Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 2-furanmethanethiol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 719 KiB  
Article
Thermochemical Characterization of Sulfur-Containing Furan Derivatives: Experimental and Theoretical Study
by Luísa M. P. F. Amaral and Manuel A. V. Ribeiro da Silva
Thermo 2025, 5(1), 11; https://doi.org/10.3390/thermo5010011 - 18 Mar 2025
Viewed by 713
Abstract
The thermochemical properties of three sulfur-containing furan derivatives, 2-furanmethanethiol, furfuryl methyl sulfide, and methyl 2-methyl-3-furyl disulfide, were investigated using experimental and theoretical methods. Standard molar enthalpies of combustion were determined by combustion calorimetry, while enthalpies of vaporization were obtained through Calvet microcalorimetry. These [...] Read more.
The thermochemical properties of three sulfur-containing furan derivatives, 2-furanmethanethiol, furfuryl methyl sulfide, and methyl 2-methyl-3-furyl disulfide, were investigated using experimental and theoretical methods. Standard molar enthalpies of combustion were determined by combustion calorimetry, while enthalpies of vaporization were obtained through Calvet microcalorimetry. These experimental results allowed for the calculation of standard molar enthalpies of formation in the gas phase at 298.15 K. Theoretical calculations using high-level quantum chemical methods (G3) were performed to complement the experimental data. A comparison between experimental and theoretical values revealed good agreement, validating the computational approach. This study enhances the understanding of the energetic properties of sulfur furan derivatives, contributing reliable thermochemical data to existing databases and aiding in the development of predictive models for related molecular systems. Full article
Show Figures

Figure 1

13 pages, 1643 KiB  
Article
Analysis of Volatile Compounds’ Changes in Rice Grain at Different Ripening Stages via HS-SPME-GC–MS
by Liting Zhang, Zhaoyang Pan, Zhanhua Lu, Shiguang Wang, Wei Liu, Xiaofei Wang, Haoxiang Wu, Hao Chen, Tengkui Chen, Juan Hu and Xiuying He
Foods 2024, 13(23), 3776; https://doi.org/10.3390/foods13233776 - 25 Nov 2024
Viewed by 1457
Abstract
Aroma is a crucial determinant of rice taste quality, with volatile organic compounds (VOCs) playing a key role in defining this characteristic. However, limited research has explored the dynamic changes in these aromatic substances during the ripening stages of rice grains. In this [...] Read more.
Aroma is a crucial determinant of rice taste quality, with volatile organic compounds (VOCs) playing a key role in defining this characteristic. However, limited research has explored the dynamic changes in these aromatic substances during the ripening stages of rice grains. In this study, we analyzed VOCs in rice grains across four ripening stages post-flowering using headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC-MS). A total of 417 VOCs were identified, among which 65 were determined to be key aroma-active compounds based on relative odor activity value (rOAV) analysis. Most of these aroma-active compounds exhibited an accumulation pattern as the grains matured. Notably, 5-ethyl-3-hydroxy-4-methyl-2(5H)-furanone and 2-Methyloxolan-3-one had the largest rOAV values. Additionally, (Z)-6-nonenal, (Z,Z)-3,6-nonadienal, 2-thiophenemethanethiol, 5-methyl-2-furanmethanethiol, 2,2,6-trimethyl-cyclohexanone, and 3-octen-2-one were identified as potential key markers for distinguishing rice-grain maturity stages. Moreover, 2-acetyl-1-pyrroline (2-AP), heptanal, and 1-nonanol were identified as marker metabolites differentiating aromatic from non-aromatic brown rice. These findings contribute to a deeper understanding of the dynamic variation and retention of aroma compounds during rice-grain ripening, and they offer valuable insights into the improvement of fragrant rice varieties. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

21 pages, 9458 KiB  
Article
Effect of Capsaicin Stress on Aroma-Producing Properties of Lactobacillus plantarum CL-01 Based on E-Nose and GC–IMS
by Qian Zhang, Junni Tang, Jing Deng, Zijian Cai, Xiaole Jiang and Chenglin Zhu
Molecules 2024, 29(1), 107; https://doi.org/10.3390/molecules29010107 - 23 Dec 2023
Cited by 8 | Viewed by 1912
Abstract
Capsaicin stress, along with salt stress, could be considered the main stressors for lactic acid bacteria in traditional fermented pepper products. Until now, insufficient attention has been paid to salt stress, while the effect of capsaicin on the aroma-producing properties of Lactobacillus plantarum [...] Read more.
Capsaicin stress, along with salt stress, could be considered the main stressors for lactic acid bacteria in traditional fermented pepper products. Until now, insufficient attention has been paid to salt stress, while the effect of capsaicin on the aroma-producing properties of Lactobacillus plantarum (L. plantarum) is unclear. The present study attempted to illustrate the effect of capsaicin stress on the aroma-producing properties of L. plantarum CL-01 isolated from traditionally fermented peppers based on E-nose and GC–IMS. The results showed that E-nose could clearly distinguish the overall flavor differences of L. plantarum CL-01 under capsaicin stress. A total of 48 volatile compounds (VOCs) were characterized by means of GC–IMS, and the main VOCs belonged to acids and alcohols. Capsaicin stress significantly promoted L. plantarum CL-01 to produce alpha-pinene, ethyl crotonate, isobutyric acid, trans-2-pentenal, 2-methyl-1-butanol, 3-methyl-3-buten-1-ol, 1-penten-3-one, 2-pentanone, 3-methyl-1-butanol-D, and 2-heptanone (p < 0.05). In addition, under capsaicin stress, the contents of 1-penten-3-one, 3-methyl-3-buten-1-ol, 5-methylfurfuryl alcohol, isobutanol, 2-furanmethanethiol, 2,2,4,6,6-pentamethylheptane, 1-propanethiol, diethyl malonate, acetic acid, beta-myrcene, 2-pentanone, ethyl acetate, trans-2-pentenal, 2-methylbutyl acetate, and 2-heptanone produced by L. plantarum CL-01 were significantly increased along with the fermentation time (p < 0.05). Furthermore, some significant correlations were observed between the response values of specific E-nose sensors and effective VOCs. Full article
Show Figures

Figure 1

11 pages, 1356 KiB  
Article
Effect of Selected Mercapto Flavor Compounds on Acrylamide Elimination in a Model System
by Zhiyong Xiong, Bing Li, Lin Li, Liting Wan, Xiaolong Peng and Yongpo Yin
Molecules 2017, 22(6), 888; https://doi.org/10.3390/molecules22060888 - 31 May 2017
Cited by 7 | Viewed by 5264
Abstract
The effect of four mercapto flavor compounds (1,2-ethanedithiol, 1-butanethiol, 2-methyl-3-furanthiol, and 2-furanmethanethiol) on acrylamide elimination were investigated in model systems. The obtained results showed that mercaptans assayed were effective in elimination arylamide in a model system. Their reactivities for decreasing acrylamide content depended [...] Read more.
The effect of four mercapto flavor compounds (1,2-ethanedithiol, 1-butanethiol, 2-methyl-3-furanthiol, and 2-furanmethanethiol) on acrylamide elimination were investigated in model systems. The obtained results showed that mercaptans assayed were effective in elimination arylamide in a model system. Their reactivities for decreasing acrylamide content depended on mercaptan’s molecular structure and acrylamide disappearance decreased in the following order: 1,2-ethanedithiol > 2-methyl-3-furanthiol > 1-butanethiol > 2-furanmethanethiol. Mercaptans were added to acrylamide to produce the corresponding 3-(alkylthio) propionamides. This reaction was irreversible and only trace amounts of acrylamide were formed by thermal heating of 3-(alkylthio) propanamide. Although a large amount disappeared, only part of the acrylamide conversed into 3-(alkylthio) propionamides. All of these results constitute a fundamental proof of the complexity of the reactions involved in the removal of free acrylamide in foods. This implies mercapto flavor/aroma may directly or indirectly reduce the level of acrylamide in food processing. This study could be regarded as a pioneer contribution on acrylamide elimination in a model system by the addition of mercapto flavor compounds. Full article
(This article belongs to the Collection Recent Advances in Flavors and Fragrances)
Show Figures

Figure 1

8 pages, 72 KiB  
Article
Synthesis and Odor Evaluation of Five New Sulfur-Containing Ester Flavor Compounds from 4-Ethyloctanoic Acid
by Yuping Liu, Haitao Chen, Decai Yin and Baoguo Sun
Molecules 2010, 15(8), 5104-5111; https://doi.org/10.3390/molecules15085104 - 29 Jul 2010
Cited by 9 | Viewed by 8297
Abstract
Five sulfur-containing flavor compounds were synthesized for the first time by the reaction of 4-ethyloctanoyl chloride with sulfur-containing alcohols or mercaptans. The synthesized compounds are 3-(methylthio)propyl 4-ethyloctanoate, 2-methyl-3-tetrahydro-furanthiol 4-ethyloctanoate, 4-methyl-5-thiazoleethanol 4-ethyloctanoate, 2-furan-methanethiol 4-ethyloctanoate and 2-methyl-3-furanthiol 4-ethyloctanoate. These five synthetic sulfur-containing ester flavor compounds [...] Read more.
Five sulfur-containing flavor compounds were synthesized for the first time by the reaction of 4-ethyloctanoyl chloride with sulfur-containing alcohols or mercaptans. The synthesized compounds are 3-(methylthio)propyl 4-ethyloctanoate, 2-methyl-3-tetrahydro-furanthiol 4-ethyloctanoate, 4-methyl-5-thiazoleethanol 4-ethyloctanoate, 2-furan-methanethiol 4-ethyloctanoate and 2-methyl-3-furanthiol 4-ethyloctanoate. These five synthetic sulfur-containing ester flavor compounds all have meaty odor and might be used in foods if approved for this purpose in the future. Full article
Show Figures

Figure 1

Back to TopTop