Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = 3-Nitropropionic acid derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1984 KB  
Review
Progress on 3-Nitropropionic Acid Derivatives
by Meng-Lin Feng, Zheng-Hui Li and Bao-Bao Shi
Biomolecules 2025, 15(8), 1066; https://doi.org/10.3390/biom15081066 - 24 Jul 2025
Viewed by 690
Abstract
3-Nitropropionic acid (3-NPA) is a deadly neurotoxic nitroalkane found in numerous fungi and leguminous plants. 3-NPA, known as an antimetabolite of succinate, irreversibly inhibits succinate dehydrogenase and disrupts mitochondrial oxidative phosphorylation. Its utility in modeling Huntington’s disease (HD) and oxidative stress has garnered [...] Read more.
3-Nitropropionic acid (3-NPA) is a deadly neurotoxic nitroalkane found in numerous fungi and leguminous plants. 3-NPA, known as an antimetabolite of succinate, irreversibly inhibits succinate dehydrogenase and disrupts mitochondrial oxidative phosphorylation. Its utility in modeling Huntington’s disease (HD) and oxidative stress has garnered significant research interest. Derivatives of 3-NPA, formed through esterification, have a wide range of biological activities including neurotoxic, antiviral, insecticidal, antimicrobial and antioxidant properties. This review systematically summarizes the structural characteristics, biological activities, and chemical synthesis of 3-NPA-derived compounds, providing valuable insights for further research and therapeutic applications. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives with Antiviral Activity)
Show Figures

Graphical abstract

16 pages, 3380 KB  
Article
Protective Effect of Fustin against Huntington’s Disease in 3-Nitropropionic Treated Rats via Downregulation of Oxidative Stress and Alteration in Neurotransmitters and Brain-Derived Neurotrophic Factor Activity
by May Nasser Bin-Jumah, Sadaf Jamal Gilani, Abdulaziz F. Alabbasi, Fahad A. Al-Abbasi, Shareefa A. AlGhamdi, Ohoud Y. Alshehri, Amira M. Alghamdi, Nadeem Sayyed and Imran Kazmi
Biomedicines 2022, 10(12), 3021; https://doi.org/10.3390/biomedicines10123021 - 23 Nov 2022
Cited by 10 | Viewed by 2537
Abstract
Researchers have revealed that Rhus verniciflua heartwood, which contains fustin as an important component, possesses antioxidant-mediated, anti-mutagenic, and anti-rheumatoid arthritis characteristics. Additionally, out of the numerous plant-derived secondary metabolites, there are various research papers concentrating on flavonoids for potential advantages in neurological illnesses. [...] Read more.
Researchers have revealed that Rhus verniciflua heartwood, which contains fustin as an important component, possesses antioxidant-mediated, anti-mutagenic, and anti-rheumatoid arthritis characteristics. Additionally, out of the numerous plant-derived secondary metabolites, there are various research papers concentrating on flavonoids for potential advantages in neurological illnesses. The current study aims to assess the neuroprotective potential of fustin in rodents over 3-nitropropionic acid (3-NPA)-induced Huntington’s disease (HD)-like consequences. The efficacy of fustin 50 and 100 mg/kg was studied with multiple-dose administrations of 3-NPA, which experimentally induced HD-like symptoms in rats for 22 days. At the end of the study, several behavioral tests were performed including a beam walk, rotarod, and grip strength tests. Similarly, some biochemical parameters were assessed to support oxidative stress (reduced glutathione—GSH, superoxide dismutase—SOD, catalase—CAT, and malondialdehyde—MDA), alteration in neurotransmitters (gamma-aminobutyric acid—GABA—and glutamate), alteration in brain-derived neurotrophic factor activity, and nitrite levels. Additionally, pro-inflammatory parameters were carried out to evaluate the neuroinflammatory responses associated with streptozotocin such as TNF-α, IL-1β, and COX in the perfused brain. The fustin-treated group exhibited a significant restoration of memory function via modulation in behavioral activities. Moreover, 3-NPA altered biochemical, neurotransmitters, brain protein levels, and neuroinflammatory measures, which fustin efficiently restored. This is the first report demonstrating the efficacy of novel phytoconstituent fustin as a potential future candidate for the treatment of HD via offering neuroprotection by subsiding the oxidative and enzymatic activity in the 3-NPA experimental animal paradigm. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

15 pages, 2583 KB  
Article
Anti-Huntington’s Effect of Rosiridin via Oxidative Stress/AchE Inhibition and Modulation of Succinate Dehydrogenase, Nitrite, and BDNF Levels against 3-Nitropropionic Acid in Rodents
by Muhammad Afzal, Nadeem Sayyed, Khalid Saad Alharbi, Sami I. Alzarea, Mohammed Salem Alshammari, Fadhel A. Alomar, Sattam Khulaif Alenezi, Anwarulabedin Mohsin Quazi, Abdulaziz I. Alzarea and Imran Kazmi
Biomolecules 2022, 12(8), 1023; https://doi.org/10.3390/biom12081023 - 23 Jul 2022
Cited by 9 | Viewed by 3380
Abstract
Background: Rosiridin is a compound extracted from Rhodiola sachalinensis; water extracts of Rhodiola root elicit positive effects on the human central nervous system and improve brain function. They are also thought to be beneficial to one’s health, in addition to being antioxidants. [...] Read more.
Background: Rosiridin is a compound extracted from Rhodiola sachalinensis; water extracts of Rhodiola root elicit positive effects on the human central nervous system and improve brain function. They are also thought to be beneficial to one’s health, in addition to being antioxidants. The present study aims to evaluate the anti-Huntington’s effect of rosiridin against 3-nitropropionic acid (3-NPA)-induced Huntington’s disease (HD)-like effects in rats. Materials and Methods: The acute toxicity in rats was elucidated to track the conceivable toxicities in the rats. The effectiveness of rosiridin at a dosage of 10 mg/kg was evaluated against several dose administrations of 3-NPA-induced HD-like symptoms in the rats for 22 days. At the end of the study, behavioral parameters were assessed as a hallmark for the cognitive and motor functions in the rats. Similarly, after the behavioral assessment, the animals were sacrificed to obtain a brain tissue homogenate. The prepared homogenate was utilized for the estimation of several biochemical parameters, including oxidative stress (glutathione, catalase, and malondialdehyde), brain-derived neurotrophic factor and succinate dehydrogenase activity, and the glutamate and acetylcholinesterase levels in the brain. Furthermore, inflammatory mediators linked to the occurrence of neuroinflammation in rats were evaluated in the perfused brain tissues. Results: The rosiridin-treated group exhibited a significant restoration of behavioral parameters, including in the beam-walk test, latency in falling during the hanging wire test, and percentage of memory retention during the elevated plus-maze test. Further, rosiridin modulated several biochemical parameters, including oxidative stress, pro-inflammatory activity, brain-derived neurotrophic factor, nitrite, and acetylcholinesterase as compared to disease control group that was treated with 3-NPA. Conclusions: The current study exhibits the anti-Huntington’s effects of rosiridin in experimental animal models. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

16 pages, 5767 KB  
Article
Restoration of BDNF, DARPP32, and D2R Expression Following Intravenous Infusion of Human Immature Dental Pulp Stem Cells in Huntington’s Disease 3-NP Rat Model
by Cristiane Valverde Wenceslau, Dener Madeiro de Souza, Nicole Caroline Mambelli-Lisboa, Leandro Hideki Ynoue, Rodrigo Pinheiro Araldi, Joyce Macedo da Silva, Eduardo Pagani, Monica Santoro Haddad and Irina Kerkis
Cells 2022, 11(10), 1664; https://doi.org/10.3390/cells11101664 - 17 May 2022
Cited by 24 | Viewed by 3629
Abstract
Huntington’s disease (HD) is a neurodegenerative inherited genetic disorder, which leads to the onset of motor, neuropsychiatric and cognitive disturbances. HD is characterized by the loss of gamma-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs). To date, there is no treatment for HD. Mesenchymal [...] Read more.
Huntington’s disease (HD) is a neurodegenerative inherited genetic disorder, which leads to the onset of motor, neuropsychiatric and cognitive disturbances. HD is characterized by the loss of gamma-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs). To date, there is no treatment for HD. Mesenchymal stem cells (MSCs) provide a substantial therapeutic opportunity for the HD treatment. Herein, we investigated the therapeutic potential of human immature dental pulp stem cells (hIDPSC), a special type of MSC originated from the neural crest, for HD treatment. Two different doses of hIDPSC were intravenously administrated in a subacute 3-nitropropionic acid (3NP)-induced rat model. We demonstrated hIDPSC homing in the striatum, cortex and subventricular zone using specific markers for human cells. Thirty days after hIDPSC administration, the cells found in the brain are still express hallmarks of undifferentiated MSC. Immunohistochemistry quantities analysis revealed a significant increase in the number of BDNF, DARPP32 and D2R positive stained cells in the striatum and cortex in the groups that received hIDPSC. The differences were more expressive in animals that received only one administration of hIDPSC. Altogether, these data suggest that the intravenous administration of hIDPSCs can restore the BDNF, DARPP32 and D2R expression, promoting neuroprotection and neurogenesis. Full article
(This article belongs to the Special Issue Stem Cells, Metabolism and Neurodegenerative Diseases)
Show Figures

Figure 1

12 pages, 2059 KB  
Review
Roles of Nitrocompounds in Inhibition of Foodborne Bacteria, Parasites, and Methane Production in Economic Animals
by Po-Yun Teng and Woo Kyun Kim
Animals 2021, 11(4), 923; https://doi.org/10.3390/ani11040923 - 24 Mar 2021
Cited by 9 | Viewed by 4187
Abstract
Nitrocompounds are derivatives of hydrocarbons, alcohols, fatty acids, and esters, consisting one or more nitro functional groups. Either natural sources of nitrocompounds or synthetic chemicals have been applied in animal diets to investigate their effects on economic animals, since conjugates of 3-nitropropanol and [...] Read more.
Nitrocompounds are derivatives of hydrocarbons, alcohols, fatty acids, and esters, consisting one or more nitro functional groups. Either natural sources of nitrocompounds or synthetic chemicals have been applied in animal diets to investigate their effects on economic animals, since conjugates of 3-nitropropanol and 3-nitropropionic acid were isolated from Astragalus oblongifolius. In this review, emphasis will be placed on nitrocompounds’ antimicrobial activity, toxicity, metabolisms and mechanisms of actions. Nitrocompounds can be metabolized by ruminal microbials, such as Denitrobacterium detoxificans, or alcohol dehydrogenase in the liver. Moreover, it has been found that nitrocompounds are capable of inhibiting pathogens, parasites, methane and ammonia production; however, overdose of nitrocompounds could cause methemoglobinemia or interfere with energy production in mitochondria by inhibiting succinate dehydrogenase. Full article
(This article belongs to the Special Issue Antioxidants in Animal Production, Reproduction, Health and Welfare)
Show Figures

Figure 1

12 pages, 388 KB  
Review
More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy
by Shang-Der Chen, Chia-Lin Wu, Wei-Chao Hwang and Ding-I Yang
Int. J. Mol. Sci. 2017, 18(3), 545; https://doi.org/10.3390/ijms18030545 - 3 Mar 2017
Cited by 209 | Viewed by 12941
Abstract
In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in [...] Read more.
In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) as well as erythropoietin (EPO)-dependent stimulation of sonic hedgehog (SHH). We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO), cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), and nuclear factor-κB (NF-κB). Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR) with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

Back to TopTop