Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = π-phase-shifted fiber Bragg grating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4383 KiB  
Article
Design, Optimization, and Experimental Evaluation of Slow Light Generated by π-Phase-Shifted Fiber Bragg Grating for Use in Sensing Applications
by Matúš Vaňko, Ivan Glesk, Jarmila Müllerová, Jozef Dubovan and Milan Dado
Sensors 2024, 24(2), 340; https://doi.org/10.3390/s24020340 - 6 Jan 2024
Cited by 1 | Viewed by 1967
Abstract
This paper describes design, theoretical analysis, and experimental evaluation of a π-Phase-Shifted Fiber Bragg Grating (π-PSFBG) inscribed in the standard telecom fiber for slow light generation. At first, the grating was designed for its use in the reflection mode with a central wavelength [...] Read more.
This paper describes design, theoretical analysis, and experimental evaluation of a π-Phase-Shifted Fiber Bragg Grating (π-PSFBG) inscribed in the standard telecom fiber for slow light generation. At first, the grating was designed for its use in the reflection mode with a central wavelength of 1552 nm and a pass band width of less than 100 pm. The impact of fabrication imperfections was experimentally investigated and compared to model predictions. The optical spectra obtained experimentally show that the spectral region used for slow light generation is narrower (less than 10 pm), thus allowing for too-low levels of slow light optical-output power. In the next step, the optimization of the grating design was conducted to account for fabrication errors, to improve the grating’s spectral behavior and its temporal performance, and to widen the spectral interval for slow light generation in the grating’s transmission mode. The targeted central wavelength was 1553 nm. The π-PSFBG was then commercially fabricated, and the achieved parameters were experimentally investigated. For the region of (1551–1554) nm, a 15-fold increase in the grating’s pass band width was achieved. We have shown that a pair of retarded optical pulses were generated. The measured group delay was found to be ~10.5 ps (compared to 19 ps predicted by the model). The π-PSFBG operating in its transmission mode has the potential to operate as tunable delay line for applications in RF photonics, ultra-fast signal processing, and optical communications, where tunable high precision delay lines are highly desirable. The π-PSFBG can be designed and used for the generation of variable group delays from tens to hundreds of ps, depending on application needs. Full article
(This article belongs to the Special Issue Recent Advances in Fiber Bragg Grating Sensing-2nd Edition)
Show Figures

Figure 1

15 pages, 3699 KiB  
Article
π-FBG Fiber Optic Acoustic Emission Sensor for the Crack Detection of Wind Turbine Blades
by Qi Yan, Xingchen Che, Shen Li, Gensheng Wang and Xiaoying Liu
Sensors 2023, 23(18), 7821; https://doi.org/10.3390/s23187821 - 12 Sep 2023
Cited by 7 | Viewed by 2516
Abstract
Wind power is growing rapidly as a green and clean energy source. As the core part of a wind turbine, the blades are subjected to enormous stress in harsh environments over a long period of time and are therefore extremely susceptible to damage, [...] Read more.
Wind power is growing rapidly as a green and clean energy source. As the core part of a wind turbine, the blades are subjected to enormous stress in harsh environments over a long period of time and are therefore extremely susceptible to damage, while at the same time, they are costly, so it is important to monitor their damage in a timely manner. This paper is based on the detection of blade damage using acoustic emission signals, which can detect early minor damage and internal damage to the blades. Instead of conventional piezoelectric sensors, we use fiber optic gratings as sensing units, which have the advantage of small size and corrosion resistance. Furthermore, the sensitivity of the system is doubled by replacing the conventional FBG (fiber Bragg grating) with a π-phase-shifted FBG. For the noise problem existing in the system, this paper combines the traditional WPD (wavelet packet decomposition) denoising method with EMD (empirical mode decomposition) to achieve a better noise reduction effect. Finally, small wind turbine blades are used in the experiment and their acoustic emission signals with different damage are collected for feature analysis, which sets the stage for the subsequent detection of different damage degrees and types. Full article
Show Figures

Figure 1

15 pages, 4402 KiB  
Article
Comparative Analysis of the Methods for Fiber Bragg Structures Spectrum Modeling
by Timur Agliullin, Vladimir Anfinogentov, Oleg Morozov, Airat Sakhabutdinov, Bulat Valeev, Ayna Niyazgulyeva and Yagmyrguly Garovov
Algorithms 2023, 16(2), 101; https://doi.org/10.3390/a16020101 - 10 Feb 2023
Cited by 18 | Viewed by 2663
Abstract
The work is dedicated to a comparative analysis of the following methods for fiber Bragg grating (FBG) spectral response modeling. The Layer Sweep (LS) method, which is similar to the common layer peeling algorithm, is based on the reflectance and transmittance determination for [...] Read more.
The work is dedicated to a comparative analysis of the following methods for fiber Bragg grating (FBG) spectral response modeling. The Layer Sweep (LS) method, which is similar to the common layer peeling algorithm, is based on the reflectance and transmittance determination for the plane waves propagating through layered structures, which results in the solution of a system of linear equations for the transmittance and reflectance of each layer using the sweep method. Another considered method is based on the determination of transfer matrices (TM) for the FBG as a whole. Firstly, a homogeneous FBG was modeled using both methods, and the resulting reflectance spectra were compared to the one obtained via a specialized commercial software package. Secondly, modeling results of a π-phase-shifted FBG were presented and discussed. For both FBG models, the influence of the partition interval of the LS method on the simulated spectrum was studied. Based on the analysis of the simulation data, additional required modeling conditions for phase-shifted FBGs were established, which enhanced the modeling performance of the LS method. Full article
(This article belongs to the Special Issue Algorithms and Calculations in Fiber Optics and Photonics)
Show Figures

Figure 1

9 pages, 3020 KiB  
Article
A π-Phase-Shifted Fiber Bragg Grating Partial Discharge Sensor toward Power Transformers
by Tian Tian, Xiu Zhou, Sihan Wang, Yan Luo, Xiuguang Li, Ninghui He, Yunlong Ma, Weifeng Liu, Rongbin Shi and Guoming Ma
Energies 2022, 15(16), 5849; https://doi.org/10.3390/en15165849 - 12 Aug 2022
Cited by 3 | Viewed by 2568
Abstract
Partial discharge (PD) ultrasonic detection is an early sign of the insolation defects of power transformers. The early diagnosis of PD requires the high sensitivity and reliability of ultrasonic sensing systems. For this purpose, a reformative PD ultrasonic sensing system based on phase-shifted [...] Read more.
Partial discharge (PD) ultrasonic detection is an early sign of the insolation defects of power transformers. The early diagnosis of PD requires the high sensitivity and reliability of ultrasonic sensing systems. For this purpose, a reformative PD ultrasonic sensing system based on phase-shifted FBG (PS-FBG) was demonstrated. By using PS-FBG as the ultrasonic sensing unit, the ultrasonic sensing system improved the response to the ultrasonic signal and overcame the electromagnetic noise. To compensate for the influence of temperature change on the ultrasonic sensing system, an automatic wavelength scanning demodulating method was carried out. The wavelength spanning strategy was optimized based on the principle of cross-correlation, in order to quicken the spanning. A PD detection test in the transformer oil was conducted, and the result shows that PS-FBG was 17.5 times more sensitive than PZT. Because of the better ultrasonic response, the proposed system was able to achieve the early diagnosis of insolation faults in a power transformer. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

16 pages, 788 KiB  
Article
Accurate Measurements of a Wavelength Drift in High-Temperature Silica-Fiber Bragg Gratings
by Sergey Dedyulin, Elena Timakova, Dan Grobnic, Cyril Hnatovsky, Andrew D. W. Todd and Stephen J. Mihailov
Metrology 2021, 1(1), 1-16; https://doi.org/10.3390/metrology1010001 - 14 Apr 2021
Cited by 7 | Viewed by 3551
Abstract
Fiber Bragg gratings (FBG) are extensively used to perform high-temperature measurements in harsh environments, however the drift of the characteristic Bragg wavelength affects their long-term stability resulting in an erroneous temperature measurement. Herein we report the most precise and accurate measurements of wavelength [...] Read more.
Fiber Bragg gratings (FBG) are extensively used to perform high-temperature measurements in harsh environments, however the drift of the characteristic Bragg wavelength affects their long-term stability resulting in an erroneous temperature measurement. Herein we report the most precise and accurate measurements of wavelength drifts available up to date on high-temperature FBGs. The measurements were performed with a set of packaged π-phase-shifted FBGs for high wavelength resolution, in caesium and sodium pressure-controlled heat pipes for stable temperature environment and with a tunable laser for stable wavelength measurements with a 0.1 pm resolution. Using this dataset we outline the experimental caveats that can lead to inconsistent results and confusion in measuring wavelength drifts, namely: influence of packaging; interchangeability of FBGs produced under identical conditions; birefringence of π-phase-shifted FBGs; initial transient behaviour of FBGs at constant temperature and dependence on the previous thermal history of FBGs. In addition, we observe that the wavelength stability of π-phase-shifted gratings at lower temperature is significantly improved upon by annealing at higher temperature. The lowest value of the wavelength drift we obtain is +0.014 pm·h1 at 600 °C (corresponding to +0.001 °C·h1) after annealing for 400 h at 1000 °C, the longest annealing time we have tried. The annealing time required to achieve the small drift rate is FBG-specific. Full article
Show Figures

Figure 1

18 pages, 7541 KiB  
Article
Investigation of a Three-Dimensional Micro-Scale Sensing System Based on a Tapered Self-Assembly Four-Cores Fiber Bragg Grating Probe
by Kunpeng Feng, Jiwen Cui, Xun Sun, Hong Dang, Tangjun Shi, Yizhao Niu, Yihua Jin and Jiubin Tan
Sensors 2018, 18(9), 2824; https://doi.org/10.3390/s18092824 - 27 Aug 2018
Cited by 12 | Viewed by 3269
Abstract
Three-dimensional micro-scale sensors are in high demand in the fields of metrology, precision manufacturing and industry inspection. To extend the minimum measurable dimension and enhance the accuracy, a tapered four-cores fiber Bragg grating (FBG) probe is proposed. The sensing model is built to [...] Read more.
Three-dimensional micro-scale sensors are in high demand in the fields of metrology, precision manufacturing and industry inspection. To extend the minimum measurable dimension and enhance the accuracy, a tapered four-cores fiber Bragg grating (FBG) probe is proposed. The sensing model is built to investigate the micro-scale sensing characteristics of this method and the design of the tapered stylus is found to influence the accuracy. Therefore, a π/2 phase-shift point is introduced into the FBGs comprised in the probe to suppress spectrum distortion and improve accuracy. Then, the manufacturing method based on capillary self-assembly is proposed to form the probe and the critical length to form a square array for four cylindrical fibers is verified to be effective for the tapered fibers. Experimental results indicate that the design of the tapered stylus can extend the minimum measurable dimension by twofold and has nearly no influence on its sensitivity. The three-dimensional measurement repeatability is better than 31.1 nm and the stability is better than 200 nm within once measuring process. Furthermore, the measurement precision of the three-dimensional micro-scale measurement results is less than 150 nm. It would be widely used in measuring micro-scale features for industry inspection or metrology. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 5008 KiB  
Article
Study of Optical Fiber Sensors for Cryogenic Temperature Measurements
by Veronica De Miguel-Soto, Daniel Leandro, Aitor Lopez-Aldaba, Juan Jesus Beato-López, José Ignacio Pérez-Landazábal, Jean-Louis Auguste, Raphael Jamier, Philippe Roy and Manuel Lopez-Amo
Sensors 2017, 17(12), 2773; https://doi.org/10.3390/s17122773 - 30 Nov 2017
Cited by 27 | Viewed by 6435
Abstract
In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random [...] Read more.
In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

8 pages, 619 KiB  
Article
Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating
by Qi Zhang, Natale J. Ianno and Ming Han
Sensors 2013, 13(7), 8827-8834; https://doi.org/10.3390/s130708827 - 10 Jul 2013
Cited by 4 | Viewed by 6412
Abstract
We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection [...] Read more.
We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched pFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 ´ 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop