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Abstract: In this article, two types of contractive conditions are introduced, namely extended integral
z-contraction and (κ, Ω-z)-contraction. For the case of two mappings and their coincidence point
theorems, a variant of (κ, Ω-z)-contraction has been introduced, which is called (κ, Γ1,2, Ω-z)-
contraction. In the end, the applications of an extended integral z-contraction and (κ, Ω-z)-
contraction are given by providing an existence result in the solution of a fractional order multi-point
boundary value problem involving the Riemann–Liouville fractional derivative. An interesting
existence result for the solution of the nonlinear Fredholm integral equation of the second kind using
the (κ, Γ1,2, Ω-z)-contraction has been proven. Herein, an example is established that explains how
the Picard–Jungck sequence converges to the solution of the nonlinear integral equation. Examples
are given for almost all the main results and some graphs are plotted where required.

Keywords: fixed point; compatible mappings; point of coincidence; extended integral z-contraction;
(κ, Ω-z)-contraction; (κ, Γ1,2, Ω-z)-contraction; Picard–Jungck sequence; integral equations;
fractional BVP; integral equations

1. Introduction

An integral-type contractive inequality is an inequality that relates the integral of a
function over a certain domain to the value of the function at some point within that domain.
Integral-type contractive inequalities are important in the analysis of various mathematical
problems, including differential equations, dynamical systems, and optimization. They
provide a powerful tool for proving the existence, uniqueness, and stability of solutions to
these problems. Integral-type contractive inequality was first introduced and related fixed-
point results were proved by Branciari [1] in 2002. Ozturk and Turkoglu [2] established
remarkable results using partial metric space, satisfying integral-type contractive conditions.
In 1993, Czerwik [3] uncovered the novel concept of b-metric spaces and proved the fixed-
point theorem of contractive-type mappings. The b-metric space is a generalization of
metric spaces that weakens one of the axioms of a metric space, namely the triangle
inequality, by replacing it with a weaker condition called the b-metric inequality. Therefore,
b-metric spaces are important in mathematics as they provide a more flexible framework
for studying distance-based structures that do not necessarily satisfy the triangle inequality.
This allows the study of a wide range of phenomena that cannot captured by classical metric
spaces, including certain types of fractals, non-Euclidean geometries, and various types of
networks and graphs. b-metric spaces are especially used in the study of fixed-point theory,
and they provide a generalization of the Banach fixed-point theorem to non-metric spaces.

In 1998, Czerwik [4] proved the fixed-point result for set-valued mappings in the
context of b-metric space. Suzuki [5] proved basic inequality related to b-metric and proved
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important fixed-point theorems by using the basic inequality in [5]. Neetu [6], proved
the fixed-point result of contractive functions in cone b-metric spaces without a normality
condition. Kanwal et al. [7], introduced a new type of contractive condition for contractive
mappings to prove the fixed-point theorems in the settings of b-metric space. More articles
related to this study are in [8–15] and the references therein.

In 2012, Wardowksi [16] gave the idea of z-contraction and proved new remarkable
results. Parvaneh et al. [17] introduced (α-β)-FG-contractions and generalized the result of
the Wardowski fixed-point theorem in ordered b-metric spaces. In 2015, Sarwar et al. [18]
proved the results for weakly compatible mappings which satisfy integral-type contrac-
tions. Some other important results related to z-contraction are in [16,19,20]. Cosentino
and Vetro [21] in 2014 derived some new results for the fixed points of mapping satisfy-
ing Hardy Roger-type z-contractions. Some other results related to integral z-integral
contraction are in [22,23]. In 2020, Carić et al. [24] presented simpler proofs for recent
significant results in generalized z-Suzuki-contractions in b-metric spaces. Hammad and
Sen [25] presented the generalized almost (s, q)-Jaggi z-contraction in b-metric-like spaces,
discussing its properties and exploring fixed-point results. The article also demonstrates
applications in solving electric circuit equations and second-order differential equations. In
2021, Carić et al. [26] introduced z-integral contraction and present new results of fixed
points and common fixed points. Huang et al. [27] introduced and studied the generalized
z-contractions in b-metric-like spaces, along with the establishment of fixed-point theo-
rems for these contractions. This article also explores the application of these theorems in
finding the existence and uniqueness of solutions to integral equations in the context of
b-metric-like spaces.

This article basically combine three ideas, namely the Banach contraction principle; F-
contraction (in which F satisfies three conditions, defined below) given by Wardowksi [16]
in 2012; and Integral contraction given by Branciari [1] in 2002. It has already been explored
to some extent by Carić et al. [26], namely integral z-contraction. Here, we extend the
integral z-contraction by generalizing the contractive condition and only using the first con-
ditions of F-contraction by Wardowksi [16] and naming it extended integral z-contraction.
Furthermore, we also generalized the integral contraction with the class of functions de-
noted by Ω. We further generalize the extended integral z-contraction using this class
Ω, and named the resulting contraction (κ, Γ, Ω-z)-contraction, but space remains the
metric space. In this way, we explore z-contraction and the integral contraction. In the
next paragraph, a clearer picture of our work has been explained.

The article introduces new types of the contractions that are more general than the
existing ones. In Section 2, extended integral z-contractions are introduced. In Section 3,
the notion of (κ, Γ, Ω-z)-contraction has been introduced. Furthermore, for two mappings
and their coincidence/common fixed-point results, and a variant of (κ, Γ, Ω-z)-contraction
is introduced called (κ, Γ1,2, Ω-z)-contraction. The whole Section 4 is devoted to the
applications of the contractions. These applications include existence results for a given
nonlinear fractional order boundary value problem. This has been performed using both
extended integral z-contraction and (κ, Γ, Ω-z)-contraction. An existence result for a
nonlinear integral equation has also been proved using (κ, Γ1,2, Ω-z)-contraction. This is
well explained in a given example using the Picard–Jungck sequence, which converges
to the solution of the integral equation. Some nontrivial examples at the end of all main
theorems are given, and the graphs are plotted if required.

In this article, for the main results, the following preliminaries are required.

Definition 1 ([17]). Let S be a non-empty set. A mapping d : S× S→ [0, ∞) satisfying
(B1). d(b1, b2) = 0⇔ b1 = b2 for all b1, b2 ∈ S,
(B2). d(b1, b2) = d(b2, b1) for all b1, b2 ∈ S,
(B3). for all b1, b2, b3 ∈ S and k ≥ 1

d(b1, b2) ≤ k{d(b1, b3) + d(b3, b2)}, (b-metric inequality)
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is called the b-metric and the pair (S, d) is called a b-metric space with a constant k. A b-metric
space is a metric space provided that k = 1.

Definition 2 ([26]). Suppose that Γ1, Γ2 : S −→ S are two mappings, a point b ∈ S is called a
point of coincidence of Γ1 and Γ2 if there exists an element a ∈ S such that b = Γ1a = Γ2a.

Definition 3 ([26]). A pair of maps Γ1, Γ2 : S −→ S is said to be compatible in a metric space
(S, d) if

lim
n−→+∞

d(Γ1Γ2an , Γ2Γ1an) = 0

for every sequence {an} ⊆ S such that

lim
n−→+∞

Γ1an = lim
n−→+∞

Γ2an = `

for some ` ∈ S.

Definition 4 ([26]). A pair of mappings Γ1, Γ2 : S −→ S is said to be weakly compatible if
Γ1a = Γ2a implies Γ1Γ2a = Γ2Γ1a, for all a ∈ S.

Proposition 1 ([26]). If Γ1, Γ2 : S −→ S are weakly compatible mappings and have a unique point
of coincidence b = Γ1a = Γ2a, then b is a unique common fixed point of Γ1 and Γ2.

Definition 5 ([26]). Suppose a pair of mappings Γ1, Γ2 : S −→ S. A sequence {an} in S is said to
be a Picard–Jungck sequence of the pair (Γ1, Γ2) if

Γ1an+1 = Γ2an = bn, ∀n ∈ N∪ {0}.

Lemma 1 ([23]). Assume a sequence (an)n∈N in a metric space (S, d) which satisfies

lim
n−→+∞

d(an, an+1) = 0

and a sequence (an)n∈N is not Cauchy. Then, there exist the ε > 0 and sequences of positive integers
(n}) and (m}) where n} > m} > } such that the sequences{

d(am
}

, an}
)
}

,
{

d(am
}

, an}+1)
}

,
{

d(am
}
−1, an}

)
}

,{
d(am

}
−1, an}+1)

}
,
{

d(am
}
+1, an}+1)

}
−→ ε

when } −→ +∞.

Let Ψ be the class of all Lebesgue integrable, summable (finite integral) functions

ξ : [0,+∞) −→ [0,+∞) and
ε∫
0

ξ(τ)dτ > 0, for all ε > 0.

In [12], Mocanu et al. proved the following useful lemmas.

Lemma 2 ([12]). Let (`n)n∈N be a non-negative sequence of real numbers, then lim
n−→+∞

`n∫
0

ξ(τ)dτ = 0

if and only if lim
n−→+∞

`n = 0.

Lemma 3 ([12]). Let (`n)n∈N be a non-negative sequence of real numbers with lim
n−→+∞

`n = `.

Then lim
n−→+∞

`n∫
0

ξ(τ)dτ =
∫̀
0

ξ(τ)dτ.
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In 2002, Branciari [1] proved the following fixed-point theorem for the self-mapping
satisfying the integral type contractive condition.

Theorem 1 ([1]). Let (S, d) be a complete metric space and Γ : S→ S be a mapping such that

d(Γa,Γb)∫
0

ξ(τ)dτ ≤ ζ

d(a,b)∫
0

ξ(τ)dτ,

for all a, b ∈ S, ζ ∈ (0, 1), ξ ∈ Ψ and for each ε > 0,
ε∫
0

ξ(τ)dτ > 0. Then, Γ has a unique

fixed-point c ∈ S such that lim
n−→+∞

Γna = c for all a ∈ S.

In 2012, Wardowski [16] gave the idea of a new contraction called an z-contraction
as follows.

Definition 6 ([16]). Let F be a set of mappings z : [0, ∞)→ R satisfying
(F1). z is strictly increasing,
(F2). If {tn}n∈N in [0, ∞), then lim

n→+∞
tn = 0⇔ lim

n−→+∞
z(tn) = −∞,

(F3). There exist some $ ∈ (0, 1) such that lim
t−→0+

t
$ z(t) = 0.

Let (S, d) be a metric space and mapping Γ : S −→ S is called z-contraction if there exists $ > 0.
Where z ∈ F and d(Γa, Γb) > 0 implies

$ +z(d(Γa, Γb)) ≤ z(d(a, b)), ∀a, b ∈ S.

Now and onwards, assume that F∗ is the class of all z ∈ F, which only follows (F1),
i.e., it is the collection of all strictly increasing mappings.

Remark 1 ([23]). Denote lim
r−→s−

z(r) = z(s− 0) and lim
r−→s+

z(r) = z(s + 0), also any z ∈ F∗

has at most countable point of discontinuities.

In 2012, Wardowski [16] proved the following fixed-point result using the notion of
z-contraction.

Theorem 2 ([16]). Suppose that (S, d) is a complete metric space and a mapping Γ : S −→ S is a
z-contraction with a property. Assume there exists $ > 0 such that

$ +z(d(Γa, Γb)) ≤ z(d(a, b))

for all a, b ∈ S with Γa 6= Γb. Then, there exists a unique fixed-point c of Γ and sequence
(Γna) converges to c, ∀n ∈ N.

In 2021, Carić et al. [26] introduced integral z-contraction, and using (F1) proved the
fixed-point theorem for the self-mapping, satisfying the integral z-contraction as follows.

Definition 7 ([26]). Let (S, d) be metric space and z ∈ F∗. A mapping Γ : S → S is called
integral z-contraction on (S, d) if $ > 0 exists, such that

$ +z

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ z

d(a,b)∫
0

ξ(τ)dτ

,

for all a, b ∈ S, with d(Γa, Γb) > 0 and ξ ∈ Ψ.
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Theorem 3 ([26]). Let (S, d) be a complete metric space and Γ : S→ S be an integral F-contraction.
Then, there exists a unique a ∈ S such that Γa = a.

To generalize the above notions, we need the following class of functions.
Let Λ be a class of mapping $ : (0,+∞) −→ (0,+∞) satisfying

lim
c−→θ+

inf $(c) > 0, ∀ θ > 0.

Using this class Λ, the following generalized definition was given in [26].

Definition 8 ([26]). Let (S, d) be a metric space and mappings Γ1, Γ2 : S −→ S. A mapping Γ1
is a ($, ξ,z, Γ2)-integral contraction if a mapping $ ∈ Λ exists. Let ξ ∈ Ψ be a function z ∈ F∗

such that for all a, b ∈ S with Γ2a 6= Γ2b and Γ1a 6= Γ1b one has

$

d(Γ2a,Γ2b)∫
0

ξ(τ)dτ

+z

d(Γ1a,Γ1b)∫
0

ξ(τ)dτ

 ≤ z

d(Γ2a,Γ2b)∫
0

ξ(τ)dτ

.

Theorem 4 ([26]). Let (S, d) be a complete metric space and mappings Γ1, Γ2 : S −→ S. A map-
ping Γ1 is a ($, ξ,z, Γ2)-integral contraction. Assume that there exists a Picard–Jungck sequence
(an)n∈Z/Z− of (Γ1, Γ2) and following condition hold,
(A1) (Γ2S, d) is complete,
(A2) Γ2 is a continuous, and (Γ1, Γ2) is compatible.
Then, Γ1 and Γ2 have a unique point of coincidence.

2. Extended Integral zzz-Contraction

In this section, we introduce the concepts of extended integral z-contraction, as a
generalization of extended integral contraction, and extended z-contraction. The first
result will be about the existence of fixed point of extended integral z-contraction, in the
setting of b-metric spaces. To achieve our goal for defining extended integral z-contraction,
first we need to define the two new following contractions.

Definition 9 (Extended z-contraction). Let (S, d) be a b-metric space and mapping Γ : S −→ S
is called extended z-contraction if $ ∈ Λ and z ∈ F∗ exist, if d(Γa, Γb) > 0 implies

$(M(a, b)) +z(d(Γa, Γb)) ≤ z(M(a, b)), (1)

for all a, b ∈ S, where

M(a, b) = η max
{

d(a, b), d(a, Γa), d(b, Γb),
(

d(a, Γb) + d(b, Γa)
k[1 + d(a, Γa) + d(b, Γb)]

)
d(a, b)

}
,

for some η ∈
(

0, 1
k

)
and k ≥ 1.

Definition 10 (Extended integral contraction). Let (S, d) be a b-metric space and mapping
Γ : S −→ S is called extended integral type contraction if Γ satisfies

d(Γa,Γb)∫
0

ξ(τ)dτ ≤ ζ

M(a,b)∫
0

ξ(τ)dτ, (2)

for all a, b ∈ S, ζ ∈ (0, 1), ξ ∈ Ψ, where

M(a, b) = η max
{

d(a, b), d(a, Γa), d(b, Γb),
(

d(a, Γb) + d(b, Γa)
k[1 + d(a, Γa) + d(b, Γb)]

)
d(a, b)

}
, (3)
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for some η ∈
(

0, 1
k

)
and k ≥ 1.

Now, as a generalization of two above contraction, we define extended integral z-
contraction as follows.

Definition 11 (Extended integral z-contraction). Let (S, d) be a b-metric space and mapping
z ∈ F∗. A mapping Γ : S −→ S satisfies the extended integral z-contraction, if $ ∈ Λ exists
such that

$

M(a,b)∫
0

ξ(τ)dτ

+z

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ z

M(a,b)∫
0

ξ(τ)dτ

, (4)

for all a, b ∈ S, d(Γa, Γb) > 0, where

M(a, b) = η max
{

d(a, b), d(a, Γa), d(b, Γb),
(

d(a, Γb) + d(b, Γa)
k[1 + d(a, Γa) + d(b, Γb)]

)
d(a, b)

}
, (5)

for some η ∈
(

0, 1
k

)
and k ≥ 1.

Remark 2. If ξ(τ) = 1, then the extended integral z-contraction becomes an extended
z-contraction.

Proof. As ξ(τ) = 1, then from (2)

$(M(a, b)) +z

d(Γa,Γb)∫
0

1dτ

 ≤ z

M(a,b)∫
0

1dτ

,

$(M(a, b)) +z(d(Γa, Γb)) ≤ z(M(a, b)).

Remark 3. Extended integral z-contraction becomes an extended integral contraction if
za = ln a.

Proof. Assume that Γ satisfies the extended integral z-contraction. Then,

$(M(a, b)) +z

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ z

M(a,b)∫
0

ξ(τ)dτ

.

By using za = ln a, the above inequality becomes

$(M(a, b)) + ln

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ ln

M(a,b)∫
0

ξ(τ)dτ

,

ln

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ ln

M(a,b)∫
0

ξ(τ)dτ

− $(M(a, b))
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As $(M(a, b)) > 0, then we can write $(M(a, b)) = − ln e−$(M(a,b)). Then, the above
inequality gives

ln

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ ln

M(a,b)∫
0

ξ(τ)dτ

− ln e$(M(a,b)),

ln

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ ln

 1
e$(M(a,b))

M(a,b)∫
0

ξ(τ)dτ

.

which gives
d(Γa,Γb)∫

0

ξ(τ)dτ ≤ e−$(M(a,b))
M(a,b)∫

0

ξ(τ)dτ.

Clearly, Γ satisfies an extended integral contraction only if za = ln a.

To prove our main result for the fixed point of the mapping defined in Definition 11,
we need the following lemma.

Lemma 4. Let (S, d) be a complete b-metric space and {an}n∈N∪{0} be the sequence such that

d(an, an+1) ≤ M(an−1, an), (6)

for all n = 0, 1, 2, . . . , where

M(an−1, an) = η max
{

d(an−1, an), d(an, an+1),
d(an−1, an+1)d(an−1, an)

k[1 + d(an−1, an) + d(an, an+1)]

}
,

for some η ∈
(

0, 1
k

)
and k ≥ 1. Then, {an}n∈N∪{0} is a Cauchy sequence in (S, d). Moreover,

lim
n→∞

d(an, an+1) = 0.

Proof. For the values of M(an−1, an), there are three following cases
Case-1. If max

{
d(an−1, an), d(an, an+1),

d(an−1,an+1)d(an−1,an)
k[1+d(an−1,an)+d(an ,an+1)]

}
= d(an−1, an), then

M(an−1, an) = ηd(an−1, an)

for all n = 0, 1, 2, . . . , then (6) implies

d(an, an+1) ≤ ηd(an−1, an).

Case-2. If max
{

d(an−1, an), d(an, an+1),
d(an−1,an+1)d(an−1,an)

k[1+d(an−1,an)+d(an ,an+1)]

}
= d(an, an+1), then

M(an−1, an) = ηd(an, an+1)

for all n = 0, 1, 2, . . . , then (6) implies

d(an, an+1) ≤ ηd(an, an+1),

< d(an, an+1),

which is not possible.
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Case-3. If max
{

d(an−1, an), d(an, an+1),
d(an−1,an+1)d(an−1,an)

k[1+d(an−1,an)+d(an,an+1)]

}
= d(an−1,an+1)d(an−1,an)

k[1+d(an−1,an)+d(an,an+1)]
, then

M(an−1, an) = η

(
d(an−1, an+1)d(an−1, an)

k[1 + d(an−1, an) + d(an, an+1)]

)
for all n = 0, 1, 2, . . . , then (6) implies

d(an, an+1) ≤ η

(
d(an−1, an+1)d(an−1, an)

k[1 + d(an−1, an) + d(an, an+1)]

)
,

using (B3), we have

≤ η

(
k(d(an−1, an) + d(an, an+1))

k[1 + d(an−1, an) + d(an, an+1)]

)
d(an−1, an),

= η

(
d(an−1, an) + d(an, an+1)

1 + d(an−1, an) + d(an, an+1)

)
d(an−1, an)

= ηd(an−1, an), ∵
(

d(an−1, an) + d(an, an+1)

1 + d(an−1, an) + d(an, an+1)

)
≤ 1.

Consequently, for all n = 1, 2, 3, . . . , we have

d(an, an+1) ≤ ηd(an−1, an),

≤ η2d(an−2, an−1),
...

d(an, an+1) ≤ ηnd(a0, a1). (7)

For m, n ∈,N with m < n and by using (B3)

d(am, an) ≤ k{d(am, am+1) + d(am+1, an)},
≤ kd(am, am+1) + k2{d(am+1, am+2) + d(am+2, an)},

...

≤ kd(am, am+1) + k2d(am+1, am+2) + k3d(am+2, am+3)

+ · · ·+ kn−m−1d(an−2, an−1) + kn−md(an−1, an),

≤ kηmd(a0, a1) + k2ηm+1d(a0, a1) + k3ηm+2d(a0, a1)

+ · · ·+ kn−m−1ηn−2d(a0, a1) + kn−mηn−1d(a0, a1),

<
kηm

1− kη
d(a0, a1)→ 0, when m, n→ ∞.

It follows that the sequence {an}n∈N∪{0} is a Cauchy sequence in (S, d). Also, from (7) and
using n→ ∞ gives

lim
n→∞

d(an, an+1) = 0.

Theorem 5. Let (S, d) be a complete b-metric space and the mapping Γ : S −→ S be extended
integral z-contraction. Then, Γ has a unique fixed point in S.

Proof. Let us consider an arbitrary element a0 ∈ S and construct a sequence an+1 = Γan for
n = 0, 1, 2, 3, . . . . If an = an+1, for some n ∈ N∪ {0} then an is fixed point of self-mapping
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Γ. We assume an 6= an+1 for all n = 0, 1, 2, 3, . . . . As Γ : S −→ S is extended integral
z-contraction, therefore

$

M(an−1,an)∫
0

ξ(τ)dτ

+z

d(Γan−1,Γan)∫
0

ξ(τ)dτ

 ≤
M(an−1,an)∫

0

ξ(τ)dτ

,

which implies

z

d(Γan−1,Γan)∫
0

ξ(τ)dτ

 ≤
M(an−1,an)∫

0

ξ(τ)dτ

− $

M(an−1,an)∫
0

ξ(τ)dτ


furthermore, we have

z

d(an ,an+1)∫
0

ξ(τ)dτ

 < z

M(an−1,an)∫
0

ξ(τ)dτ

.

As z ∈ F∗, i.e., z is strictly increasing, therefore

d(an ,an+1)∫
0

ξ(τ)dτ <

M(an−1,an)∫
0

ξ(τ)dτ, (8)

which implies
d(an, an+1) < M(an−1, an),

By utilizing (8) and Lemma 4, we can conclude that the sequence {an}n∈N∪{0} is a Cauchy
sequence. Since S is complete, there exists an element a ∈ S such that

lim
n→+∞

d(an, a) = 0 (9)

To verify this, we need to show that a ∈ S is a fixed point of the mapping Γ, using (4)

d(an ,Γa)∫
0

ξ(τ)dτ <

M(an−1,a)∫
0

ξ(τ)dτ,

Calculating the values of M(an−1, an), it has been concluded that either M(an−1, an) = 0,
which gives

lim
n→+∞

d(an, Γa) = 0 (10)

or M(an−1, an) = ηd(a, Γa), which implies

lim
n→+∞

d(an, Γa) ≤ ηd(a, Γa). (11)

Now, consider
d(a, Γa) ≤ k{d(a, an) + d(an, Γa)},

using (10), we have
d(a, Γa) ≤ 0

which implies that a is a fixed point of Γ. Now, for the case when (11) holds, we have

d(a, Γa) ≤ k{d(a, an) + d(an, Γa)}
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implies
d(a, Γa) ≤ k{0 + ηd(a, Γa)} = kηd(a, Γa)

or
(1− kη)d(a, Γa) ≤ 0

gives d(a, Γa) = 0, as kη < 1. Hence, a ∈ S is the fixed point of mapping Γ. The unique-
ness of the fixed point can be proved using the contradiction method along with the
inequality (5).

Corollary 1. Let (S, d) be a complete b-metric space and mapping Γ : S −→ S be extended
z-contraction or extended integral contraction. Then, Γ has a unique fixed point in S.

Proof. Proof followed by Remarks 1 and 2.

In the next example, we have shown the validity of our main Theorem 4.

Example 1. Let S = [0, 1] and d(a, b) = |a− b|2 for all a, b ∈ S and a ≤ b. Clearly, (S, d) is
a complete b-metric space. Define Γ : S → S as Γa = 1

a+1 for all a ∈ S. Also, define ξ ∈ Ψ,
z ∈ F∗ and $ ∈ Λ as ξ(t) = t, z(r) = 50 ln r and $(u) = 1

100+u respectively. Assume that

X = $(M(a, b)), Y = z
(

d(Γa,Γb)∫
0

ξ(τ)dτ

)
and Z = z

(
M(a,b)∫

0
ξ(τ)dτ

)
, then consider

Z−Y = z

M(a,b)∫
0

ξ(τ)dτ

−z

d(Γa,Γb)∫
0

ξ(τ)dτ

,

= 50 ln

M(a,b)∫
0

τdτ

− 50 ln

d(Γa,Γb)∫
0

τdτ

,

= 50 ln

(
(M(a, b))2

2
− 0

)
− 50 ln

(
(d(Γa, Γb))2

2
− 0

)
,

= 100 ln
M(a, b)

d(Γa, Γb)
, (12)

where,

M(a, b) = η max

|a− b|2,
∣∣∣∣a− 1

a + 1

∣∣∣∣2,
∣∣∣∣b− 1

b + 1

∣∣∣∣2,


(

a− 1
b+1

)2
+
(

b− 1
a+1

)2

k
(

1 +
(

a− 1
a+1

)2
+
(

b− 1
b+1

)2
)
(a− b)2

,

possible determined real values for d(Γa, Γb) and M(a, b) for all a, b ∈ [0, 1] are

d(Γa, Γb) =


0, when a = b
1
4 , when a = 0, b = 1
1
4 , when a = 1, b = 0

0 < l2 < 1, when a, b ∈ (0, 1) and a 6= b

,

for some η ∈
(

0, 1
k

)
and k ≥ 1, and

M(a, b) = η max
{

0, 1, 0 < l1 ≤
1
3k

}
= 1.
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From the above values of M(a, b) and d(Γa, Γb), it is obvious that d(Γa, Γb) < M(a, b) ⇒
M(a,b)

d(Γa,Γb) > 1. Also, assume

X = $(M(a, b)),

=
1

100 + M(a, b)
. (13)

As, 100 ln M(a,b)
d(Γa,Γb) ≥

1
100+M(a,b) > 0, then from (C3) and (C4)

Z−Y = 100 ln
M(a, b)

d(Γa, Γb)
,

≥ 1
100 + M(a, b)

,

Z−Y ≥ X,

X + Y ≤ Z,

this implies that

$(M(a, b)) +z

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ z

M(a,b)∫
0

ξ(τ)dτ

.

Hence, mapping Γ satisfies all the conditions of Theorem 4. Thus, Γ has unique fixed-point
√

5−1
2 ∈ S.

3. (κκκ, Ω-zzz)-Contraction

In the first part of this section, we introduced (κ, Ω-z)-contraction and related fixed-
point results in the complete metric spaces. The second part introduced the notions of
(κ, Γ1,2, Ω-z)-contraction, the addition Γ1,2, in (κ, Ω-z)-contraction indicates two map-
pings, so that we will discuss the coincidence and common fixed points of two mappings
satisfying the (κ, Γ1,2, Ω-z) contraction. The notions has been generalized in some sense,
but the considered space is a metric space, as it is essential to first go through metric spaces,
then we will pose a question about their existence in b-metric space and other generaliza-
tions.

Definition 12. Let Ω denote the class of mappings = : [0, ∞)× [0, ∞) −→ R which fulfil the
three following conditions
(a1). =(a, b) ≥ 0,
(a2). =(a, b) = 0 =⇒ a = b,
(a3). = is continuous in the second variable.

Remark 4. It is worthy to note that a special case of above function = can be considered as

=(0, a) =
a∫
0

ξ(τ)dτ

for ξ ∈ Ψ and for each a > 0.

The next definition is our main definition which utilizes the above definition.

Definition 13. Let (S, d) be a metric space, = ∈ Ω and z ∈ F∗. A mapping Γ : S −→ S is called
(κ, Ω-z)-contraction, if there exists κ ∈ Λ and for all a, b ∈ S⇒ d(Γa, Γb) > 0, such that
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κ(=(0, d(a, b))) +z(=(0, d(Γa, Γb))) ≤ z(=(0, d(a, b))). (14)

Theorem 6. Suppose that (S, d) is a complete metric space, and let Γ : S → S be a (κ, Ω-z)-
contraction mapping. Then, there exists a unique element a ∈ S such that Γ(a) = a.

Proof. Let a0 ∈ S and construct a sequence, an+1 = Γan for n ∈ N ∪ {0}. If an = an+1 for
some n ∈ N∪ {0}, then an ∈ S is the fixed point of Γ. Therefore, we assume that an 6= an+1
for all n ∈ N∪ {0}. As Γ : S −→ S satisfies (11), then

κ(=(0, d(an, an−1))) +z(=(0, d(an+1, an))) ≤ z(=(0, d(an, an−1))),

z(=(0, d(an+1, an))) < z(=(0, d(an, an−1))),

=(0, d(an+1, an)) < =(0, d(an, an−1)), ∵ z ∈ F∗,

the sequence {=(0, d(an+1, an))}n∈N∪{0} can be observed to be both decreasing and bounded
below by 0. Consequently, there exists a ℘1 ≥ 0 such that

lim
n−→+∞

=(0, d(an+1, an)) = ℘1

or

=
(

0, lim
n−→+∞

d(an+1, an)

)
= ℘1. (15)

Assuming that, ℘1 > 0, from (14), consider

z(=(0, d(an+1, an))) < κ(=(0, d(an, an−1))) +z(=(0, d(an+1, an))) ≤ z(=(0, d(an, an−1))),

z(=(0, d(an+1, an))) < z(=(0, d(an, an−1))),

=(0, d(an+1, an)) < =(0, d(an, an−1)), ∵ z ∈ F∗,

lim
n−→+∞

=(0, d(an+1, an)) < lim
n−→+∞

=(0, d(an, an−1)),

=
(

0, lim
n−→+∞

d(an+1, an)

)
< =

(
0, lim

n−→+∞
d(an, an−1)

)
,

℘1 < ℘1, using (a3),

a contradiction, which implies that ℘1 = 0. Moreover, Equation (15) gives

lim
n−→+∞

=(0, d(an+1, an)) = 0

which, using (a2) and (a3), implies

lim
n−→+∞

d(an+1, an) = 0. (16)

To prove that the sequence {an}n∈N∪{0} is a Cauchy sequence, suppose on the contrary,
that the sequence {an}n∈N∪{0} is not a Cauchy sequence. From (16), lim

n−→+∞
d(an+1, an) = 0.

Consequently, ε > 0 as well as positive integers m} and n} exist with n} > m} > }.
By substituting a = an} , b = am} into (11), this gives

κ(u) +z
(
=
(
0, d(an}+1, am}+1)

))
≤ z(=(0, d(an} , am}))),

z
(
=
(
0, d(an}+1, am}+1)

))
< z(=(0, d(an} , am}))),

=
(
0, d(an}+1, am}+1)

)
< =(0, d(an} , am})), ∵ z ∈ F∗,

lim
}→+∞

=
(
0, d(an}+1, am}+1)

)
< lim

}→+∞
=(0, d(an} , am})),

=
(

0, lim
}→+∞

d(an}+1, am}+1)

)
< =

(
0, lim

}→+∞
d(an} , am})

)
, ∵ = follows (a3),
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by Lemma 1, lim
}→+∞

d(an}+1, am}+1) = ε+ and lim
}→+∞

d(an} , am}) = ε+ gives

=
(
0, ε+

)
< =

(
0, ε+

)
,

This leads to a contradiction, proving that the sequence {an}n∈N∪{0} is a Cauchy sequence.
Since S is complete, there exists an element a ∈ S such that lim

n→+∞
d(an, a) = 0. To verify

that a ∈ S is a fixed point of mapping Γ, using (14)

z(=(0, d(an, Γa))) < κ +z(=(0, d(an, Γa))) ≤ z(=(0, d(an−1, a))),

z(=(0, d(an, Γa))) < z(=(0, d(an−1, a))),

=(0, d(an, Γa)) < =(0, d(an−1, a)), ∵ z ∈ F∗,

lim
n−→+∞

=(0, d(an, Γa)) < lim
n−→+∞

=(0, d(an−1, a)),

=
(

0, lim
n−→+∞

d(an, Γa)
)
< =

(
0, lim

n−→+∞
d(an−1, a)

)
, ∵ = follows (a3),

=
(

0, lim
n−→+∞

d(an, Γa)
)
< =(0, 0),

lim
n−→+∞

d(an, Γa) = 0. (17)

Using (B3) and (17)

d(a, Γa) ≤ k{d(a, an) + d(an, Γa)},
≤ k lim

n→+∞
{d(a, an) + d(an, Γa)},

= 0,

Γa = a.

Therefore, a ∈ S is a fixed point of Γ. To verify the uniqueness of this fixed point, assume
that there exists another fixed point of Γ. Suppose that a, b ∈ S are the two distinct fixed
points in S, a 6= b, Γa = a and Γb = b. From (11),

κ(u) +z(=(0, d(Γa, Γb))) ≤ z(=(0, d(a, b))),

z(=(0, d(Γa, Γb))) < z(=(0, d(a, b))),

z(=(0, d(a, b))) < z(=(0, d(a, b))),

which is not true; therefore, the fixed point of Γ is unique.

Using Remark 4, we have the following corollary.

Corollary 2. Let (S, d) be a complete metric space, = ∈ Ω and z ∈ F∗. Let Γ : S −→ S be given,
if there exists κ ∈ Λ and for all a, b ∈ S⇒ d(Γa, Γb) > 0, such that

κ

=
d(a,b)∫

0

ξ(τ)dτ


+z

=
d(Γa,Γb)∫

0

ξ(τ)dτ


 ≤ z

=
d(a,b)∫

0

ξ(τ)dτ


,

then Γ has a unique fixed point.

Now, we will define the (κ, Γ1,2, Ω-z)-contraction and prove the coincidence and
common fixed-point results.



Fractal Fract. 2023, 7, 833 14 of 29

Definition 14. Let (S, d) be a metric space and mappings Γ1, Γ2 : S −→ S. If functions exist
κ ∈ Λ and z ∈ F∗ such that, for all a, b ∈ S with Γ1a 6= Γ1b and Γ2a 6= Γ2b. Then, the pair of
mappings Γ1, Γ2 is called a (κ, Γ1,2, Ω-z)-contraction if

κ(=(0, d(Γ2a, Γ2b))) +z(=(0, d(Γ1a, Γ1b))) ≤ z(=(0, d(Γ2a, Γ2b))). (18)

for all a, b ∈ S.

Theorem 7. Let (S, d) be a metric space and the pair Γ1, Γ2 : S −→ S be (κ, Γ1,2, Ω-z)-contraction.
Suppose that a Picard–Jungck sequence (an)n∈N∪{0} of the pair (Γ1, Γ2) exists. Furthermore, assume
that the following conditions hold,
(b1). (Γ2S, d) is complete,
(b2). (S, d) is complete, Γ2 is a continuous, and (Γ1, Γ2) is a compatible pair,
then Γ1 and Γ2 have a unique point of coincidence.

Proof. Suppose that (an) in S is a Picard–Jungck sequence such that Γ1an−1 = Γ2an =
bn, ∀n ∈ N ∪ {0}. If Γ1bn+1 = bn = Γ2bn+1 for some n ∈ N ∪ {0}, then bn ∈ S is point of
coincidence of Γ1 and Γ2. Thus, we assume bn 6= bn+1 for all n ∈ N∪ {0} by using (18)

κ(=(0, d(Γ2an, Γ2an+1))) +z(=(0, d(Γ1an, Γ1an+1)))

≤ z(=(0, d(Γ2an, Γ2an+1))),

κ(=(0, d(bn, bn+1))) +z(=(0, d(bn−1, bn))) ≤ z(=(0, d(bn, bn+1))),

using the properties that lim infκ > 0 and z ∈ F∗, then

=(0, d(bn−1, bn)) < =(0, d(bn, bn+1)), (19)

then {=(0, d(bn, bn+1))}n∈N∪{0} is decreasing and bounded below the sequence, then a
℘2 ≥ 0 exists such that

lim
n−→+∞

=(0, d(bn, bn+1)) = ℘2

using (a3)

=
(

0, lim
n−→+∞

d(bn, bn+1)

)
= ℘2. (20)

Suppose that ℘2 > 0, then, using (19),

=(0, d(bn−1, bn)) < =(0, d(bn, bn+1)),

lim
n−→+∞

=(0, d(bn−1, bn)) < lim
n−→+∞

=(0, d(bn, bn+1)),

=
(

0, lim
n−→+∞

d(bn−1, bn)

)
< =

(
0, lim

n−→+∞
d(bn, bn+1)

)
, ∵ = follows (a3),

℘2 < ℘2,

this leads to a contradiction, our supposition (i.e., ℘2 > 0) is wrong. Hence, ℘2 = 0 and (20)
gives lim

n−→+∞
d(bn, bn+1) = 0 (using (a2)). Now, to prove that the sequence {bn}n∈N∪{0} is a

Cauchy sequence, suppose, on the contrary, that the sequence {bn}n∈N∪{0} is not a Cauchy
sequence. Then, there exist ε > 0 and positive integers m} and n} such that n} > m} > }.
Putting a = an}+1, b = am}+1 in (18)

κ
(
=
(
0, d
(
Γ2an}+1, Γ2am}+1

)))
+z

(
=
(
0, d
(
Γ1an}+1, Γ1am}+1

)))
≤ z

(
=
(
0, d
(
Γ2an}+1, Γ2am}+1

)))
,

κ
(
=
(
0, d
(
bn}+1, bm}+1

)))
+z(=(0, d(bn} , bm}))) ≤ z

(
=
(
0, d
(
bn}+1, bm}+1

)))
,
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using the properties that κ ∈ Λ and z ∈ F∗, gives

=(0, d(bn} , bm})) < =
(
0, d
(
bn}+1, bm}+1

))
,

lim
}→+∞

=(0, d(bn} , bm})) < lim
}→+∞

=
(
0, d
(
bn}+1, bm}+1

))
,

following, as = follows (a3) and by Lemma 1, there exists ε+ > 0, such that

lim
}→+∞

d(bn} , bm}) = lim
}→+∞

d
(
bn}+1, bm}+1

)
= ε+,

so we have

=
(

0, lim
}→+∞

d(bn} , bm})

)
< =

(
0, lim

}→+∞
d
(
bn}+1, bm}+1

))
,

=
(
0, ε+

)
< =

(
0, ε+

)
,

a contradiction; therefore, the sequence {bn}n∈N∪{0} is a Cauchy sequence. As the condition
(b1) holds, then there exists an element c ∈ Γ2S such that bn = Γ2an −→ Γ2c as n −→ +∞
or lim

n→∞
d(bn, Γ2c) = 0. To check, Γ1c = Γ2c. Since bn 6= bp, whenever n 6= p. Now, suppose

that Γ1c, Γ2c /∈ {bn : n ∈ N∪ {0}}. From (18),

κ(=(0, d(Γ2an+1, Γ2c))) +z(=(0, d(bn−1, Γ1c))) ≤ z(=(0, d(Γ2an+1, Γ2c))),

κ(=(0, d(bn+1, Γ2c))) +z(=(0, d(bn, Γ1c))) ≤ z(=(0, d(bn+1, Γ2c))),

z(=(0, d(bn, Γ1c))) < z(=(0, d(bn+1, Γ2c))),

as z ∈ F∗, then

=(0, d(bn, Γ1c)) < =(0, d(bn+1, Γ2c)),

lim
n→∞
=(0, d(bn, Γ1c)) < lim

n→∞
=(0, d(bn+1, Γ2c)),

=
(

0, lim
n→∞

d(bn, Γ1c)
)
< =

(
0, lim

n→∞
d(bn+1, Γ2c)

)
,

=
(

0, lim
n→∞

d(bn, Γ1c)
)
< =(0, 0),

lim
n→∞

d(bn, Γ1c) = 0,

Using (B3)

d(Γ1c, Γ2c) ≤ k{d(Γ1c, bn) + d(bn, Γ2c)},
≤ k lim

n→∞
{d(Γ1c, bn) + d(bn, Γ2c)},

= 0,

Γ1c = Γ2c.

Thus, Γ1c = Γ2c and c ∈ S are points of coincidence of Γ1 and Γ2. In another case, from (b2),
there exists v ∈ S such that, for a Cauchy sequence {bn}n∈N∪{0} in S, bn → v if n → ∞.
Thus, Γ1an = bn−1 → v if n→ ∞. Also, as Γ2 is continuous, then Γ2Γ1an = Γ2bn−1 → Γ2v
if n→ ∞. Using (18) and continuity of Γ2

κ(=(0, d(Γ2Γ1an, Γ2v))) +z(=(0, d(Γ1Γ2an, Γ1v)))
≤ z(=(0, d(Γ2Γ1an, Γ2v))),

z(=(0, d(Γ1Γ2an, Γ1v))) < z(=(0, d(Γ2Γ1an, Γ2v))),
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as z ∈ F∗, then

=(0, d(Γ1Γ2an, Γ1v)) < =(0, d(Γ2Γ1an, Γ2v)),

lim
n→∞
=(0, d(Γ1Γ2an, Γ1v)) < lim

n→∞
=(0, d(Γ2Γ1an, Γ2v)),

using (a3)

=
(

0, lim
n→∞

d(Γ1Γ2an, Γ1v)
)
<
(

0, lim
n→∞

d(Γ2Γ1an, Γ2v)
)

,

=
(

0, lim
n→∞

d(Γ1Γ2an, Γ1v)
)
< (0, 0),

lim
n→∞

d(Γ1Γ2an, Γ1v) = 0.

Thus, Γ1Γ2an → Γ1v as n → ∞ and hence Γ1 is also continuous. Now, by using (B3) and
the compatibility of Γ1 and Γ2, this gives

d(Γ1v, Γ2v) ≤ {d(Γ1v, Γ1Γ2an) + d(Γ1Γ2an, Γ2Γ1an) + d(Γ2Γ1an, Γ2v)},

d(Γ1v, Γ2v) ≤ lim
n→∞

{
d(Γ1v, Γ1Γ2an) + d(Γ1Γ2an, Γ2Γ1an)

+d(Γ2Γ1an, Γ2v)

}
,

d(Γ1v, Γ2v) ≤
{

lim
n→∞

d(Γ1v, Γ1Γ2an) + lim
n→∞

d(Γ1Γ2an, Γ2Γ1an)

+ lim
n→∞

d(Γ2Γ1an, Γ2v)

}
,

d(Γ1v, Γ2v) ≤ {0 + 0 + 0},
d(Γ1v, Γ2v) ≤ 0,

Γ1v = Γ2v.

In both cases, Γ1 and Γ2 have a point of coincidence. Now, to prove that Γ1 and Γ2 have a
unique point of coincidence. Suppose, on the contrary, that there are a1, a2, b1, b2 ∈ S, and
a1 and a2 are the point of distinct and point of coincidence, respectively, and b1 6= b2 such
that Γ1b1 = Γ2b1 = a1 and Γ1b2 = Γ2b2 = a2. From (16),

κ(=(0, d(Γ2b1, Γ2b2))) +z(=(0, d(Γ1b1, Γ1b2))) ≤ z(=(0, d(Γ2b1, Γ2b2))),

κ(=(0, d(a1, a2))) +z(=(0, d(a1, a2))) ≤ z(=(0, d(a1, a2))),

z(=(0, d(a1, a2))) < z(=(0, d(a1, a2))),

which is a contradiction, and hence, c ∈ S is a unique point of coincidence of Γ1 and Γ2.

Remark 5. (R1). If (b1) holds and mappings Γ1 and Γ2 are weakly compatible, then using
Proposition 1 proves that Γ1 and Γ2 have unique common fixed point
(R2). If (b2) holds, Γ1 and Γ2 have a unique common fixed point, and using Proposition 1 proves
that every compatible mapping Γ1 and Γ2 are also weakly compatible mappings.

In the next non-trivial example, we validate the above Theorem 7 and Remark 4 by
showing that Γ1 and Γ2 are not contraction mappings.

Example 2. Let S =
{

an =1+4+7+. . .+(3n− 2)= n(3n−1)
2 : n ∈ N

}
and d(a, b) = |a− b|,

then (S, d) is a complete metric space. Consider two self-mappings Γ1, Γ2 : S → S defined by
Γ1t = 1

t2 and Γ2t = 1
t , respectively, for all t ∈ S. Define a mapping = : [0,+∞)× [0,+∞) −→ R

by =(r1, r2) = r2 − r1 for all (r1, r2) ∈ [0,+∞)× [0,+∞). Also, define z ∈ F∗ and τ ∈ Λ
by z(t) = 60 ln t and τ(t) = 1

70t , respectively. It can be checked, respectively, that Γ1 and Γ2
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does not follow a Banach contraction. For this, consider the Picard–Jungck sequence such that
Γ1an−1 = Γ2an = bn, ∀n ∈ N∪ {0} in S. For the Γ1 mapping,

d(Γ1am, Γ1an) = |Γ1am − Γ1an|,
= |bm+1 − bn+1|,

=

∣∣∣∣ (m + 1)(3m + 2)
2

− (n + 1)(3n + 2)
2

∣∣∣∣,
>

∣∣∣∣m(3m− 1)
2

− (n + 1)(3n + 2)
2

∣∣∣∣,
=

∣∣∣∣ (n + 1)(3n + 2)
2

− m(3m− 1)
2

∣∣∣∣,
>

∣∣∣∣n(3n− 1)
2

− m(3m− 1)
2

∣∣∣∣,
= |an − am|,
= d(am, an).

Thus, the mapping Γ1 does not satisfy the Banach contraction. Now, for the Γ2 mapping

d(Γ2am, Γ2an) = |Γ2am − Γ2an|,
= |bm − bn|,

=

∣∣∣∣m(3m− 1)
2

− n(3n− 1)
2

∣∣∣∣,
= |an − am|,
= d(am, an).

Thus, the mapping Γ2 does not satisfy the Banach contraction. Suppose that X1 = z(=(0, d(Γ2a, Γ2b)))
and Y1 = z(=(0, d(Γ1a, Γ1b))), then consider

X1 −Y1 = z(=(0, d(Γ2a, Γ2b)))−z(=(0, d(Γ1a, Γ1b))),

= z(d(Γ2a, Γ2b))−z(d(Γ1a, Γ1b)),

= 60 ln d(Γ2a, Γ2b)− 60 ln d(Γ1a, Γ1b),

= 60 ln
d(Γ2a, Γ2b)
d(Γ1a, Γ1b)

, (21)

As z ∈ F∗, then d(Γ2a, Γ2b) > d(Γ1a, Γ1b); this implies that 60 ln d(Γ2a,Γ2b)
d(Γ1a,Γ1b) ≥

1
70d(Γ2a,Γ2b) > 0.

Therefore, from (21),

X1 −Y1 = 60 ln
d(Γ2a, Γ2b)
d(Γ1a, Γ1b)

,

>
1

70d(Γ2a, Γ2b)
,

= τ(d(Γ2a, Γ2b)),

κ(d(Γ2a, Γ2b)) + Y1 < X1

Consequently, it has been observed that, for X1 −Y1 > 0 to reach some conclusion, this will allow
us to choose and adjust the value of κ such that X1 −Y1 > κ > 0. The following Figures 1 and 2
show clearly that X1 −Y1 > 0.

Hence, all the conditions of the Theorem 7 are satisfied. Thus, the weakly compatible mappings
Γ1 and Γ2 have a unique point of coincidence and a common fixed point in S, i.e., Γ11 = Γ21 = 1.
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Figure 1. Graph of the difference X1–Y1.

Figure 2. Graph of the difference X1–Y1 from different angle.

In the above example, it can be seen that, in [28], only considering Γ1, with the same
domain, the results of [16] are not valid, but here, Γ1 has a unique fixed point Γ11 = 1.

4. Applications of Extended Integral zzz-Contraction and (κ, Ω-z)(κ, Ω-z)(κ, Ω-z)-Contraction

In this section, we explore some useful applications of our defined extended integral z-
contraction and (κ, Ω-z)-contraction as well as its other variant for two mappings (κ, Γ1,2, Ω-
z)-contraction. Section 4 contains two subsections, namely Sections 4.1 and 4.2. In Section 4.1,
there two more subsections. In Section 4.1.1, we prove the existence result for a nonlinear the
fractional boundary value problem involving Riemann–Liouville fractional order derivative
of order σ ∈ (1, 2) using the extended integral z-contraction. In Section 4.1.2, we prove
the existence result for a nonlinear fractional boundary value problem using (κ, Ω-z)
contraction. In Section 4.2, the existence result for the solution of a given nonlinear integral
equation has been proven using the (κ, Γ1,2, Ω-z)-contraction. An interesting example
explaining the iterative procedure of the Picard–Jungck sequence is that of the convergence
to the solution of the given integral equation.
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4.1. Application in Nonlinear BVP

The existence theory for the solutions of the boundary value problems associated
with fractional differential equations has been attracting numerous researchers in recent
decades. Future research on multi-point boundary value problems for the Riemann–
Liouville fractional order nonlinear differential equations can focus on developing efficient
numerical methods, investigating the solution existence and uniqueness, analyzing the
stability properties, and exploring interdisciplinary applications. For more comprehensive
information and related sources on this subject, readers are referred to [29–32], as well as the
recommended sources mentioned within those references. In the cited work [33], the study
revolves around the utilization of classical fixed-point theory to explore the existence of at
least one solution.

In this subsection, we explore the applications of extended integral z-contraction
and (κ, Ω-z)-contraction to prove the existence results for multi-point boundary value
problems of the Riemann–Liouville fractional order of the form

−Lσ
0+x(>) = K(x(>),>), 1 < σ ≤ 2, 0 < > < 1 (22)

subjected to the boundary conditions x(0) = 0 and x(1) =
n−2

∑
j=1

λjx
(

γj

)
. Where Lσ

0+ is

the Riemann–Liouville fractional order derivative and λj, γj ∈ (0, 1) with conditions

δ =
n−2
∑

j=1
λjγ

σ−1
j < 1 and K : [0, 1]× [0, ∞) −→ R is a continuous function.

The integral form for the problem (22) is given by

x(>) =
1∫
0

G(>, v)K(x(v), v)dv.

where G(t, v) is a Green function given by

G(>, v) =
1

(σ− 1)!



>σ−1

1−δ

(
(1− v)σ−1 −

n−2

∑
j=1

λj

(
γj − v

)σ−1
)

−(v−>)σ−1;

v ≤ >, γj−1 ≤ v ≤ γj,
j = 1, 2, 3, . . . , n− 1,

>σ−1

1−δ

(
(1− v)σ−1 −

n−2

∑
j=1

λj

(
γj − v

)σ−1
)

;
> ≤ v, γj−1 ≤ v ≤ γj,
j = 1, 2, 3, . . . , n− 1.

Let S = C[0, 1] and a function Γ : S→ S, where the C[0, 1] space of all continuous functions
defined on [0, 1] with b-metric (with constant k ≥ 1) is defined by

d(a, b) = max
v∈[0,1]

|a(v)− b(v)|2

for all a, b ∈ S. For the solution of the BVP (22), define a mapping Γ : S→ S by

Γx(>) =
1∫
0

G(>, v)K(x(v), v)dv. (23)

Assume that |G(>, v)| ≤ Ń for some real positive number Ń.
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4.1.1. Using the Extended Integral z-Contraction

First, the application of the extended integral z-contraction to the existence result for
the solution of the nonlinear BVP (22) is given in the following theorem.

Theorem 8. Assume that K : [0, ∞)× [0, 1] −→ R is a continuous function and

|K(a(v), v)−K(b(v), v)| ≤ 1
Ń

√
e−ς(M(a(v),b(v)))M(a(v), b(v)) (24)

for all a, b ∈ S, e−ς(u) ≥ 0 for ς ∈ Λ and v ∈ [0, 1], where

M(a(v), b(v)) = η max
t∈[0,1]

 |a(v)− b(v)|2,
∣∣a(v)− Γa(v)2

∣∣, |b(v)− Γb(v)|2,(
|a(v)−Γb(v)|2+|b(v)−Γa(t\v)|2

1+|a(v)−Γa(v)|2+|b(v)−Γb(v)|2

)
|a(v)− b(v)|2

,

where η ∈
(

0, 1
k2

)
and k ≥ 1. Then, the BVP (22) is subject to boundary conditions and has a

unique solution in C[0, 1].

Proof. For a, b ∈ S, v ∈ [0, 1] and for the mapping Γ : S→ S, given in (23), consider

|Γa(v)− Γb(v)|2 =

∣∣∣∣∣∣
1∫
0

G(t, v)K(a(v), v)dv−
1∫
0

G(t, v)K(b(v), v)dv

∣∣∣∣∣∣
2

,

d(Γa, Γb) = max
v∈[0,1]

∣∣∣∣∣∣
1∫
0

G(t, v)(K(a(v), v)dv−K(b(v), v))dv

∣∣∣∣∣∣
2

,

≤

 1∫
0

max
v∈[0,1]

|G(t, v)(K(a(v), v)−K(b(v), v))|dv

2

,

=

 1∫
0

max
v∈[0,1]

|G(t, v)||(K(a(v), v)−K(b(v), v))|dv

2

,

≤

 1∫
0

Ń max
v∈[0,1]

|(K(a(v), v)−K(b(v), v))|dv

2

,

from (24), we have

d(Γa, Γb) ≤

 1∫
0

√
e−ς(M(a(v),b(v)))M(a(v), b(v))dv

2

,

≤

√e−ς(M(a(v),b(v)))M(a(v), b(v))
1∫
0

dv

2

,

d(Γa, Γb) ≤ e−ς(M(a(v),b(v)))M(a(v), b(v)). (25)

Consider $(M(a(v), b(v))) = ς(M(a(v), b(v))) ∈ Λ, z(r) = ln r such that z ∈ F∗ and
ξ(τ) = 1. Hence,



Fractal Fract. 2023, 7, 833 21 of 29

$(M(a(v), b(v))) +z

d(Γa,Γb)∫
0

ξ(τ)dτ

 = ς(M(a(v), b(v))) +z

d(Γa,Γb)∫
0

1dτ

,

= ς(M(a(v), b(v))) +z(d(Γa, Γb)),

= ς(M(a(v), b(v))) + ln(d(Γa, Γb)),

≤ ς(M(a(v), b(v)))

+ ln
(

e−ς(M(a(v),b(v)))M(M(a(v), b(v))
)

, from (25),

= ς(M(a(v), b(v)))− ς(M(a(v), b(v)))

+ ln(M(a(v), b(v))),

= ln(M(a(v), b(v))). (26)

Also, as

z

M(a(v),b(v))∫
0

ξ(τ)dτ

 = z

M(a(v),b(v))∫
0

1dτ


= z(M(a(v), b(v))). (27)

From (26) and (27),

$(M(a(v), b(v))) +z

d(Γa,Γb)∫
0

ξ(τ)dτ

 ≤ z

M(a(v),b(v))∫
0

ξ(τ)dτ

.

Hence, the mapping Γ satisfies the extended integral z-contraction. Therefore, Γ has a
unique fixed point in C[0, 1] and which is the unique solution of BVP (22).

4.1.2. Using (κ, Ω-z)-Contraction

Now, we will use our second main result related to the (κ, Ω-z)-contraction to discuss
the existence result for nonlinear BVP (22) in the next theorem as follows.

Theorem 9. Assume K : [0, 1]× [0, ∞) −→ R is a continuous function and

|K(a(v), v)−K(b(v), v)| ≤ 1
Ń

√
e−κ(u)d(a, b), (28)

for all a, b ∈ S, where e−κ(u) ≥ 0 for κ ∈ Λ, d(a, b) = |a(v)− b(v)|2 and v ∈ [0, 1]. Then, the
BVP (22), subjected to boundary conditions, has a unique solution in C[0, 1].
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Proof. For a, b ∈ S, v ∈ [0, 1] and mapping Γ : S→ S, consider

|Γa(v)− Γb(v)|2 =

∣∣∣∣∣∣
1∫
0

G(t, v)K(a(v), v)dv−
1∫
0

G(t, v)K(b(v), v)dv

∣∣∣∣∣∣
2

,

d(Γa, Γb) = max
v∈[0,1]

∣∣∣∣∣∣
1∫
0

G(t, v)(K(a(v), v)dv−K(b(v), v))dv

∣∣∣∣∣∣
2

,

≤

 1∫
0

max
v∈[0,1]

|G(t, v)(K(a(v), v)dv−K(b(v), v))|dv

2

,

=

 1∫
0

max
v∈[0,1]

|G(t, v)||K(a(v), v)−K(b(v), v)|dv

2

,

<

 1∫
Ń

0

max
v∈[0,1]

|K(a(v), v)−K(b(v), v)|dv

2

,

≤

 1∫
0

√
e−κ(u)d(a, b)dv

2

, From (25)

=

√e−κ(u)d(a, b)
1∫
0

dv

2

,

= e−κ(u)d(a, b). (29)

Taking κ(u) = ς(u)
2 > 0, z(r) = ln r such that z ∈ F∗, and =(u, v) = u +

√
v gives

$(u) +z(=(0, d(Γa, Γb))) =
ς(u)

2
+ ln

(
=
(

0,
√

d(Γx, Γy)
))

,

=
ς(u)

2
+

1
2

ln d(Γx, Γy),

≤ ς(u)
2

+
1
2

ln e
−ς(u)

d(a, b), from (25a),

=
ς(u)

2
+

1
2
(−ς(u) + ln d(a, b)),

=
ς(u)

2
− ς(u)

2
+

1
2

ln d(a, b),

= ln
√

d(a, b),

= z
(√

d(a, b)
)

,

= z
(

0 +
√

d(a, b)
)

,

= z(=(0, d(a, b))),

$(u) +z(=(0, d(Γa, Γb))) ≤ z(=(0, d(a, b))).

hence, Γ satisfies the (Ω-z)-contraction. Therefore, Γ has a unique fixed point in C[0, 1]
and it is also a unique solution of BVP (22).
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4.2. Solution of Integral Equation Using (κ, Γ1,2, Ω-z)-Contraction

To examine the existence and uniqueness of a solution within a broad category of
Fredholm integral equations of the second kind, there are different assumptions concerning
the functions at hand. In order to establish the outcome, Theorem 7 is employed in
conjunction with a function space S = (C[x, y],R) and a contractive inequality. Let us
consider the integral equation

ga(u) = f (u) + µ

y∫
x

K(u, v)ha(t)dt. (30)

where a : [x, y] → R, given functions f : [x, y] → R, and h, g : R → R, are all continuous
and a parameter µ ∈ R. The integral equation’s kernel, denoted by K, is defined on the
domain [x, y]× [x, y]. In the specific case where both f and h correspond to the identity
mapping I on R, Equation (30) is commonly referred to as a Fredholm integral equation
of the second kind. Further details and relevant references on this subject can be found
in [34–37], along with the cited sources therein.

The subsequent theorem provides a comprehensive methodology for solving Equation (30)
utilizing the techniques used in Theorem 7.

Theorem 10. Assuming continuity of K, f , g, and h, and for all t, u ∈ [x, y], |K(u, t)| < c◦.
Moreover, for each a ∈ S, there exists b ∈ S in satisfying the equation

(gb)(u) = f (u) + µ

y∫
x

K(u(t), t)(ha)(t)dt. (31)

If g is an injective mapping, there exists £ ∈ R+ such that, for all a, b ∈ R

|ha− hb| ≤ £|ga− gb|.

Additionally, the set {ga : a ∈ S} is complete. Then, for |µ| ≤ e−τ(d(ga,gb))

c◦£(y−x) , where κ ∈ Λ, defined

by κ(t) = e−t and z(r) = ln r, such that z ∈ F∗, for a, b ∈ S, there exists a function c ∈ S such
that, for a0 ∈ S, the functional integral equation

gc(u) = lim
n→∞

gan(u) = lim
n→∞

 f (u) + µ

y∫
x

K(u(t), t).han−1(t)dt


and c represents the unique solution of Equation (30).

Proof. Consider the metric space (S, d), where d(a, b) = max
t∈[x,y]

|a(t)− b(t)| for all a, b ∈ S.

Let Γ1 and Γ2 be self-mappings on S defined by

(Γ1a)(u) = f (u) + µ

y∫
x

K(u(t), t)(ha)(t)dt and Γ2a = ga.

Under the assumption that (Γ2S, d) is a complete space, where Γ2S = {Γ2s : s ∈ S}.
Let a∗ ∈ Γ1S, then there exists an element a ∈ S such that a∗ = Γ1a, implying that
a∗(t) = Γ1a(t). Using Equation (31) and the mapping described above, we can observe
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that, for any b ∈ S, we have Γ1a(t) = gb(t) = Γ2b(t). Consequently, this implies that
Γ1a = Γ2b ∈ Γ2S and the inclusion Γ1S ⊆ Γ2S. Now

|(Γ1a)(u)− (Γ1b)(u)| =

∣∣∣∣∣∣µ
y∫
x

K(u(t), t)(ha)(t)dt− µ

y∫
x

K(u(t), t)(hb)(t)dt

∣∣∣∣∣∣,
= |µ|

∣∣∣∣∣∣
y∫
x

K(u(t), t)(ha)(t)dt−
y∫
x

K(u(t), t)(hb)(t)dt

∣∣∣∣∣∣,
= |µ|

∣∣∣∣∣∣
y∫
x

K(u(t), t)((ha)(t)− (hb)(t))dt

∣∣∣∣∣∣,
which implies

|(Γ1a)(u)− (Γ1b)(u)| ≤ |µ|
y∫
x

|K(u(t), t)||(ha)(t)− (hb)(t)|dt,

< |µ|kc◦|(ha)(t)− (hb)(t)|
y∫
x

dt,

d(Γ1a, Γ1b) < |µ|c◦(y− x) max
t∈[x,y]

£|(ga)(t)− (gb)(t)|,

= |µ|c◦£(y− x)d(ga, gb),

= |µ|c◦£(y− x)d(Γ2a, Γ2b),

<
e−τ(d(ga,gb))

c◦£(y− x)
c◦£(y− x)d(Γ2a, Γ2b),

= e−τ(d(ga,gb))d(Γ2a, Γ2b),

ln d(Γ1a, Γ1b) < ln e−τ(d(ga,gb)) + ln d(Γ2a, Γ2b),

z(d(Γ1a, Γ1b)) < −κ(d(ga, gb)) +z(d(Γ2a, Γ2b)),

z(d(Γ1a, Γ1b)− 0) < −κ(d(ga, gb)− 0) +z(d(Γ2a, Γ2b)− 0),

κ(=(0, d(Γ2a, Γ2b))) +z(=(0, d(Γ1a, Γ1b))) ≤ z(=(0, d(Γ2a, Γ2b))).

Hence, the mappings Γ1 and Γ2 satisfy all the conditions of Theorem 7. Thus, for a0 ∈ S,
there exists a unique c ∈ S such that

gc(t) = Γ2c(t) = lim
n→∞

Γ2an(t), (by continuity of Γ2),

gc(t) = lim
n→∞

Γ1an+1(t),

gc(t) = lim
n→∞

 f (u) + µ

y∫
x

K(u(t), t).han−1(t)dt

,

gc(t) = f (u) + µ

y∫
x

K(u(t), t).h lim
n→∞

an−1(t)dt,

gc(t) = f (u) + µ

y∫
x

K(u(t), t).hc(t)dt,

gc(t) = Γ1c(t),
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which implies that gc(t) = Γ2c(t) = Γ1c(t) for all t ∈ [x, y] and c ∈ S is a unique solution
of (30).

The following example validates all the conditions of Theorem 10 to find the solution
of a given nonlinear integral equation.

Example 3. Suppose

2a2(u) = u + µ

1∫
0

ut.a2(t)dt, (32)

with ga = 2a2, ha = a2, and f (u) = u. Let S = (C[0, 1],R) and d(a, b) = max
u∈[0,1]

|a(u)− b(u)|

for all a, b ∈ S. Also, as K(u(t), t) = ut ≤ 1

|K(u(t), t)| ≤ 1, for all t, u ∈ [0, 1].

Again, as

|hb− ha| =
∣∣∣b2 − a2

∣∣∣
=

1
2

∣∣∣2b2 − 2a2
∣∣∣,

|hb− ha| = 1
2
|gb− ga|,

∀a, b ∈ S, £ = 1
2 and c◦ = 1. Therefore, all the conditions of Theorem 10 are satisfied. Hence, there

exists a unique solution for (32), if, for τ ∈ Λ, there exists µ such that

|µ| ≤ e−τ(d(ga,gb))

c◦£(y− x)
=

2e−τ(d(ga,gb))

(1− 0)
=

2
eτ(d(ga,gb))

,

where τ(d(ga, gb)) > 0 gives

|µ| ≤ 2
eτ(d(ga,gb))

< 1

Hence, µ ∈ (−1, 1). For the approximation of the solution of (32), consider, for the self-mappings
Γ1 and Γ2 defined on S, the iterative sequence of the form Γ1an−1 = Γ2an, where a0 ∈ S and n ∈ N.
Define the mappings Γ1, Γ2 by

Γ1a(u) = u + µ

1∫
0

ut.a2(t)dt, and Γ2a(u) = 2a2(u).

Consider a0 ∈ S such that a0(u) = 0 for u ∈ [0, 1]. Then, for n = 1

Γ1a0(u) = Γ2a1(u),

u + µ

1∫
0

ut.a2
0(t)dt = 2a2

1(u),

a1(u) =
(u

2

) 1
2 .
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For n = 2,

Γ1a1(u) = Γ2a2(u),

2a2
2(u) = u + µ

1∫
0

ut.a2
1(t)dt,

2a2
2(u) = u + µ

1∫
0

u2

2
tdt = u +

µu2

4
,

a2(u) =
(

u
2
+

µu2

23

) 1
2

=

(
2

∑
i=1

µi−1ui

22i−1

) 1
2

.

For n = 3,

Γ1a2(u) = Γ2a3(u),

2a2
3(u) = u + µ

1∫
0

ut.a2
2(t)dt,

2a2
3(u) = u + µ

1∫
0

(
u2

2
+

µu3

23

)
tdt = u +

µu2

22 +
µ2u3

24 ,

a3(u) =
(

u
2
+

µu2

23 +
µ2u3

25

) 1
2

=

(
3

∑
i=1

µi−1ui

22i−1

) 1
2

.

Inductively, continuing in the same way for n ∈ N gives an(u) =

(
n

∑
i=1

µi−1ui

22i−1

) 1
2

. Clearly, an(u) is

finite geometric progression with a common ration µu
22 < 1, (∵ −1 < µ < 1 and 0 ≤ u ≤ 1, which

implies 0 < µu < 1⇒ 0 < µu
22 < 1

2 ). Therefore,

an(u) =

 u
2

(
1−

(
µu
22

)n)
1− µu

22


1
2

=

[
2u

22 − µu

(
1−

(µu
22

)n)] 1
2
.

Hence,

Γ1an(u) = 2a2
n(u) = Γ2an+1(u),

Γ1an(u) = 2
[

2u
22 − µu

(
1−

(µu
22

)n)]
= Γ2an+1(u).

As for µ ∈ (−1, 1), the sequence {an(u)}n∈N converges to c ∈ S such that

lim
n→∞

Γ2an+1(u) = lim
n→∞

4u
22 − µu

(
1−

(µu
22

)n)
,

lim
n→∞

Γ2c(u) =
4u

22 − µu
,

c(u) =
4u

4− µu
∈ R,

which is the solution of (32).
Figure 3 shows how µ ∈ (−1, 1) affects the slope of c ∈ S and its impact on the convergence of

c ∈ S. As µ increases, the slopes of c ∈ S become steeper, implying the faster convergence of c ∈ S.
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Conversely, decreasing µ leads to flatter slopes and the slower convergence of c ∈ S. The figure
visually demonstrates the relationship between µ values, slope steepness, and the convergence
behaviour of c ∈ S.

Figure 3. Graph of convergence

Problem 1. Under what conditions Theorems 7 and 8 can be proved for the case of b-metric space?
Equivalently, how we can define the (κ, Γ, Ω-z)-contraction and (κ, Γ1,2, Ω-z)-contraction in the
setting of the b-metric space to find the fixed point and coincidence point results?

5. Conclusions

The article introduces the novel concepts of the extended integral z-contraction and
(κ, Γ, Ω-z)-contraction. Furthermore, for two mappings and their coincidence/common
fixed point results, a variant of the (κ, Γ, Ω-z)-contraction is introduced, called (κ, Γ1,2, Ω-
z)-contraction. Section 4, is devoted to the applications of these contractions. These
applications include existence results for a given nonlinear fractional order boundary value
problem. This was performed using both the extended integral z-contraction and (κ, Γ, Ω-
z)-contraction. An existence result for a nonlinear integral equation has also been proved
using the (κ, Γ1,2, Ω-z)-contraction. In this regard, a well-explained example has been
established using the Picard–Jungck sequence, that converges to the solution of the integral
equation. Some non-trivial examples at the end of all the main theorems are given, and
the graphs are plotted if required. An open question is proposed for future directions.
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