), a marker of OS, were detected in SPZ, particularly in the acrosome and flagellum, correlating with mitochondrial dysfunction and ATP depletion. Additionally, decreased intracellular Ca2+ levels, downregulation of Cation Channel of Sperm (CATSPER) and Voltage-Dependent Anion Channel 3 (VDAC3), and altered tubulin acetylation, possibly due to imbalanced Alpha-Tubulin N-Acetyltransferase 1 (ATAT1) and Histone Deacetylase 6 (HDAC6) expression, were also associated with impaired sperm motility. The combined data suggest that T1D-induced OS is linked to disrupted MTs dynamics, which may contribute to testicular dysfunction and reduced sperm quality, potentially affecting male fertility. A better understanding of these associations may support the development of therapeutic strategies to mitigate the reproductive consequences of T1D and improve male fertility outcomes. Full article
Show Figures

Graphical abstract

19 pages, 4065 KiB  
Article
Cis-Regulation of the CFTR Gene in Pancreatic Cells
by Clara Blotas, Anaïs Le Nabec, Mégane Collobert, Mattijs Bulcaen, Marianne S. Carlon, Claude Férec and Stéphanie Moisan
Int. J. Mol. Sci. 2025, 26(8), 3788; https://doi.org/10.3390/ijms26083788 - 17 Apr 2025
Viewed by 642
Abstract
Genome organization is essential for precise spatial and temporal gene expression and relies on interactions between promoters and distal cis-regulatory elements (CREs), which constitute ~8% of the human genome. For the cystic fibrosis transmembrane conductance regulator (CFTR) gene, tissue-specific expression, [...] Read more.
Genome organization is essential for precise spatial and temporal gene expression and relies on interactions between promoters and distal cis-regulatory elements (CREs), which constitute ~8% of the human genome. For the cystic fibrosis transmembrane conductance regulator (CFTR) gene, tissue-specific expression, especially in the pancreas, remains poorly understood. Unraveling its regulation could clarify the clinical heterogeneity observed in cystic fibrosis and CFTR-related disorders. To understand the role of 3D chromatin architecture in establishing tissue-specific expression of the CFTR gene, we mapped chromatin interactions and epigenomic regulation in Capan-1 pancreatic cells. Candidate CREs are validated by luciferase reporter assay and CRISPR knock-out. We identified active CREs not only around the CFTR gene but also outside the topologically associating domain (TAD). We demonstrate the involvement of multiple CREs upstream and downstream of the CFTR gene and reveal a cooperative effect of the −44 kb, −35 kb, +15.6 kb, and +37.7 kb regions, which share common predicted transcription factor (TF) motifs. We also extend our analysis to compare 3D chromatin conformation in intestinal and pancreatic cells, providing valuable insights into the tissue specificity of CREs in regulating CFTR gene expression. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3483 KiB  
Article
Enhancing Single-Cell and Bulk Hi-C Data Using a Generative Transformer Model
by Ruoying Gao, Thomas N. Ferraro, Liang Chen, Shaoqiang Zhang and Yong Chen
Biology 2025, 14(3), 288; https://doi.org/10.3390/biology14030288 - 12 Mar 2025
Cited by 1 | Viewed by 1362
Abstract
The 3D organization of chromatin in the nucleus plays a critical role in regulating gene expression and maintaining cellular functions in eukaryotic cells. High-throughput chromosome conformation capture (Hi-C) and its derivative technologies have been developed to map genome-wide chromatin interactions at the population [...] Read more.
The 3D organization of chromatin in the nucleus plays a critical role in regulating gene expression and maintaining cellular functions in eukaryotic cells. High-throughput chromosome conformation capture (Hi-C) and its derivative technologies have been developed to map genome-wide chromatin interactions at the population and single-cell levels. However, insufficient sequencing depth and high noise levels in bulk Hi-C data, particularly in single-cell Hi-C (scHi-C) data, result in low-resolution contact matrices, thereby limiting diverse downstream computational analyses in identifying complex chromosomal organizations. To address these challenges, we developed a transformer-based deep learning model, HiCENT, to impute and enhance both scHi-C and Hi-C contact matrices. Validation experiments on large-scale bulk Hi-C and scHi-C datasets demonstrated that HiCENT achieves superior enhancement effects compared to five popular methods. When applied to real Hi-C data from the GM12878 cell line, HiCENT effectively enhanced 3D structural features at the scales of topologically associated domains and chromosomal loops. Furthermore, when applied to scHi-C data from five human cell lines, it significantly improved clustering performance, outperforming five widely used methods. The adaptability of HiCENT across different datasets and its capacity to improve the quality of chromatin interaction data will facilitate diverse downstream computational analyses in 3D genome research, single-cell studies and other large-scale omics investigations. Full article
(This article belongs to the Special Issue Artificial Intelligence Research for Complex Biological Systems)
Show Figures

Figure 1

22 pages, 14786 KiB  
Article
A Joint Analysis of RNA-DNA and DNA-DNA Interactomes Reveals Their Strong Association
by Dmitry S. Zvezdin, Artyom A. Tyukaev, Anastasia A. Zharikova and Andrey A. Mironov
Int. J. Mol. Sci. 2025, 26(3), 1137; https://doi.org/10.3390/ijms26031137 - 28 Jan 2025
Viewed by 1245
Abstract
At the moment, many non-coding RNAs that perform a variety of functions in the regulation of chromatin processes are known. An increasing number of protocols allow researchers to study RNA-DNA interactions and shed light on new aspects of the RNA–chromatin interactome. The Hi-C [...] Read more.
At the moment, many non-coding RNAs that perform a variety of functions in the regulation of chromatin processes are known. An increasing number of protocols allow researchers to study RNA-DNA interactions and shed light on new aspects of the RNA–chromatin interactome. The Hi-C protocol, which enables the study of chromatin’s three-dimensional organization, has already led to numerous discoveries in the field of genome 3D organization. We conducted a comprehensive joint analysis of the RNA-DNA interactome and chromatin structure across different human and mouse cell lines. We show that these two phenomena are closely related in many respects, with the nature of this relationship being both tissue specific and conserved across humans and mice. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 14502 KiB  
Article
Homeodomain Involvement in Nuclear HOX Protein Homo- and Heterodimerization
by Damien Marchese, Laetitia Evrard, Isabelle Bergiers, Ludovic Boas, Justine Duphénieux, Maryse Hermant, Tamara Pringels, Fisnik Zeqiri, Marc Pirson, Jean-Claude Twizere, Françoise Gofflot, René Rezsohazy and Laure Bridoux
Int. J. Mol. Sci. 2025, 26(1), 423; https://doi.org/10.3390/ijms26010423 - 6 Jan 2025
Viewed by 3383
Abstract
HOX genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 HOX genes organized into four clusters (HOXA–D) located on different chromosomes. In relationship with their orderly arrangement along [...] Read more.
HOX genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 HOX genes organized into four clusters (HOXA–D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple HOX genes along the main body axis. Interactomic database entries, as well as a handful of publications, support that some HOX proteins can form homodimers or interact with other HOX proteins. However, the consequences of HOX protein interactions have been poorly investigated and remain largely elusive. In this study, we compiled a repository of all HOX–HOX interactions from available databases, and taking HOXA1, HOXA2, and HOXA5 as examples, we investigated the capacity of HOX proteins to form homo- and heterodimers. We revealed that while the DNA-binding domain, the homeodomain, is not necessary for HOXA1 homodimerization, the nuclear localization of the dimerization is dependent on the homeodomain, particularly the integrity of the third helix of HOXA1. Furthermore, we demonstrated that HOXA1 can influence the localization of HOXA1 when it is deprived of the homeodomain, increasing its abundance in the chromatin-containing fraction. Moreover, HOXA1 nuclear homodimerization occurs independently of the integrity of the hexapeptide and, consequently, of its well-known interactor, the homeodomain protein PBX. These results hint at a potential involvement of dimerization in the complex landscape of HOX regulatory mechanisms. Full article
(This article belongs to the Special Issue Biomolecular Basis of Life Processes)
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Transposable Elements Contribute to the Regulation of Long Noncoding RNAs in Drosophila melanogaster
by Yuli Gan, Lingyan Wang, Guoxian Liu, Xiruo Guo, Yiming Zhou, Kexin Chang, Zhonghui Zhang, Fang Yan, Qi Liu and Bing Chen
Insects 2024, 15(12), 950; https://doi.org/10.3390/insects15120950 - 30 Nov 2024
Cited by 1 | Viewed by 1677
Abstract
Background: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and [...] Read more.
Background: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in D. melanogaster, focusing on the influence of transposons across different omics levels. Results: We identified 16,118 transposons overlapping with lncRNA sequences that constitute 2119 TE-lncRNAs (40.4% of all lncRNAs) using 256 public RNA-seq samples and 15 lncRNA-seq samples of Drosophila S2 cells treated with heavy metals. Of these, 67.2% of TE-lncRNAs contain more than one TE. The LTR/Gypsy family was the most common transposon insertion. Transposons preferred to insert into promoters, transcription starting sites, and intronic regions, especially in chromosome ends. Compared with lncRNAs, TE-lncRNAs showed longer lengths, a lower conservation, and lower levels but a higher specificity of expression. Multi-omics data analysis revealed positive correlations between transposon insertions and chromatin openness at the pre-transcriptional level. Notably, a total of 516 TE-lncRNAs provided transcriptional factor binding sites through transposon insertions. The regulatory network of a key transcription factor was rewired by transposons, potentially recruiting other transcription factors to exert regulatory functions under heavy metal stress. Additionally, 99 TE-lncRNAs were associated with m6A methylation modification sites, and 115 TE-lncRNAs potentially provided candidate small open reading frames through transposon insertions. Conclusions: Our data analysis demonstrated that TEs contribute to the regulation of lncRNAs. TEs not only promote the transcriptional regulation of lncRNAs, but also facilitate their post-transcriptional and epigenetic regulation. Full article
(This article belongs to the Special Issue Insect Transposable Elements)
Show Figures

