Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = 2,5-dihydroxyacetophenone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3178 KB  
Review
Synthesis and Health Effects of Phenolic Compounds: A Focus on Tyrosol, Hydroxytyrosol, and 3,4-Dihydroxyacetophenone
by Wenyu Wang, Lixin Du, Qidong Wei, Mengyao Lu, Dehong Xu and Ya Li
Antioxidants 2025, 14(4), 476; https://doi.org/10.3390/antiox14040476 - 16 Apr 2025
Cited by 6 | Viewed by 2154
Abstract
Tyrosol (Tyr), hydroxytyrosol (TH), and 3,4-Dihydroxyacetophenone (3,4-DHAP) are three phenolic compounds naturally present in plants that have attracted considerable research attention due to their potent antioxidant, anti-inflammatory, anticancer, and cardiovascular protective properties. In recent years, mounting evidence has indicated that these phenolic compounds [...] Read more.
Tyrosol (Tyr), hydroxytyrosol (TH), and 3,4-Dihydroxyacetophenone (3,4-DHAP) are three phenolic compounds naturally present in plants that have attracted considerable research attention due to their potent antioxidant, anti-inflammatory, anticancer, and cardiovascular protective properties. In recent years, mounting evidence has indicated that these phenolic compounds hold broad potential in both disease prevention and treatment. This paper reviews the chemical structures and synthetic methods of Tyr, HT, and 3,4-DHAP, as well as their multifaceted effects on human health, particularly their roles and mechanisms in antioxidation, anti-inflammation, cardiovascular protection, neuroprotection, and anticancer activity. In addition, this paper explores the future prospects of these compounds and the current challenges associated with their application—such as low bioavailability and long-term safety concerns—and proposes directions for further investigation. Full article
Show Figures

Figure 1

13 pages, 2661 KB  
Article
Studies on Square Wave and Cyclic Voltammetric Behavior of 1,2- and 1,4-Dihydroxybenzenes and Their Derivatives in Acetic Acid, Ethyl Acetate and Mixtures of the Two
by László Kiss
Methods Protoc. 2024, 7(6), 102; https://doi.org/10.3390/mps7060102 - 20 Dec 2024
Viewed by 1481
Abstract
An electrochemical investigation of 1,2- and 1,4-dihydroxybenzenes was carried out with platinum macro- and microelectrodes using square wave and cyclic voltammetry techniques. Furthermore, the effect of the two solvents—acetic acid and ethyl acetate—was compared. When using square wave voltammetry, signals only appeared at [...] Read more.
An electrochemical investigation of 1,2- and 1,4-dihydroxybenzenes was carried out with platinum macro- and microelectrodes using square wave and cyclic voltammetry techniques. Furthermore, the effect of the two solvents—acetic acid and ethyl acetate—was compared. When using square wave voltammetry, signals only appeared at lower frequencies and only when the supporting electrolyte was in excess, as expected due to the relatively low permittivity of the used solvents. The behavior of hydroquinone and catechol did not differ significantly from that of their derivatives (dihydroxybenzaldehydes, dihydroxybenzoic acids and 2′,5′-dihydroxyacetophenone). When the cyclic voltammetric experiments using a microelectrode were extended to higher anodic potentials, electrode fouling was very significant in ethyl acetate after the potential region where steady-state oxidation to the corresponding quinone occurs. The substituent effect was not significant here either, which was proven by using different functional groups in different positions. In contrast, the position had a dramatic influence on the susceptibility to electropolymerization, as 1,2-dihydroxybenzenes—independent of the nature of the substituent on the benzene ring—deactivated the electrode, while 1,4-dihydroxybenzenes did not, possibly due to the different solubilities of the polymers formed from the primary oxidation product (quinones). A user-friendly analytical procedure is also proposed that uses an electropolymerization reaction and does not require frequent cleaning of the electrode via polishing, which is required usually especially with a microelectrode. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

14 pages, 5840 KB  
Article
Isolation, Purification, and Antioxidant Activity of Polyphenols from Cynanchum auriculatum Royle ex Wight
by Mustapha Muhammad Nasiru, Yue-E Sun, Lingyun Zhao, Taing Bunhok, Chuon Mony Roth, Sun Sovath, Hay Pharith, Weidong Wang and Chunyang Li
Separations 2024, 11(11), 316; https://doi.org/10.3390/separations11110316 - 1 Nov 2024
Cited by 2 | Viewed by 1466
Abstract
Cynanchum auriculatum Royle ex Wight (CA) is a traditional medicinal and edible plant in China. This study aimed to isolate and characterize the phenolic compounds of C. auriculatum to identify its main antioxidant constituents. Polyphenols were extracted using an ultrasound-assisted ethanol extraction method, [...] Read more.
Cynanchum auriculatum Royle ex Wight (CA) is a traditional medicinal and edible plant in China. This study aimed to isolate and characterize the phenolic compounds of C. auriculatum to identify its main antioxidant constituents. Polyphenols were extracted using an ultrasound-assisted ethanol extraction method, followed by partitioning with ethyl acetate. The ethyl acetate extract was then purified through thin-layer chromatography, silica gel column chromatography, and reverse-phase silica gel column chromatography. Three monomeric compounds—cynandione A (I), 2,5-dihydroxyacetophenone (II), and radix piperacanthone (III)—were identified through their physical and chemical properties, UV and IR spectra, and liquid chromatography–mass spectrometry (LC-MS/MS). Vitamin C (VC) and 2,4-dihydroxyacetophenone were used as controls to evaluate the antioxidant potential of the two most abundant monomers. Antioxidant assays demonstrated that 2,5-dihydroxyacetophenone and cynandione A exhibited strong antioxidant activity at lower concentrations, whereas 2,4-dihydroxyacetophenone showed significantly weaker activity. Furthermore, cynandione A displayed superior cellular antioxidant activity compared to 2,5-dihydroxyacetophenone, indicating its potential as a promising bioactive compound. In conclusion, this study provides valuable insights into the phenolic composition of C. auriculatum and highlights cynandione A as a key antioxidant, paving the way for future research on its therapeutic applications. Full article
Show Figures

Figure 1

20 pages, 11381 KB  
Article
Sesquiterpene Coumarins, Chromones, and Acetophenone Derivatives with Selective Cytotoxicities from the Roots of Ferula caspica M. Bieb. (Apiaceae)
by Fadıl Kaan Kuran, Gülsüm Altıparmak Ülbegi, Gülşah Gamze Arcan, Fatma Memnune Eruçar, Şule Nur Karavuş, Pınar Aksoy Sağırlı, Nur Tan and Mahmut Miski
Pharmaceuticals 2024, 17(10), 1254; https://doi.org/10.3390/ph17101254 - 24 Sep 2024
Cited by 2 | Viewed by 1787
Abstract
In search of selective cytotoxic compounds from Ferula species as potential leads for the treatment of various cancer diseases, a bioactivity-guided isolation study was performed on the roots of Ferula caspica M. Bieb. COLO 205 (colon), K-562 (leukemia), and MCF-7 (breast) cancer cell [...] Read more.
In search of selective cytotoxic compounds from Ferula species as potential leads for the treatment of various cancer diseases, a bioactivity-guided isolation study was performed on the roots of Ferula caspica M. Bieb. COLO 205 (colon), K-562 (leukemia), and MCF-7 (breast) cancer cell lines were used to monitor the cytotoxic activity of column fractions and determine the IC50 value of the active compounds. In addition to the seven known (511) compounds, four previously unknown compounds: kayserin A (1), kayserin B (2), 8′-epi-kayserin B angelate (3), and 3-epi-ferulin D (4) were isolated from the dichloromethane extract of the roots of F. caspica. Structure elucidation of the isolated compounds was carried out by extensive spectroscopic analyses such as 1D- and 2D-NMR spectroscopy, High-Resolution Mass Spectroscopy (HRMS), IR spectroscopy, and UV spectroscopy. Although all of the isolated compounds showed various degrees of cytotoxic activity on COLO 205, K-562, and MCF-7 cancer cell lines, the most potent compounds were identified in the following order: 1-Hydroxy-1-(1′-farnesyl)-4,6-dihydroxyacetophenone (HFDHAP, 11), 3-epi-ferulin D (3EFD, 4), and 7-desmethylferulin D (7DMFD, 6). The cytotoxic activities of all three compounds were more potent than that of the reference compound cisplatin (Cis) against all tested cancer cell lines. Still, only HFDHAP (11) was more potent than the reference compound doxorubicin (Dox) against the MCF-7 cancer cell line. The mechanism of action of these three compounds was investigated on the COLO 205 cell line. The results indicated that compounds 4, 6, and 11 trigger caspase-3/8/9 activation and suppress the anti-apoptotic protein, Bcl-xL. Molecular docking studies confirmed the interactions of the three cytotoxic molecules with the active site of the Bcl-xL protein. Full article
Show Figures

Figure 1

12 pages, 1892 KB  
Article
Comparison between Electropolymers of 3,5-Dihydroxybenzoic Acid and 2′,6′-Dihydroxyacetophenone in Dimethyl Sulfoxide and Their Analytical Performance towards Selected Analytes with the Role of the Washing Liquid
by László Kiss, Heng Li, Hui Yan and Sándor Kunsági-Máté
Molecules 2024, 29(16), 3972; https://doi.org/10.3390/molecules29163972 - 22 Aug 2024
Cited by 3 | Viewed by 1082
Abstract
In the first part of this study, the electrochemical polymerization of two compounds, 3,5-dihydroxybenzoic acid and 2′,6′-dihydroxyacetophenone, was compared in dimethyl sulfoxide solvent on platinum and glassy carbon electrodes. The voltammograms obtained showed remarkable differences between the two monomers and between the two [...] Read more.
In the first part of this study, the electrochemical polymerization of two compounds, 3,5-dihydroxybenzoic acid and 2′,6′-dihydroxyacetophenone, was compared in dimethyl sulfoxide solvent on platinum and glassy carbon electrodes. The voltammograms obtained showed remarkable differences between the two monomers and between the two electrode materials. The acetophenone derivative formed electropolymer remnants at the electrodes, while in the case of the benzoic acid derivative, practically no passivation occurred, and the scanning electron microscopic results reinforced this. A few stackings adsorbed only after electropolymerization from a highly concentrated solution of dihydroxybenzoic acid. As a modifying layer on the platinum and glassy carbon electrodes, the prepared films from 2′,6′-dihydroxyacetophenone were tested for tributylamine in acetonitrile and in an aqueous solution of a redox-active compound, hydroquinone, during the stirring of the solution. More stable amperometric current signals could be reached with modified platinum than with glassy carbon, and the significant influence of the organic washing liquid after deposition was established via the study of noise level. In this respect, acetone was the best choice. The amperometric signals with the modified platinum obtained upon the addition of aliquots of the stock solution resulted in a 3.29 μM detection limit. Full article
Show Figures

Figure 1

17 pages, 6830 KB  
Article
Quantitative Proteomics Reveals the Relationship between Protein Changes and Volatile Flavor Formation in Hunan Bacon during Low-Temperature Smoking
by Huiyu Zou, Chuangye Deng, Junnian Li, Aihua Lou, Yan Liu, Jie Luo, Qingwu Shen and Wei Quan
Foods 2024, 13(9), 1360; https://doi.org/10.3390/foods13091360 - 28 Apr 2024
Cited by 5 | Viewed by 1871
Abstract
This study aimed to investigate the changes in proteins and volatile flavor compounds that occur in bacon during low-temperature smoking (LTS) and identify potential correlations between these changes. To achieve this, a combination of gas chromatography-mass spectrometry and proteomics was employed. A total [...] Read more.
This study aimed to investigate the changes in proteins and volatile flavor compounds that occur in bacon during low-temperature smoking (LTS) and identify potential correlations between these changes. To achieve this, a combination of gas chromatography-mass spectrometry and proteomics was employed. A total of 42 volatile flavor compounds were identified in the bacon samples, and, during LTS, 11 key volatile flavor compounds with variable importance were found at a projection value of >1, including 2′,4′-dihydroxyacetophenone, 4-methyl-2H-furan-5-one, Nonanal, etc. In total, 2017 proteins were quantified at different stages of LTS; correlation coefficients and KEGG analyses identified 27 down-regulated flavor-related proteins. Of these, seven were involved in the tricarboxylic acid (TCA) cycle, metabolic pathways, or amino acid metabolism, and they may be associated with the process of flavor formation. Furthermore, correlation coefficient analysis indicated that certain chemical parameters, such as the contents of free amino acids, carbonyl compounds, and TCA cycle components, were closely and positively correlated with the formation of key volatile flavor compounds. Combined with bioinformatic analysis, the results of this study provide insights into the proteins present in bacon at various stages of LTS. This study demonstrates the changes in proteins and the formation of volatile flavor compounds in bacon during LTS, along with their potential correlations, providing a theoretical basis for the development of green processing methods for Hunan bacon. Full article
(This article belongs to the Special Issue Flavor Formation and Quality Maintenance in Meat Processing)
Show Figures

Figure 1

9 pages, 871 KB  
Article
Antibacterial Activity of Defensive Secretions from the Lace Bug Stephanitis svensoni (Drake) (Hemiptera: Tingidae)
by Nobuhiro Shimizu, Chihiro Takahara and Hiroki Ogami
Insects 2024, 15(4), 257; https://doi.org/10.3390/insects15040257 - 8 Apr 2024
Viewed by 1779
Abstract
Nymphs of Stephanitis svensoni (Drake) (Hemiptera: Tingidae) have numerous glandular setae on their dorsal abdomens. Chemical analysis of the exudates from these setae revealed the presence of 11 compounds, including aliphatic aldehydes, aliphatic ketones, and aromatic polyketides. Among them, 3-oxododecanal, 5-hydroxy-2-heptylchromanone, and 5-hydroxy-2-undecanylchromanone [...] Read more.
Nymphs of Stephanitis svensoni (Drake) (Hemiptera: Tingidae) have numerous glandular setae on their dorsal abdomens. Chemical analysis of the exudates from these setae revealed the presence of 11 compounds, including aliphatic aldehydes, aliphatic ketones, and aromatic polyketides. Among them, 3-oxododecanal, 5-hydroxy-2-heptylchromanone, and 5-hydroxy-2-undecanylchromanone were identified for the first time in the family Tingidae. Previous research has suggested that secretions from nymphs of the genus Stephanitis, belonging to the family Tingidae, function as defensive substances against predators. The exudates of S. svensoni showed antibacterial activity against the Gram-positive bacterium Staphylococcus aureus. Antibacterial tests conducted using preparations of the 10 identified compounds showed antibacterial activity in 3-oxododecanal, 2,6-dihydroxyacetophenone, and 1-(2,6-dihydroxyphenyl)dodecan-1-one. In addition, antibacterial tests against the Gram-negative bacterium Escherichia coli showed activity in 2,6-dihydroxyacetophenone and 1-(2,6-dihydroxyphenyl)dodecan-1-one. Therefore, 2,6-dihydroxyacetophenone and 1-(2,6-dihydroxyphenyl)dodecan-1-one exhibited a wide antibacterial spectrum. Particularly, 1-(2,6-dihydroxyphenyl)dodecan-1-one, which showed antibacterial activity even at low concentrations, holds promise as lead drug compound. Full article
(This article belongs to the Collection Hemiptera: Ecology, Physiology, and Economic Importance)
Show Figures

Figure 1

19 pages, 2380 KB  
Article
Neuroprotective Potential of Thinned Peaches Extracts Obtained by Pressurized Liquid Extraction after Different Drying Processes
by Chongting Guo, Alberto Valdés, José David Sánchez-Martínez, Elena Ibáñez, Jinfeng Bi and Alejandro Cifuentes
Foods 2022, 11(16), 2464; https://doi.org/10.3390/foods11162464 - 16 Aug 2022
Cited by 11 | Viewed by 2440
Abstract
Genetic, environmental and nutritional factors are suggested as primary factors of Alzheimer’s disease (AD), and secondary metabolites such as polyphenols present in thinned peaches are considered as good candidates for AD prevention. Thinned peaches are usually dried to avoid putrefaction, but the effects [...] Read more.
Genetic, environmental and nutritional factors are suggested as primary factors of Alzheimer’s disease (AD), and secondary metabolites such as polyphenols present in thinned peaches are considered as good candidates for AD prevention. Thinned peaches are usually dried to avoid putrefaction, but the effects of the drying method and the extraction process on the polyphenol composition and the neuroprotective potential have never been addressed. In this work, a pressurized liquid extraction (PLE) method was optimized and applied to thinned peaches dried under different conditions, and their neuroprotective potential was evaluated in vitro. In addition, the PLE extracts were characterized via HPLC-Q-TOF-MS/MS, and a permeability assay was performed to evaluate the ability of the identified metabolites to cross the blood–brain barrier (BBB). The PLE extracts obtained from freeze-dried (FD) samples with 50% ethanol in water at 180 °C showed the best neuroprotective potential. Finally, among the 81 metabolites identified, isoferulic acid, 4-methyldaphnetin, coniferyl aldehyde and 3,4-dihydroxyacetophenone were found at higher concentrations in FD extracts. These metabolites are able to cross the BBB and are positively correlated with the neuroprotective potential, suggesting FD together with PLE extraction as the best combination to exploit the neuroprotective capacity of thinned peaches. Full article
Show Figures

