Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = γ -contraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 322 KiB  
Article
Characterization of the Best Approximation and Establishment of the Best Proximity Point Theorems in Lorentz Spaces
by Dezhou Kong, Zhihao Xu, Yun Wang and Li Sun
Axioms 2025, 14(8), 600; https://doi.org/10.3390/axioms14080600 - 1 Aug 2025
Viewed by 105
Abstract
Since the monotonicity of the best approximant is crucial to establish partial ordering methods, in this paper, we, respectively, characterize the best approximants in Banach function spaces and Lorentz spaces Γp,w, in which we especially focus on the monotonicity [...] Read more.
Since the monotonicity of the best approximant is crucial to establish partial ordering methods, in this paper, we, respectively, characterize the best approximants in Banach function spaces and Lorentz spaces Γp,w, in which we especially focus on the monotonicity characterizations. We first study monotonicity characterizations of the metric projection operator onto sublattices in general Banach function spaces by the property Hg. The sufficient and necessary conditions for monotonicity of the metric projection onto cones and sublattices are then, respectively, established in Γp,w. The Lorentz spaces Γp,w are also shown to be reflexive under the condition RBp, which is the basis for the existence of the best approximant. As applications, by establishing the partial ordering methods based on the obtained monotonicity characterizations, the solvability and approximation theorems for best proximity points are deduced without imposing any contractive and compact conditions in Γp,w. Our results extend and improve many previous results in the field of the approximation and partial ordering theory. Full article
(This article belongs to the Section Mathematical Analysis)
13 pages, 2934 KiB  
Article
Mechanotransductive Activation of PPAR-γ by Low-Intensity Pulsed Ultrasound Induces Contractile Phenotype in Corpus Spongiosum Smooth Muscle Cells
by Huan Yu, Jianying Li, Zihan Xu, Zhiwei Peng, Min Wu, Yiqing Lv, Fang Chen, Mingming Yu and Yichen Huang
Biomedicines 2025, 13(7), 1701; https://doi.org/10.3390/biomedicines13071701 - 11 Jul 2025
Viewed by 347
Abstract
Background: Previously, we found that the pathological changes in the corpus spongiosum (CS) in hypospadias were mainly localized within smooth muscle tissue, presenting as a transformation from the contraction phenotype to synthesis. The role of low-intensity pulsed ultrasound (LIPUS) in regulating smooth muscle [...] Read more.
Background: Previously, we found that the pathological changes in the corpus spongiosum (CS) in hypospadias were mainly localized within smooth muscle tissue, presenting as a transformation from the contraction phenotype to synthesis. The role of low-intensity pulsed ultrasound (LIPUS) in regulating smooth muscle cells (SMCs) and angiogenesis has been confirmed. Objectives: To demonstrate the feasibility of regulating the phenotypic transformation of corpus spongiosum smooth muscle cells (CSSMCs) in hypospadias using LIPUS and to explore the potential mechanisms. Materials and Methods: The CSSMCs were extracted from CS in patients with proximal hypospadias. In vitro experiments were conducted to explore the appropriate LIPUS irradiation intensity and duration which could promote the phenotypic transformation of CSSMCs. A total of 71 patients with severe hypospadias were randomly divided into a control group and a LIPUS group to verify the in vivo transition effect of LIPUS. Consequently, the potential mechanisms by which LIPUS regulates the phenotypic transformation of CSSMCs were explored in vitro. Results: In vitro experiments showed that LIPUS with an intensity of 100 mW/cm2 and a duration of 10 min could significantly increase the expression of contraction markers in CSSMCs and decrease the expression of synthesis markers. Moreover, LIPUS stimulation could alter the phenotype of CSSMCs in patients with proximal hypospadias. RNA sequencing results revealed that peroxisome proliferator-activated receptor gamma (PPAR-γ) significantly increased after LIPUS stimulation. Overexpression of PPAR-γ significantly increased the expression of contraction markers in CSSMCs, and the knockdown of PPAR-γ blocked this effect. Conclusions: LIPUS can regulate the transition of CSSMCs from a synthetic to a contractile phenotype in hypospadias. The PPAR-γ-mediated signaling pathway is a possible mechanism involved in this process. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

23 pages, 3305 KiB  
Review
CSE/H2S Signaling Pathways in Enhancing Muscle Function and Insulin Sensitivity During Exercise
by Miaomiao Xu, Xiaoguang Liu, Danting Hu, Zhaowei Li and Liming Lu
Int. J. Mol. Sci. 2025, 26(4), 1741; https://doi.org/10.3390/ijms26041741 - 18 Feb 2025
Viewed by 1352
Abstract
Exercise plays a crucial role in maintaining metabolic health, enhancing muscle function, and improving insulin sensitivity, thereby preventing metabolic diseases such as type 2 diabetes. Emerging evidence highlights the significance of the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) signaling pathway as a [...] Read more.
Exercise plays a crucial role in maintaining metabolic health, enhancing muscle function, and improving insulin sensitivity, thereby preventing metabolic diseases such as type 2 diabetes. Emerging evidence highlights the significance of the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) signaling pathway as a pivotal regulator in the molecular and physiological adaptations induced by exercise. This review comprehensively examines the biosynthesis and metabolism of H2S, its distribution in different muscle tissues, and the mechanisms by which CSE/H2S influences muscle contraction, repair, and protein synthesis. Additionally, it explores how CSE/H2S modulates insulin signaling pathways, glucose uptake, and lipid metabolism, thereby enhancing insulin sensitivity. The potential of H2S donors as exercise supplements is also discussed, highlighting their ability to improve exercise performance and metabolic health. Current research advancements, including the application of multi-omics approaches, are reviewed to provide a deeper understanding of the complex molecular networks involved. Furthermore, the challenges and future directions in CSE/H2S research are addressed, emphasizing the need for further mechanistic studies and clinical applications. This review underscores the therapeutic potential of targeting the CSE/H2S pathway to optimize the benefits of exercise and improve metabolic health. Full article
(This article belongs to the Special Issue Molecular and Physiological Mechanisms of Exercise)
Show Figures

Figure 1

16 pages, 286 KiB  
Article
S-Contractive Mappings on Vector-Valued White Noise Functional Space and Their Applications
by Pengcheng Ma, Yuanyuan Gong and Aiju Wei
Symmetry 2025, 17(1), 15; https://doi.org/10.3390/sym17010015 - 25 Dec 2024
Viewed by 592
Abstract
In this paper, we propose a new notion, which we name S-contractive mapping, in a framework of vector-valued white noise functionals WωNΓ(H)K(WωN)*. And [...] Read more.
In this paper, we propose a new notion, which we name S-contractive mapping, in a framework of vector-valued white noise functionals WωNΓ(H)K(WωN)*. And we give concrete definitions of S-contractive mappings for vector-valued white noise functionals. We establish the fixed-point theorems of S-contractive mappings. As applications, by applying the fixed-point theorems of generalized S-contractive mappings, we prove the existence and uniqueness of a generalized form of differential equations of vector-valued white noise functionals with weak conditions and investigate Wick-type differential equations of vector-valued white noise functionals with generalized conditions. Full article
(This article belongs to the Section Mathematics)
12 pages, 3594 KiB  
Article
Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters
by Nikita S. Fedorov, Guzel V. Sibgatullina and Artem I. Malomouzh
Int. J. Mol. Sci. 2024, 25(23), 12510; https://doi.org/10.3390/ijms252312510 - 21 Nov 2024
Cited by 1 | Viewed by 1640
Abstract
γ-Aminobutyric acid (GABA) has a significant impact on the functioning of not only the central but also the peripheral part of the nervous system. Recently, various elements of the GABAergic signaling system have been discovered in the area of the neuromuscular junction of [...] Read more.
γ-Aminobutyric acid (GABA) has a significant impact on the functioning of not only the central but also the peripheral part of the nervous system. Recently, various elements of the GABAergic signaling system have been discovered in the area of the neuromuscular junction of mammals. At the same time, the functional activity of membrane-bound GABA transporters (GATs) and their role in neuromuscular transmission have not been identified. In the present study, performed on a neuromuscular preparation of the mouse diaphragm, the effect of GABA transporter inhibitors (nipecotic acid and β-alanine) on the force of muscle contraction was assessed. It was found that in the presence of both compounds in the bathing solution, the force of contractions caused by stimulation of the motor nerve dropped by 30–50%. However, when the muscle was stimulated directly, no effect of GABA transporter inhibitors on the contractile force was observed. The depressant effect of β-alanine induced by nerve stimulation was completely abolished by the GABAB receptor blocker CGP 55845. GABA transporters were detected at the neuromuscular junction using immunohistochemistry. Thus, our results indicate that GABA transporters are localized in the area of the neuromuscular junction, and their activity affects the muscle contraction force. This influence is most likely due to the removal of GABA released during nerve stimulation and activating GABA receptors, which leads to a decrease in the contraction force of the striated muscles. Full article
(This article belongs to the Special Issue Transporters in Health and Disease)
Show Figures

Figure 1

21 pages, 6757 KiB  
Article
Study of Hydrofoil Boundary Layer Prediction with Two Correlation-Based Transition Models
by Changliang Ye, Yang Wang, Dongsen An, Jun Chen, Hongyeyu Yan, Yuan Zheng, Kan Kan and Bart P. M. van Esch
J. Mar. Sci. Eng. 2024, 12(11), 1965; https://doi.org/10.3390/jmse12111965 - 1 Nov 2024
Viewed by 1351
Abstract
In the realm of marine science and engineering, hydrofoils play a pivotal role in the efficiency and performance of marine turbines and water-jet pumps. In this investigation, the boundary layer characteristics of an NACA0009 hydrofoil with a blunt trailing edge are focused on. [...] Read more.
In the realm of marine science and engineering, hydrofoils play a pivotal role in the efficiency and performance of marine turbines and water-jet pumps. In this investigation, the boundary layer characteristics of an NACA0009 hydrofoil with a blunt trailing edge are focused on. The effectiveness of both the two-equation gamma theta (γ-Reθt) transition model and the one-equation intermittency (γ) transition model in forecasting boundary layer behavior is evaluated. When considering natural transition, these two models outperform the shear stress transport two-equation (SST k-ω) turbulence model, notably enhancing the accuracy of predicting boundary layer flow distribution for chord-length Reynolds numbers (ReL) below 1.6 × 106. However, as ReL increases, both transition models deviate from experimental values, particularly when ReL is greater than 2 × 106. The results indicate that the laminar separation bubble (LSB) is sensitive to changes in angles of attack (AOA) and ReL, with its formation observed at AOA greater than 2°. The dimensions of the LSB, including the initiation and reattachment points, are found to contract as ReL increases while maintaining a constant AOA. Conversely, an increase in AOA at similar ReL values leads to a reduced size of the LSB. The findings are essential for the design and performance optimization of water-jet pumps, particularly in predicting and flow separation and transition phenomena. Full article
Show Figures

Figure 1

16 pages, 314 KiB  
Article
Fuzzy Fixed Point Theorems in S-Metric Spaces: Applications to Navigation and Control Systems
by Maryam Iqbal, Afshan Batool, Aftab Hussain and Hamed Alsulami
Axioms 2024, 13(9), 650; https://doi.org/10.3390/axioms13090650 - 22 Sep 2024
Cited by 1 | Viewed by 2207
Abstract
This manuscript examines fuzzy fixed point results using the concepts of S-metric space. We introduce two contractive maps, γ- and γ-weak contractions, within the context of S-metric spaces. These contractive maps form the cornerstone of our research, offering a [...] Read more.
This manuscript examines fuzzy fixed point results using the concepts of S-metric space. We introduce two contractive maps, γ- and γ-weak contractions, within the context of S-metric spaces. These contractive maps form the cornerstone of our research, offering a novel approach to solving mathematical problems. We explore fixed point results derived from the application of these maps, showcasing their utility in finding solutions in diverse mathematical scenarios. Furthermore, we provide concrete examples that illustrate the practical relevance and versatility of our theorems, emphasizing their potential applications across a wide range of scientific and engineering domains. This manuscript presents the novel concepts of γ- and γ-weak contractions and establishes their importance in mathematical research. By demonstrating their effectiveness in solving real-world problems and offering illustrative examples, our work contributes valuable tools and insights to the broader scientific community, enhancing our understanding of contractive maps and their applications. Full article
(This article belongs to the Special Issue Advances in Fixed Point Theory with Applications)
25 pages, 6293 KiB  
Article
Activation of GABABR Attenuates Intestinal Inflammation by Reducing Oxidative Stress through Modulating the TLR4/MyD88/NLRP3 Pathway and Gut Microbiota Abundance
by Ziteng Deng, Dan Li, Lu Wang, Jing Lan, Jiaqi Wang and Yunfei Ma
Antioxidants 2024, 13(9), 1141; https://doi.org/10.3390/antiox13091141 - 21 Sep 2024
Cited by 6 | Viewed by 2119
Abstract
Oxidative stress emerges as a prominent factor in the onset and progression of intestinal inflammation, primarily due to its critical role in damaging cells and tissues. GABAergic signaling is important in the occurrence and development of various intestinal disorders, yet its effect on [...] Read more.
Oxidative stress emerges as a prominent factor in the onset and progression of intestinal inflammation, primarily due to its critical role in damaging cells and tissues. GABAergic signaling is important in the occurrence and development of various intestinal disorders, yet its effect on oxidative stress remains unclear. We attempted to assess whether GABAergic signaling participated in the regulation of oxidative stress during enteritis. The results showed that lipopolysaccharide (LPS) significantly decreased γ-aminobutyric acid (GABA) levels in the ileal tissues of mice. Interestingly, the application of GABA significantly repressed the shedding of intestinal mucosal epithelial cells and inflammatory cell infiltration, inhibited the expressions of proinflammatory factors, including granulocyte colony-stimulating factor and granulocyte-macrophage colony stimulating factor, and enhanced the levels of anti-inflammatory cytokines interleukin (IL)-4 and IL-10, indicating that GABA could alleviate enteritis in mice. This observation was further supported by transcriptome sequencing, revealing a total of 271 differentially expressed genes, which exhibited a marked enrichment of inflammatory and immune-related pathways, alongside a prominent enhancement of GABA B receptor (GABABR) signaling following GABA administration. Effectively, Baclofen pretreatment alleviated intestinal mucosal damage in LPS-induced mice, suppressed proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor alpha expressions, and boosted total antioxidant capacity, superoxide dismutase (SOD), and glutathione (GSH) levels. Moreover, Baclofen notably enhanced the viability of LPS-stimulated IPEC-J2 cells, contracted the proinflammatory secretion factors, and reinforced SOD, GSH, and catalase levels, emphasizing the anti-inflammatory and antioxidant effects associated with GABABR activation. Mechanistically, Baclofen restrained the mRNA and protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3), and inducible nitric oxide synthase, while elevating nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in both mice and IPEC-J2 cells, indicating that activating GABABR strengthened antioxidant abilities by interrupting the TLR4/MyD88/NLRP3 pathway. Furthermore, 16S rDNA analysis demonstrated that Baclofen increased the relative abundance of probiotic, particularly Lactobacillus, renowned for its antioxidant properties, while reducing the relative richness of harmful bacteria, predominantly Enterobacteriaceae, suggesting that GABABR signaling may have contributed to reversing intestinal flora imbalances to relieve oxidative stress in LPS-induced mice. Our study identified previously unappreciated roles for GABABR signaling in constricting oxidative stress to attenuate enteritis, thus offering novel insights for the treatment of intestinal inflammation. Full article
Show Figures

Figure 1

15 pages, 8264 KiB  
Review
Molecular, Morphological and Electrophysiological Differences between Alpha and Gamma Motoneurons with Special Reference to the Trigeminal Motor Nucleus of Rat
by Youngnam Kang, Mitsuru Saito and Hiroki Toyoda
Int. J. Mol. Sci. 2024, 25(10), 5266; https://doi.org/10.3390/ijms25105266 - 12 May 2024
Cited by 2 | Viewed by 1839
Abstract
The muscle contraction during voluntary movement is controlled by activities of alpha- and gamma-motoneurons (αMNs and γMNs, respectively). In spite of the recent advances in research on molecular markers that can distinguish between αMNs and γMNs, electrophysiological membrane properties and firing patterns of [...] Read more.
The muscle contraction during voluntary movement is controlled by activities of alpha- and gamma-motoneurons (αMNs and γMNs, respectively). In spite of the recent advances in research on molecular markers that can distinguish between αMNs and γMNs, electrophysiological membrane properties and firing patterns of γMNs have remained unknown, while those of αMNs have been clarified in detail. Because of the larger size of αMNs compared to γMNs, blindly or even visually recorded MNs were mostly αMNs, as demonstrated with molecular markers recently. Subsequently, the research on αMNs has made great progress in classifying their subtypes based on the molecular markers and electrophysiological membrane properties, whereas only a few studies demonstrated the electrophysiological membrane properties of γMNs. In this review article, we provide an overview of the recent advances in research on the classification of αMNs and γMNs based on molecular markers and electrophysiological membrane properties, and discuss their functional implication and significance in motor control. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2024)
Show Figures

Figure 1

29 pages, 646 KiB  
Article
Exploring Integral ϝ-Contractions with Applications to Integral Equations and Fractional BVPs
by Zubair Nisar, Nayyar Mehmood, Akbar Azam, Faryad Ali and Mohammed A. Al-Kadhi
Fractal Fract. 2023, 7(12), 833; https://doi.org/10.3390/fractalfract7120833 - 24 Nov 2023
Viewed by 1832
Abstract
In this article, two types of contractive conditions are introduced, namely extended integral Ϝ-contraction and (ϰ,Ω-Ϝ)-contraction. For the case of two mappings and their coincidence point theorems, a variant of (ϰ,Ω- [...] Read more.
In this article, two types of contractive conditions are introduced, namely extended integral Ϝ-contraction and (ϰ,Ω-Ϝ)-contraction. For the case of two mappings and their coincidence point theorems, a variant of (ϰ,Ω-Ϝ)-contraction has been introduced, which is called (ϰ,Γ1,2,Ω-Ϝ)-contraction. In the end, the applications of an extended integral Ϝ-contraction and (ϰ,Ω-Ϝ)-contraction are given by providing an existence result in the solution of a fractional order multi-point boundary value problem involving the Riemann–Liouville fractional derivative. An interesting existence result for the solution of the nonlinear Fredholm integral equation of the second kind using the (ϰ,Γ1,2,Ω-Ϝ)-contraction has been proven. Herein, an example is established that explains how the Picard–Jungck sequence converges to the solution of the nonlinear integral equation. Examples are given for almost all the main results and some graphs are plotted where required. Full article
Show Figures

Figure 1

21 pages, 4135 KiB  
Article
Vasodilator Responses of Perivascular Adipose Tissue-Derived Hydrogen Sulfide Stimulated with L-Cysteine in Pregnancy Hypertension-Induced Endothelial Dysfunction in Rats
by Priscilla Bianca de Oliveira, Gabriela Palma Zochio, Edileia Souza Paula Caetano, Maria Luiza Santos da Silva and Carlos Alan Dias-Junior
Antioxidants 2023, 12(11), 1919; https://doi.org/10.3390/antiox12111919 - 26 Oct 2023
Cited by 4 | Viewed by 2040
Abstract
Endothelium-derived nitric oxide (NO)-induced vasodilation is impaired in pregnancy hypertension. However, the role of perivascular adipose tissue (PVAT)-derived hydrogen sulfide (H2S), as an alternative for counteracting vascular dysfunction, is incompletely clear in hypertensive disorders of pregnancy. Therefore, PVAT-derived H2S-induced [...] Read more.
Endothelium-derived nitric oxide (NO)-induced vasodilation is impaired in pregnancy hypertension. However, the role of perivascular adipose tissue (PVAT)-derived hydrogen sulfide (H2S), as an alternative for counteracting vascular dysfunction, is incompletely clear in hypertensive disorders of pregnancy. Therefore, PVAT-derived H2S-induced vasodilation was investigated in pregnancy hypertension-induced endothelial dysfunction. Non-pregnant (Non-Preg) and pregnant (Preg) rats were submitted (or not) to the deoxycorticosterone (DOCA)-salt protocol and assigned as follows (n = 10/group): Non-Preg, Non-Preg+DOCA, Preg, and Preg+DOCA groups. Systolic blood pressure (SBP), angiogenesis-related factors, determinant levels of H2S (PbS), NO (NOx), and oxidative stress (MDA) were assessed. Vascular changes were recorded in thoracic aortas with PVAT and endothelium (intact and removed layers). Vasorelaxation responses to the substrate (L-cysteine) for the H2S-producing enzyme cystathionine-γ-lyase (CSE) were examined in the absence and presence of CSE-inhibitor DL-propargylglycine (PAG) in thoracic aorta rings pre-incubated with cofactor for CSE (pyridoxal-5 phosphate: PLP) and pre-contracted with phenylephrine. Hypertension was only found in the Preg+DOCA group. Preg+DOCA rats showed angiogenic imbalances and increased levels of MDA. PbS, but not NOx, showed increased levels in the Preg+DOCA group. Pre-incubation with PLP and L-cysteine elevated determinants of H2S in PVAT and placentas of Preg-DOCA rats, whereas no changes were found in the aortas without PVAT. Aortas of Preg-DOCA rats showed that PVAT-derived H2S-dependent vasodilation was greater compared to endothelium-derived H2S, whereas PAG blocked these responses. PVAT-derived H2S endogenously stimulated with the amino acid L-cysteine may be an alternative to induce vasorelaxation in endothelial dysfunction related to pregnancy hypertension. Full article
(This article belongs to the Special Issue Oxidative Stress in Cardiorenal System)
Show Figures

Graphical abstract

20 pages, 324 KiB  
Article
Common Fixed Point Theorems for Novel Admissible Contraction with Applications in Fractional and Ordinary Differential Equations
by Watchareepan Atiponrat, Pariwate Varnakovida, Pharunyou Chanthorn, Teeranush Suebcharoen and Phakdi Charoensawan
Mathematics 2023, 11(15), 3370; https://doi.org/10.3390/math11153370 - 1 Aug 2023
Cited by 1 | Viewed by 1115
Abstract
In our work, we offer a novel idea of contractions, namely an (α,β,γ)Pcontraction, to prove the existence of a coincidence point and a common fixed point in complete metric spaces. This leads us to [...] Read more.
In our work, we offer a novel idea of contractions, namely an (α,β,γ)Pcontraction, to prove the existence of a coincidence point and a common fixed point in complete metric spaces. This leads us to an extension of previous results in the literature. Furthermore, we applied our acquired results to prove the existence of a solution for ordinary and fractional differential equations with integral-type boundary conditions. Full article
19 pages, 2584 KiB  
Article
Synthesis and Characterization of Dental Nanocomposite Resins Reinforced with Dual Organomodified Silica/Clay Nanofiller Systems
by Maria Saridou, Alexandros K. Nikolaidis, Elisabeth A. Koulaouzidou and Dimitris S. Achilias
J. Funct. Biomater. 2023, 14(8), 405; https://doi.org/10.3390/jfb14080405 - 1 Aug 2023
Cited by 3 | Viewed by 2320
Abstract
Quaternary ammonium (QA) compounds have been widely studied as potential disinfectants in dental restorative materials. The present work investigates whether the gradual displacement of nanosilica by QA-clay nanoparticles may have an impact on the physicochemical and mechanical properties of dental nanocomposite resins. For [...] Read more.
Quaternary ammonium (QA) compounds have been widely studied as potential disinfectants in dental restorative materials. The present work investigates whether the gradual displacement of nanosilica by QA-clay nanoparticles may have an impact on the physicochemical and mechanical properties of dental nanocomposite resins. For this purpose, Bis-GMA/TEGDMA-based composite resins were initially synthesized by incorporating 3-(trimethoxysilyl)propyl methacrylate (γ-MPS)-modified nanosilica/QA-clay nanoparticles at 60/0, 55/5, 50/10, 40/20, and 30/30 wt% filler loadings. Their structural characterization was performed by means of scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The degree of double bond conversion (DC) over time and the polymerization shrinkage were determined with Fourier transform infrared spectroscopy (FTIR) and a linear variable displacement transducer (LVDT), respectively. Mechanical properties as well as water sorption and solubility parameters were also evaluated after storage of nanocomposites in water for 7 days at 37 °C. Spectral data revealed intercalated clay configurations along with areas characterized by silica-clay clusters for clay loadings up to 30 wt%. Furthermore, the insertion of 10 wt% QA-clay enhanced the auto-acceleration effect also sustaining the ultimate (DC), reduced the setting contraction and solubility, and, finally, yielded flexural modulus and strength very close to those of the control nanocomposite resin. The acquired results could herald the advanced design of dental restorative materials appropriate for contemporary clinical applications. Full article
Show Figures

Figure 1

15 pages, 3350 KiB  
Article
Density Functional Theory Study of Electronic Structure and Optical Properties of Ln3+-Doped γ-Bi2MoO6 (Ln=Gd, Ho, Yb)
by Bohang Zhang, Gaihui Liu, Huihui Shi, Qiao Wu, Suqin Xue, Tingting Shao, Fuchun Zhang and Xinghui Liu
Crystals 2023, 13(8), 1158; https://doi.org/10.3390/cryst13081158 - 26 Jul 2023
Cited by 7 | Viewed by 2088
Abstract
Based on density functional theory (DFT), theoretical models of three kinds of lanthanide rare earth metal ion-doped γ-Bi2MoO6 were constructed (Ln-BMO (Ln=Gd, Ho, Yb)). The geometric structure, electronic structure, and optical properties of the model were calculated, and the influence [...] Read more.
Based on density functional theory (DFT), theoretical models of three kinds of lanthanide rare earth metal ion-doped γ-Bi2MoO6 were constructed (Ln-BMO (Ln=Gd, Ho, Yb)). The geometric structure, electronic structure, and optical properties of the model were calculated, and the influence of doped Ln3+ ions on the structures and properties of the system was analyzed. The results revealed that the substitution of smaller ionic radius Ln3+ ions for Bi3+ ions caused a contraction of the lattice parameters. At the same time, the contribution of the [Ln]4d near valence band and conduction band reduced the bandwidth of γ-Bi2MoO6, forming the Ln-O ionic bond with different strengths to obtain higher charge conductivity and charge-separation ability. Secondly, Ln3+ ions have a strongly ionic charge, which leads to the appearance of optical absorption bands in the infrared region and part of the visible region. This reduces the reflection in the visible region, improves the utilization rate, delays the loss of electron energy, and promotes phase matching in the visible region. And the Gd3+-doped system has better photocatalytic activity than the other Ln3+-doped system. This research provides theoretical insights into doped lanthanide rare earth ions and also provides strategies for the modification of γ-Bi2MoO6 nanomaterials. Full article
(This article belongs to the Special Issue Two-Dimensional Materials: Synthesis, Property and Applications)
Show Figures

Figure 1

15 pages, 5194 KiB  
Article
Inflammation and Immune Reactions in the Fetus as a Response to COVID-19 in the Mother
by Nilufar R. Gashimova, Liudmila L. Pankratyeva, Victoria O. Bitsadze, Jamilya Kh. Khizroeva, Maria V. Tretyakova, Kristina N. Grigoreva, Valentina I. Tsibizova, Jean-Christophe Gris, Natalia D. Degtyareva, Fidan E. Yakubova and Alexander D. Makatsariya
J. Clin. Med. 2023, 12(13), 4256; https://doi.org/10.3390/jcm12134256 - 25 Jun 2023
Cited by 5 | Viewed by 2423
Abstract
Background: Contracting COVID-19 during pregnancy can harm both the mother and the unborn child. Pregnant women are highly likely to develop respiratory viral infection complications with critical conditions caused by physiological changes in the immune and cardiopulmonary systems. Asymptomatic COVID-19 in pregnant [...] Read more.
Background: Contracting COVID-19 during pregnancy can harm both the mother and the unborn child. Pregnant women are highly likely to develop respiratory viral infection complications with critical conditions caused by physiological changes in the immune and cardiopulmonary systems. Asymptomatic COVID-19 in pregnant women may be accompanied by fetal inflammatory response syndrome, which has adverse consequences for the newborn’s life and health. Purpose: To conduct an inflammatory response assessment of the fetus due to the effects of COVID-19 on the mother during pregnancy by determining pro-inflammatory cytokines, cell markers, T regulatory cells, T cell response, evaluation of cardiac function, and thymus size. Materials and methods: A prospective study included pregnant women (n = 92). The main group consisted of 62 pregnant women with COVID-19 infection: subgroup 1—SARS-CoV-2 PCR-positive pregnant women 4–6 weeks before delivery (n = 30); subgroup 2—SARS-CoV-2 PCR-positive earlier during pregnancy (n = 32). The control group consisted of 30 healthy pregnant women. In all pregnant women, the levels of circulating cytokines and chemokines (IL-1α, IL-6, IL-8, IL-10, GM-CSF, TNF-α, IFN-γ, MIP-1β, and CXCL-10) were determined in the peripheral blood and after delivery in the umbilical cord blood, and an analysis was performed of the cell markers on dendritic cells, quantitative and functional characteristics of T regulatory cells, and specific T cell responses. The levels of thyroxine and thyroid-stimulating hormone were determined in the newborns of the studied groups, and ultrasound examinations of the thymus and echocardiography of the heart were also performed. Results: The cord blood dendritic cells of newborns born to mothers who suffered from COVID-19 4–6 weeks before delivery (subgroup 1) showed a significant increase in CD80 and CD86 expression compared to the control group (p = 0.023). In the umbilical cord blood samples of children whose mothers tested positive for COVID-19 4–6 weeks before delivery (subgroup 1), the CD4+CCR7+ T cells increased with a concomitant decrease in the proportion of naive CD4+ T cells compared with the control group (p = 0.016). Significantly higher levels of pro-inflammatory cytokines and chemokines were detected in the newborns of subgroup 1 compared to the control group. In the newborns of subgroup 1, the functional activity of T regulatory cells was suppressed, compared with the newborns of the control group (p < 0.001). In all pregnant women with a severe coronavirus infection, a weak T cell response was detected in them as well as in their newborns. In newborns whose mothers suffered a coronavirus infection, a decrease in thymus size, transient hypothyroxinemia, and changes in functional parameters according to echocardiography were revealed compared with the newborns of the control group. Conclusions: Fetal inflammatory response syndrome can occur in infants whose mothers suffered from a COVID-19 infection during pregnancy and is characterized by the activation of the fetal immune system and increased production of pro-inflammatory cytokines. The disease severity in a pregnant woman does not correlate with SIRS severity in the neonatal period. It can vary from minimal laboratory parameter changes to the development of complications in the organs and systems of the fetus and newborn. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

Back to TopTop