Figure 1

25 pages, 7826 KiB  
Article
Regulation of Catalase Expression and Activity by DhHog1 in the Halotolerant Yeast Debaryomyces hansenii Under Saline and Oxidative Conditions
by Ileana de la Fuente-Colmenares, James González, Norma Silvia Sánchez, Daniel Ochoa-Gutiérrez, Viviana Escobar-Sánchez and Claudia Segal-Kischinevzky
J. Fungi 2024, 10(11), 740; https://doi.org/10.3390/jof10110740 - 26 Oct 2024
Cited by 1 | Viewed by 2448
Abstract
Efficient transcriptional regulation of the stress response is critical for microorganism survival. In yeast, stress-related gene expression, particularly for antioxidant enzymes like catalases, mitigates reactive oxygen species such as hydrogen peroxide (H2O2), preventing cell damage. The halotolerant yeast Debaryomyces [...] Read more.
Efficient transcriptional regulation of the stress response is critical for microorganism survival. In yeast, stress-related gene expression, particularly for antioxidant enzymes like catalases, mitigates reactive oxygen species such as hydrogen peroxide (H2O2), preventing cell damage. The halotolerant yeast Debaryomyces hansenii shows oxidative stress tolerance, largely due to high catalase activity from DhCTA and DhCTT genes. This study evaluates D. hansenii’s response to oxidative stress caused by H2O2 under saline conditions, focusing on cell viability, gene expression, and catalase activity. Chromatin organization in the promoter of DhCTA and DhCTT was analyzed, revealing low nucleosome occupancy in promoter regions, correlating with active gene expression. Stress-related motifs for transcription factors like Msn2/4 and Sko1 were found, suggesting regulation by the DhHog1 MAP kinase. Analysis of a Dhhog1Δ mutant showed DhHog1’s role in DhCTA expression under H2O2 or NaCl conditions. These findings highlight DhHog1’s critical role in regulating the stress response in D. hansenii, offering insights for enhancing stress tolerance in halotolerant yeasts, particularly for industrial applications in saline wastewater management. Full article
(This article belongs to the Special Issue Stress Research in Filamentous Fungi and Yeasts)
Show Figures

Figure 1

18 pages, 2840 KiB  
Review
Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors
by Selçuk Yavuz, Tsion E. Abraham, Adriaan B. Houtsmuller and Martin E. van Royen
Cells 2024, 13(20), 1693; https://doi.org/10.3390/cells13201693 - 13 Oct 2024
Viewed by 2822
Abstract
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and [...] Read more.
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and AR interactions with coregulators and chromatin have been studied in detail, improving our understanding of AR function in gene transcription regulation, the spatio-temporal organization and the role of microscopically discernible AR foci in the nucleus are still underexplored. This review delves into the molecular mechanisms underlying AR foci formation, focusing on liquid–liquid phase separation and its role in spatially organizing ARs and their binding partners within the nucleus at transcription sites, as well as the influence of 3D-genome organization on AR-mediated gene transcription. Full article
(This article belongs to the Collection Functions of Nuclear Receptors)
Show Figures

Figure 1

17 pages, 6964 KiB  
Article
Peculiar k-mer Spectra Are Correlated with 3D Contact Frequencies and Breakpoint Regions in the Human Genome
by Wisam Mohammed Hikmat, Aaron Sievers, Michael Hausmann and Georg Hildenbrand
Genes 2024, 15(10), 1247; https://doi.org/10.3390/genes15101247 - 25 Sep 2024
Viewed by 1421
Abstract
Background: It is widely accepted that the 3D chromatin organization in human cell nuclei is not random and recent investigations point towards an interactive relation of epigenetic functioning and chromatin (re-)organization. Although chromatin organization seems to be the result of self-organization of the [...] Read more.
Background: It is widely accepted that the 3D chromatin organization in human cell nuclei is not random and recent investigations point towards an interactive relation of epigenetic functioning and chromatin (re-)organization. Although chromatin organization seems to be the result of self-organization of the entirety of all molecules available in the cell nucleus, a general question remains open as to what extent chromatin organization might additionally be predetermined by the DNA sequence and, if so, if there are characteristic differences that distinguish typical regions involved in dysfunction-related aberrations from normal ones, since typical DNA breakpoint regions involved in disease-related chromosome aberrations are not randomly distributed along the DNA sequence. Methods: Highly conserved k-mer patterns in intronic and intergenic regions have been reported in eukaryotic genomes. In this article, we search and analyze regions deviating from average spectra (ReDFAS) of k-mer word frequencies in the human genome. This includes all assembled regions, e.g., telomeric, centromeric, genic as well as intergenic regions. Results: A positive correlation between k-mer spectra and 3D contact frequencies, obtained exemplarily from given Hi-C datasets, has been found indicating a relation of ReDFAS to chromatin organization and interactions. We also searched and found correlations of known functional annotations, e.g., genes correlating with ReDFAS. Selected regions known to contain typical breakpoints on chromosomes 9 and 5 that are involved in cancer-related chromosomal aberrations appear to be enriched in ReDFAS. Since transposable elements like ALUs are often assigned as major players in 3D genome organization, we also studied their impact on our examples but could not find a correlation between ALU regions and breakpoints comparable to ReDFAS. Conclusions: Our findings might show that ReDFAS are associated with instable regions of the genome and regions with many chromatin contacts which is in line with current research indicating that chromatin loop anchor points lead to genomic instability. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 3219 KiB  
Article
Vitamin D Receptor Regulates the Expression of the Grainyhead-Like 1 Gene
by Agnieszka Taracha-Wisniewska, Emma G. C. Parks, Michal Miller, Lidia Lipinska-Zubrycka, Sebastian Dworkin and Tomasz Wilanowski
Int. J. Mol. Sci. 2024, 25(14), 7913; https://doi.org/10.3390/ijms25147913 - 19 Jul 2024
Cited by 2 | Viewed by 1454
Abstract
Vitamin D plays an important pleiotropic role in maintaining global homeostasis of the human body. Its functions go far beyond skeletal health, playing a crucial role in a plethora of cellular functions, as well as in extraskeletal health, ensuring the proper functioning of [...] Read more.
Vitamin D plays an important pleiotropic role in maintaining global homeostasis of the human body. Its functions go far beyond skeletal health, playing a crucial role in a plethora of cellular functions, as well as in extraskeletal health, ensuring the proper functioning of multiple human organs, including the skin. Genes from the Grainyhead-like (GRHL) family code for transcription factors necessary for the development and maintenance of various epithelia. Even though they are involved in many processes regulated by vitamin D, a direct link between vitamin D-mediated cellular pathways and GRHL genes has never been described. We employed various bioinformatic methods, quantitative real-time PCR, chromatin immunoprecipitation, reporter gene assays, and calcitriol treatments to investigate this issue. We report that the vitamin D receptor (VDR) binds to a regulatory region of the Grainyhead-like 1 (GRHL1) gene and regulates its expression. Ectopic expression of VDR and treatment with calcitriol alters the expression of the GRHL1 gene. The evidence presented here indicates a role of VDR in the regulation of expression of GRHL1 and correspondingly a role of GRHL1 in mediating the actions of vitamin D. Full article
Show Figures

Figure 1

18 pages, 6867 KiB  
Article
Development of a New Model System to Study Long-Distance Interactions Supported by Architectural Proteins
by Larisa Melnikova, Varvara Molodina, Pavel Georgiev and Anton Golovnin
Int. J. Mol. Sci. 2024, 25(9), 4617; https://doi.org/10.3390/ijms25094617 - 23 Apr 2024
Viewed by 1866
Abstract
Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance [...] Read more.
Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems. Drosophila became the first model organism in which architectural proteins that determine the activity of insulators were described. In Drosophila, one of the best-studied DNA-binding architectural proteins, Su(Hw), forms a complex with Mod(mdg4)-67.2 and CP190 proteins. Using a combination of CRISPR/Cas9 genome editing and attP-dependent integration technologies, we created a model system in which the promoters and enhancers of two reporter genes are separated by 28 kb. In this case, enhancers effectively stimulate reporter gene promoters in cis and trans only in the presence of artificial Su(Hw) binding sites (SBS), in both constructs. The expression of the mutant Su(Hw) protein, which cannot interact with CP190, and the mutation inactivating Mod(mdg4)-67.2, lead to the complete loss or significant weakening of enhancer–promoter interactions, respectively. The results indicate that the new model system effectively identifies the role of individual subunits of architectural protein complexes in forming and maintaining specific long-distance interactions in the D. melanogaster model. Full article
(This article belongs to the Special Issue Molecular Genetics of Drosophila Development)
Show Figures

Figure 1

25 pages, 62586 KiB  
Article
Genome-Wide and Expression Pattern Analysis of the HIT4 Gene Family Uncovers the Involvement of GHHIT4_4 in Response to Verticillium Wilt in Gossypium hirsutum
by Guoli Zhang, Yang Jiao, Zengqiang Zhao, Quanjia Chen, Zhijun Wang, Jincheng Zhu, Ning Lv and Guoqing Sun
Genes 2024, 15(3), 348; https://doi.org/10.3390/genes15030348 - 9 Mar 2024
Cited by 2 | Viewed by 2220
Abstract
Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, [...] Read more.
Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, we conducted a comprehensive analysis of the members of the HIT4 gene family in Gossypium hirsutum using bioinformatics methods, including phylogenetic relationships, gene organization, transcription profiles, phylogenetic connections, selection pressure, and stress response. A total of 18 HIT4 genes were identified in four cotton species, with six HIT4 gene members in upland cotton. Based on the evolutionary relationships shown in the phylogenetic tree, the 18 HIT4 protein sequences were classified into four distinct subgroups. Furthermore, we conducted chromosome mapping to determine the genomic locations of these genes and visually represented the structural characteristics of HIT4 in G. hirsutum. In addition, we predicted the regulatory elements in HIT4 in G. hirsutum and conducted an analysis of repetitive sequences and gene collinearity among HIT4 in four cotton species. Moreover, we calculated the Ka/Ks ratio for homologous genes to assess the selection pressure acting on HIT4. Using RNA-seq, we explored the expression patterns of HIT4 genes in G. hirsutum and Gossypium barbadense. Through weighted gene co-expression network analysis (WGCNA), we found that GHHIT4_4 belonged to the MEblue module, which was mainly enriched in pathways such as DNA replication, phagosome, pentose and glucuronate interconversions, steroid biosynthesis, and starch and sucrose metabolism. This module may regulate the mechanism of upland cotton resistance to Verticillium wilt through DNA replication, phagosome, and various metabolic pathways. In addition, we performed heterologous overexpression of GH_D11G0591 (GHHIT4_4) in tobacco, and the results showed a significant reduction in disease index compared to the wild type, with higher expression levels of disease resistance genes in the transgenic tobacco. After conducting a VIGS (virus-induced gene silencing) experiment in cotton, the results indicated that silencing GHHIT4_4 had a significant impact, the resistance to Verticillium wilt weakened, and the internode length of the plants significantly decreased by 30.7% while the number of true leaves increased by 41.5%. qRT-PCR analysis indicated that GHHIT4_4 mainly enhanced cotton resistance to Verticillium wilt by indirectly regulating the PAL, 4CL, and CHI genes. The subcellular localization results revealed that GHHIT4_4 was predominantly distributed in the mitochondria and nucleus. This study offers preliminary evidence for the involvement of the GHHIT4_4 in cotton resistance to Verticillium wilt and lays the foundation for further research on the disease resistance mechanism of this gene in cotton. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Genetics and Genomics)
Show Figures

Figure 1

20 pages, 1247 KiB  
Review
Chromatin Organization during C. elegans Early Development
by Eshna Jash and Györgyi Csankovszki
DNA 2024, 4(1), 64-83; https://doi.org/10.3390/dna4010004 - 22 Feb 2024
Cited by 4 | Viewed by 3286
Abstract
Embryogenesis is characterized by dynamic chromatin remodeling and broad changes in chromosome architecture. These changes in chromatin organization are accompanied by transcriptional changes, which are crucial for the proper development of the embryo. Several independent mechanisms regulate this process of chromatin reorganization, including [...] Read more.
Embryogenesis is characterized by dynamic chromatin remodeling and broad changes in chromosome architecture. These changes in chromatin organization are accompanied by transcriptional changes, which are crucial for the proper development of the embryo. Several independent mechanisms regulate this process of chromatin reorganization, including the segregation of chromatin into heterochromatin and euchromatin, deposition of active and repressive histone modifications, and the formation of 3D chromatin domains such as TADs and LADs. These changes in chromatin structure are directly linked to developmental milestones such as the loss of developmental plasticity and acquisition of terminally differentiated cell identities. In this review, we summarize these processes that underlie this chromatin reorganization and their impact on embryogenesis in the nematode C. elegans. Full article
(This article belongs to the Special Issue DNA Organization in Model Organisms)
Show Figures

Figure 1

17 pages, 4207 KiB  
Article
A Comprehensive Evaluation of Generalizability of Deep Learning-Based Hi-C Resolution Improvement Methods
by Ghulam Murtaza, Atishay Jain, Madeline Hughes, Justin Wagner and Ritambhara Singh
Genes 2024, 15(1), 54; https://doi.org/10.3390/genes15010054 - 29 Dec 2023
Cited by 2 | Viewed by 2055
Abstract
Hi-C is a widely used technique to study the 3D organization of the genome. Due to its high sequencing cost, most of the generated datasets are of a coarse resolution, which makes it impractical to study finer chromatin features such as Topologically Associating [...] Read more.
Hi-C is a widely used technique to study the 3D organization of the genome. Due to its high sequencing cost, most of the generated datasets are of a coarse resolution, which makes it impractical to study finer chromatin features such as Topologically Associating Domains (TADs) and chromatin loops. Multiple deep learning-based methods have recently been proposed to increase the resolution of these datasets by imputing Hi-C reads (typically called upscaling). However, the existing works evaluate these methods on either synthetically downsampled datasets, or a small subset of experimentally generated sparse Hi-C datasets, making it hard to establish their generalizability in the real-world use case. We present our framework—Hi-CY—that compares existing Hi-C resolution upscaling methods on seven experimentally generated low-resolution Hi-C datasets belonging to various levels of read sparsities originating from three cell lines on a comprehensive set of evaluation metrics. Hi-CY also includes four downstream analysis tasks, such as TAD and chromatin loops recall, to provide a thorough report on the generalizability of these methods. We observe that existing deep learning methods fail to generalize to experimentally generated sparse Hi-C datasets, showing a performance reduction of up to 57%. As a potential solution, we find that retraining deep learning-based methods with experimentally generated Hi-C datasets improves performance by up to 31%. More importantly, Hi-CY shows that even with retraining, the existing deep learning-based methods struggle to recover biological features such as chromatin loops and TADs when provided with sparse Hi-C datasets. Our study, through the Hi-CY framework, highlights the need for rigorous evaluation in the future. We identify specific avenues for improvements in the current deep learning-based Hi-C upscaling methods, including but not limited to using experimentally generated datasets for training. Full article
(This article belongs to the Topic Bioinformatics and Intelligent Information Processing)
Show Figures

Figure 1

Back to TopTop