Figure 1

14 pages, 3004 KB  
Article
Hepatoprotective and Antioxidant Potential of Phenolics-Enriched Fraction of Anogeissus acuminata Leaf against Alcohol-Induced Hepatotoxicity in Rats
by Lal Chand Pal, Shivankar Agrawal, Arti Gautam, Jayhind Kumar Chauhan and Chandana Venkateswara Rao
Med. Sci. 2022, 10(1), 17; https://doi.org/10.3390/medsci10010017 - 4 Mar 2022
Cited by 14 | Viewed by 4243
Abstract
Anogeissus acuminata is used to treat wounds, diarrhoea, dysentery, and skin ailments. However, its hepatoprotective effect against ethanol-induced liver damage is yet to be reported. The phenolic-enriched ethyl acetate fraction of Anogeissus acuminata (AAE) was evaluated for hepatoprotective activity against ethanol-induced liver toxicity [...] Read more.
Anogeissus acuminata is used to treat wounds, diarrhoea, dysentery, and skin ailments. However, its hepatoprotective effect against ethanol-induced liver damage is yet to be reported. The phenolic-enriched ethyl acetate fraction of Anogeissus acuminata (AAE) was evaluated for hepatoprotective activity against ethanol-induced liver toxicity in rats. The intoxicated animals were treated with a phenolic-rich fraction of Anogeissus acuminata (AAE) (100 and 200 mg/kg) and silymarin (100 mg/kg). The antioxidant activity of AAE was analysed. Biochemical markers (ALT, AST, ALP, GGT, and TBL) for liver injury in ethanol-administered animals resulted in higher levels of key serum biochemical injury markers, as evidenced by increased levels of ALT (127.24 ± 3.95), AST (189.54 ± 7.56), ALP (263.88 ± 12.96), GGT (91.65 ± 3.96), and TBL (2.85 ± 0.12) compared to Group I ALT (38.67 ± 3.84), AST (64.45 ± 5.97), GGT (38.67 ± 3.84), and TBL (0.53 ± 064) (p < 0.05). AAE administration decreased serum biochemical liver injury markers as manifested in Group III animals’ ALT (79.56 ± 5.16), AST (151.76 ± 6.16), ALP (184.67 ± 10.12), GGT (68.24 ± 4.05), TBL (1.66 ± 0.082) (p < 0.05), and Group IV ALT (55.54 ± 4.35), AST (78.79 ± 4.88), ALP (81.96 ± 9.43), GGT (47.32 ± 2.95), TBL (0.74 ± 0.075) (p < 0.05). Group IV exhibited the most significant reduction in serum biochemical markers as compared to Group III (p < 0.05) and close to silymarin-treated Group V ALT (44.42 ± 3.15), AST (74.45 ± 5.75), ALP (67.32 ± 9.14), GGT (42.43 ± 2.54), TBL (0.634 ± 0.077). Gene expression indices and histoarchitecture were evaluated to demonstrate the potential of AAE. The bioactive fraction of Anogeissus acuminata was rich in phenolics and flavonoid content. GC–MS analysis identified gallic acid, palmitic acid, cis-10-heptadecenoic acid, 9-octadecenoic acid, epigallocatechin, 2,5-dihydroxyacetophenone, and catechin. Oral administration of AAE (100 and 200 mg/kg) lowered the elevated levels of the biochemical markers and interleukin, and enhanced the level of enzymatic antioxidant. It also downregulated the expression level of proapoptotic genes and upregulated the expression level of the antiapoptotic gene along with improved liver histopathology. Full article
(This article belongs to the Section Hepatic and Gastroenterology Diseases)
Show Figures

Figure 1

19 pages, 4712 KB  
Article
Testing the Pharmacokinetic Interactions of 24 Colonic Flavonoid Metabolites with Human Serum Albumin and Cytochrome P450 Enzymes
by Violetta Mohos, Eszter Fliszár-Nyúl, Beáta Lemli, Balázs Zoltán Zsidó, Csaba Hetényi, Přemysl Mladěnka, Pavel Horký, Milan Pour and Miklós Poór
Biomolecules 2020, 10(3), 409; https://doi.org/10.3390/biom10030409 - 6 Mar 2020
Cited by 26 | Viewed by 4487
Abstract
Flavonoids are abundant polyphenols in nature. They are extensively biotransformed in enterocytes and hepatocytes, where conjugated (methyl, sulfate, and glucuronide) metabolites are formed. However, bacterial microflora in the human intestines also metabolize flavonoids, resulting in the production of smaller phenolic fragments (e.g., hydroxybenzoic, [...] Read more.
Flavonoids are abundant polyphenols in nature. They are extensively biotransformed in enterocytes and hepatocytes, where conjugated (methyl, sulfate, and glucuronide) metabolites are formed. However, bacterial microflora in the human intestines also metabolize flavonoids, resulting in the production of smaller phenolic fragments (e.g., hydroxybenzoic, hydroxyacetic and hydroxycinnamic acids, and hydroxybenzenes). Despite the fact that several colonic metabolites appear in the circulation at high concentrations, we have only limited information regarding their pharmacodynamic effects and pharmacokinetic interactions. Therefore, in this in vitro study, we investigated the interactions of 24 microbial flavonoid metabolites with human serum albumin and cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes. Our results demonstrated that some metabolites (e.g., 2,4-dihydroxyacetophenone, pyrogallol, O-desmethylangolensin, and 2-hydroxy-4-methoxybenzoic acid) form stable complexes with albumin. However, the compounds tested did not considerably displace Site I and II marker drugs from albumin. All CYP isoforms examined were significantly inhibited by O-desmethylangolensin; nevertheless, only its effect on CYP2C9 seems to be relevant. Furthermore, resorcinol and phloroglucinol showed strong inhibitory effects on CYP3A4. Our results demonstrate that, besides flavonoid aglycones and their conjugated derivatives, some colonic metabolites are also able to interact with proteins involved in the pharmacokinetics of drugs. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Graphical abstract

12 pages, 2794 KB  
Article
A New Pathway for the Synthesis of a New Class of Blue Fluorescent Benzofuran Derivatives
by Costel Moldoveanu, Ionel Mangalagiu, Dragos Lucian Isac, Anton Airinei and Gheorghita Zbancioc
Molecules 2018, 23(8), 1968; https://doi.org/10.3390/molecules23081968 - 6 Aug 2018
Cited by 6 | Viewed by 3752
Abstract
In this study an efficient and straightforward method for obtaining a new class of blue fluorescent bezofuran derivatives, under microwave irradiation, as well as under conventional thermal heating, is presented. Under conventional TH the reactions occur selectively, and a single type of benzofuran [...] Read more.
In this study an efficient and straightforward method for obtaining a new class of blue fluorescent bezofuran derivatives, under microwave irradiation, as well as under conventional thermal heating, is presented. Under conventional TH the reactions occur selectively, and a single type of benzofuran ester derivative was obtained. The synthesis under MW irradiation also led to benzofuran derivatives, but in a time-dependent manner. Irradiation for a short period of time led to a mixture of two types of benzofuran derivatives (3ac and 4ac), while MW irradiation for a longer period of time led to a single type of benzofuran (3-methylbenzofuran), the reaction becoming highly selective. Taking into consideration the advantages offered by MW irradiation in terms of a substantial decrease of solvent consumed, a substantial reduction in reaction time (from days to hours), and a consequent diminution in energy consumption, these methods could be considered environmentally friendly. Here, feasible reaction mechanisms for the benzofuran derivatives formation are described. The absorption and fluorescence emission of the obtained benzofuran derivatives were studied, with part of these compounds being intense blue emitters. A certain influence of the benzofuran substituents concerning absorption and fluorescent properties was observed. Only compounds anchored with a carbomethoxy group of furan ring have shown good quantum yields. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

18 pages, 4612 KB  
Article
Cu(II) Complexes of 4-[(1E)-N-{2-[(Z)-Benzylidene-amino]ethyl}ethanimidoyl]benzene-1,3-diol Schiff Base: Synthesis, Spectroscopic, In-Vitro Antioxidant, Antifungal and Antibacterial Studies
by Ikechukwu P. Ejidike
Molecules 2018, 23(7), 1581; https://doi.org/10.3390/molecules23071581 - 29 Jun 2018
Cited by 49 | Viewed by 6027
Abstract
The current study reports the synthesis of copper complexes of a tridentate Schiff base ligand. The compounds of the type [Cu(L)X]∙n(H2O) (where L = tridentate ONN Schiff base ligand, X = Cl, Br, SCN, NO [...] Read more.
The current study reports the synthesis of copper complexes of a tridentate Schiff base ligand. The compounds of the type [Cu(L)X]∙n(H2O) (where L = tridentate ONN Schiff base ligand, X = Cl, Br, SCN, NO3, CH3COO), were characterized on the basis of elemental analyses, FT-IR, UV-vis, molar conductance, 1H-NMR, XRD and thermal analyses. The spectra revealed that the Schiff base ligand acts as a tridentate ligand through two azomethine nitrogen atoms and a phenolic oxygen atom. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature. TGA and DTA studies results gave insight into the dehydration, thermal stability, and thermal decomposition. Square-planar geometry has been assigned to the prepared complexes as indicated by the electronic spectral measurements. Cu(II) compounds showed antiradical potential against DPPH and ABTS radicals. The antimicrobial potential of the Schiff base ligand and its Cu(II) complexes were evaluated by the rapid p-iodonitrotetrazolium chloride (INT) colorimetric assay against some selected bacteria strains: Staphylococcus aureus and Enterococcus faecalis (Gram +ve); Klebsiella pneumoniae and Pseudomonas aeruginosa (Gram −ve), and fungi (Candida albicans and Cryptococcus neoformans). The compounds showed a broad spectrum of antibacterial and antifungal activities, with MIC values ranging from 48.83 to 3125 μg/mL. Full article
(This article belongs to the Special Issue Metal Complexes of Biological Ligands)
Show Figures

Graphical abstract

14 pages, 1787 KB  
Article
Hypouricemic Effect of 2,5-Dihydroxyacetophenone, a Computational Screened Bioactive Compound from Ganoderma applanatum, on Hyperuricemic Mice
by Danling Liang, Tianqiao Yong, Shaodan Chen, Yizhen Xie, Diling Chen, Xinxin Zhou, Dan Li, Muxia Li, Lu Su and Dan Zuo
Int. J. Mol. Sci. 2018, 19(5), 1394; https://doi.org/10.3390/ijms19051394 - 7 May 2018
Cited by 28 | Viewed by 5757
Abstract
Searching novel hypouricemic agents of high efficacy and safety has attracted a great attention. Previously, we reported the hypouricemic effect of Ganoderma applanatum, but its bioactives, was not referred. Herein, we report the hypouricemic effect of 2,5-dihydroxyacetophenone (DHAP), a compound screened from [...] Read more.
Searching novel hypouricemic agents of high efficacy and safety has attracted a great attention. Previously, we reported the hypouricemic effect of Ganoderma applanatum, but its bioactives, was not referred. Herein, we report the hypouricemic effect of 2,5-dihydroxyacetophenone (DHAP), a compound screened from Ganoderma applanatum computationally. Serum parameters, such as uric acid (SUA), xanthine oxidase (XOD) activity, blood urea nitrogen (BUN), and creatinine were recorded. Real-time reverse transcription PCR (RT-PCR) and Western blot were exploited to assay RNA and protein expressions of organic anion transporter 1 (OAT1), glucose transporter 9 (GLUT9), uric acid transporter 1 (URAT1), and gastrointestinal concentrative nucleoside transporter 2 (CNT2). DHAP at 20, 40, and 80 mg/kg exerted excellent hypouricemic action on hyperuricemic mice, reducing SUA from hyperuricemic control (407 ± 31 μmol/L, p < 0.01) to 180 ± 29, 144 ± 13, and 139 ± 31 μmol/L, respectively. In contrast to the renal toxic allopurinol, DHAP showed some kidney-protective effects. Moreover, its suppression on XOD activity, in vivo and in vitro, suggested that XOD inhibition may be a mechanism for its hypouricemic effect. Given this, its binding mode to XOD was explored by molecular docking and revealed that three hydrogen bonds may play key roles in its binding and orientation. It upregulated OAT1 and downregulated GLUT9, URAT1, and CNT2 too. In summary, its hypouricemic effect may be mediated by regulation of XOD, OAT1, GLUT9, URAT1, and CNT2. Full article
(This article belongs to the Special Issue Traditional Medicine – Unraveling Its Molecular Mechanism)
Show Figures

Graphical abstract

11 pages, 2631 KB  
Article
Preliminary Quality Evaluation and Characterization of Phenolic Constituents in Cynanchi Wilfordii Radix
by Takashi Uchikura, Hiroaki Tanaka, Hidemi Sugiwaki, Morio Yoshimura, Naoko Sato-Masumoto, Takashi Tsujimoto, Nahoko Uchiyama, Takashi Hakamatsuka and Yoshiaki Amakura
Molecules 2018, 23(3), 656; https://doi.org/10.3390/molecules23030656 - 14 Mar 2018
Cited by 9 | Viewed by 4817
Abstract
A new phenolic compound, 2-O-β-laminaribiosyl-4-hydroxyacetophenone (1), was isolated from Cynanchi Wilfordii Radix (CWR, the root of Cynanchum wilfordii Hemsley), along with 10 known aromatic compounds, including cynandione A (2), bungeisides-C (7) and –D (8 [...] Read more.
A new phenolic compound, 2-O-β-laminaribiosyl-4-hydroxyacetophenone (1), was isolated from Cynanchi Wilfordii Radix (CWR, the root of Cynanchum wilfordii Hemsley), along with 10 known aromatic compounds, including cynandione A (2), bungeisides-C (7) and –D (8), p-hydroxyacetophenone (9), 2′,5′-dihydroxyacetophenone (10), and 2′,4′-dihydroxyacetophenone (11). The structure of the new compound (1) was elucidated using spectroscopic methods and chemical methods. The structure of cynandione A (2), including a linkage mode of the biphenyl parts that remained uncertain, was unambiguously confirmed using the 2D 13C–13C incredible natural abundance double quantum transfer experiment (INADEQUATE) spectrum. Additionally, health issues related to the use of Cynanchi Auriculati Radix (CAR, the root of Cynanchum auriculatum Royle ex Wight) instead of CWR have emerged. Therefore, constituents present in methanolic extracts of commercially available CWRs and CARs were examined using UV-sensitive high-performance liquid chromatography (HPLC), resulting in common detection of three major peaks ascribed to cynandione A (2), p-hydroxyacetophenone (9), and 2′,4′-dihydroxyacetophenone (11). Thus, to distinguish between these ingredients, a thin-layer chromatography (TLC) method, combined with only UV irradiation detection, focusing on wilfosides C1N (12) and K1N (13) as marker compounds characteristic of CAR, was performed. Furthermore, we propose this method as a simple and convenient strategy for the preliminary distinction of CWR and CAR to ensure the quality and safety of their crude drugs. Full article
Show Figures

Figure 1

15 pages, 3415 KB  
Article
2,5-Dihydroxyacetophenone Induces Apoptosis of Multiple Myeloma Cells by Regulating the MAPK Activation Pathway
by Jeong-Hyeon Ko, Jae Hwi Lee, Sang Hoon Jung, Seok-Geun Lee, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Woong Mo Yang, Jae-Young Um, Gautam Sethi and Kwang Seok Ahn
Molecules 2017, 22(7), 1157; https://doi.org/10.3390/molecules22071157 - 11 Jul 2017
Cited by 26 | Viewed by 6969
Abstract
2,5-Dihydroxyacetophenone (DHAP) is an active compound obtained from Radix rehmanniae preparata, which is widely used as a herbal medicine in many Asian countries. DHAP has been found to possess anti-inflammatory, anti-anxiety, and neuroprotective qualities. For the present study, we evaluated the anti-cancer effects [...] Read more.
2,5-Dihydroxyacetophenone (DHAP) is an active compound obtained from Radix rehmanniae preparata, which is widely used as a herbal medicine in many Asian countries. DHAP has been found to possess anti-inflammatory, anti-anxiety, and neuroprotective qualities. For the present study, we evaluated the anti-cancer effects of DHAP on multiple myeloma cells. It was discovered that DHAP downregulated the expression of oncogenic gene products like Bcl-xl, Bcl-2, Mcl-1, Survivin, Cyclin D1, IAP-1, Cyclin E, COX-2, and MMP-9, and upregulated the expression of Bax and p21 proteins, consistent with the induction of G2/M phase cell cycle arrest and apoptosis in U266 cells. DHAP inhibited cell proliferation and induced apoptosis, as characterized by the cleavage of PARP and the activation of caspase-3, caspase-8, and caspase-9. Mitogen-activated protein kinase (MAPK) pathways have been linked to the modulation of the angiogenesis, proliferation, metastasis, and invasion of tumors. We therefore attempted to determine the effect of DHAP on MAPK signaling pathways, and discovered that DHAP treatment induced a sustained activation of JNK, ERK1/2, and p38 MAPKs. DHAP also potentiated the pro-apoptotic and anti-proliferative effects of bortezomib in U266 cells. Our results suggest that DHAP can be an effective therapeutic agent to target multiple myeloma. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop