Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Authors = Zhuochao Wang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 32807 KiB  
Article
Analysis of Hydrocarbon Enrichment in Tight Sandstone Reservoirs in the Eastern Baiyun Depression
by Xudong Wang, Nansheng Qiu, Xiangtao Zhang, Zhuochao Wang and Zhiye Li
Appl. Sci. 2024, 14(22), 10703; https://doi.org/10.3390/app142210703 - 19 Nov 2024
Viewed by 832
Abstract
Based on the special geological background of the east and north slopes of the Baiyun Depression, the development conditions of Paleogene structure–lithology traps, the development conditions of high-quality reservoirs and the difficulty in characterizing the distribution characteristics are studied in this paper. It [...] Read more.
Based on the special geological background of the east and north slopes of the Baiyun Depression, the development conditions of Paleogene structure–lithology traps, the development conditions of high-quality reservoirs and the difficulty in characterizing the distribution characteristics are studied in this paper. It is concluded that the eastern Baiyun is located on the Baiyun–Liwan continental–oceanic large-scale intershell separation system, with a complex tectonic background and a tectono-sedimentary pattern of “fault and uplift interlocking and uplift and depression interphase”. The palaeo source sink system of the low bulge in the east of Yundong is restored, the favorable position of reservoir collective development and the favorable characteristics of reservoir–cap assemblage are clarified, and the paleo-geomorphology and sedimentary filling evolution law are clarified. Guided by the drive of oil and gas accumulation, three types of large and medium-sized structure–stratigraphic traps have been implemented in the eastern Baiyun system, including the convex inclined end, the restricted fault gully and the magmatic floor intrusion, and the corresponding oil and gas accumulation models have been perfected. By studying the structure, source and sink system and trap characterization of the eastern Baiyun basin, the development conditions and exploration direction of the large and medium-sized Palaeogene traps are systematically summarized. Full article
Show Figures

Figure 1

11 pages, 2403 KiB  
Article
Facile Preparation of a Transparent, Self-Healing, and Recyclable Polysiloxane Elastomer Based on a Dynamic Imine and Boroxine Bond
by Peng Wang, Zhuochao Wang, Wenxin Cao and Jiaqi Zhu
Polymers 2024, 16(9), 1262; https://doi.org/10.3390/polym16091262 - 1 May 2024
Cited by 9 | Viewed by 2071
Abstract
Transparent polysiloxane elastomers with good self-healing and reprocessing abilities have attracted significant attention in the field of artificial skin and flexible displays. Herein, we propose a simple one-pot method to fabricate a room temperature self-healable polysiloxane elastomer (HPDMS) by introducing dynamic and reversible [...] Read more.
Transparent polysiloxane elastomers with good self-healing and reprocessing abilities have attracted significant attention in the field of artificial skin and flexible displays. Herein, we propose a simple one-pot method to fabricate a room temperature self-healable polysiloxane elastomer (HPDMS) by introducing dynamic and reversible imine bonds and boroxine into polydimethylsiloxane (PDMS) networks. The presence of imine bonds and boroxine is proved by FT−IR and NMR spectra. The obtained HPDMS elastomer is highly transparent with a transmittance of up to 80%. The TGA results demonstrated that the HPDMS elastomer has good heat resistance and can be used in a wide temperature range. A lower glass transition temperature (Tg, −127.4 °C) was obtained and revealed that the elastomer is highly flexible at room temperature. Because of the reformation of dynamic reversible imine bonds and boroxine, the HPDMS elastomers exhibited excellent autonomous self-healing properties. After healing for 3 h, the self-healing efficiency of HPDMS reached 96.3% at room temperature. Moreover, the elastomers can be repeatedly reprocessed multiple times under milder conditions. This work provides a simple but effective method to prepare transparent self-healable and reprocessable polysiloxane elastomers. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials)
Show Figures

Figure 1

11 pages, 3575 KiB  
Article
Self-Healable and Reprocessable Silicon Elastomers Based on Imine–Boroxine Bonds for Flexible Strain Sensor
by Peng Wang, Zhuochao Wang, Lu Liu, Guobing Ying, Wenxin Cao and Jiaqi Zhu
Molecules 2023, 28(16), 6049; https://doi.org/10.3390/molecules28166049 - 14 Aug 2023
Cited by 13 | Viewed by 2340
Abstract
Silicon elastomers with excellent self-healing and reprocessing abilities are highly desirable for the advancement of next-generation energy, electronic, and robotic applications. In this study, a dual cross-linked self-healing polysiloxane elastomer was facilely fabricated by introducing an exchangeable imine bond and boroxine into polydimethylsiloxane [...] Read more.
Silicon elastomers with excellent self-healing and reprocessing abilities are highly desirable for the advancement of next-generation energy, electronic, and robotic applications. In this study, a dual cross-linked self-healing polysiloxane elastomer was facilely fabricated by introducing an exchangeable imine bond and boroxine into polydimethylsiloxane (PDMS) networks. The PDMS elastomers exhibited excellent self-healing properties due to the synergistic effect of dynamic reversible imine bonds and boroxine. After healing for 2 h, the mechanical strength of the damaged elastomers completely and rapidly recovered at room temperature. Furthermore, the prepared PDMS elastomers could be repeatedly reprocessed multiple times under milder conditions without significant degradation in mechanical performance. In addition, a stretchable and self-healable electrical sensor was developed by integrating carbon nanotubes (CNTs) with the PDMS elastomer, which can be employed to monitor multifarious human motions in real time. Therefore, this work provides a new inspiration for preparing self-healable and reprocessable silicone elastomers for future flexible electronics. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Self-Healing Materials)
Show Figures

Figure 1

12 pages, 1686 KiB  
Article
The Outcome of Discontinuing Tyrosine Kinase Inhibitors in Advanced Sarcoma Following a Favorable Tumor Response to Antiangiogenics Therapy
by Zhusheng Zhang, Qiyuan Bao, Yucheng Fu, Junxiang Wen, Meng Li, Zhuochao Liu, Guoyu He, Beichen Wang, Yuhui Shen and Weibin Zhang
J. Clin. Med. 2023, 12(1), 325; https://doi.org/10.3390/jcm12010325 - 31 Dec 2022
Cited by 10 | Viewed by 2075
Abstract
(1) Background: The use of antiangiogenic TKIs (AA-TKIs) has recently emerged as a major paradigm shift in the treatment of advanced sarcoma. However, the feasibility of drug holidays for patients demonstrating a very favorable response remains unknown. (2) Methods: We aim to explore [...] Read more.
(1) Background: The use of antiangiogenic TKIs (AA-TKIs) has recently emerged as a major paradigm shift in the treatment of advanced sarcoma. However, the feasibility of drug holidays for patients demonstrating a very favorable response remains unknown. (2) Methods: We aim to explore the outcomes of patients with advanced sarcoma who discontinued AA-TKIs after a (near-) complete remission or were long-term responders. Patients with advanced disease were included if they had bilateral or multiple lung metastases, extrapulmonary recurrence, a short disease-free interval, etc., at the initiation of AA-TKIs. (3) Results: A total of 22 patients with AA-TKI discontinuation were analyzed, with a median follow-up of 22.3 months post-discontinuation. Prior to discontinuation, there were four drug-induced complete remissions (CRs), twelve surgical CRs, and six long-term responders. Disease progression was observed in 17/22 (77.3%) patients, with a median of 4.2 months. However, since the majority were still sensitive to the original AA-TKIs and amenable to a second surgical remission, 7 out of these 17 patients achieved a second CR after disease progression and were thus considered as relapse-free post-discontinuation (pd-RFS). Therefore, the pd-RFS and post-discontinuation overall survival (pd-OS) in the last follow-up were 12/22 (54.5%) and 16/22 (72.7%), respectively. Remarkably, surgical CR and drug tapering off (versus abrupt stopping) were associated with a greater pd-RFS and pd-OS (p < 0.05). Furthermore, higher necrosis rates (p = 0.040) and lower neutrophil-to-lymphocyte ratios (NLR) (p = 0.060) before discontinuation tend to have a better pd-RFS. (4) Conclusions: Our results suggest that AA-TKI discontinuation with a taper-off strategy might be safe and feasible in highly selected patients with advanced sarcoma. Surgical CR, NLR, and tumor necrosis rates before discontinuation were potential biomarkers for AA-TKI withdrawal. Full article
Show Figures

Figure 1

10 pages, 560 KiB  
Article
Methylenetetrahydrofolate Reductase 677T Allele Is a Risk Factor for Arterial Thrombosis in Chinese Han Patients with Antiphospholipid Syndrome
by Zihan Tang, Hui Shi, Honglei Liu, Xiaobing Cheng, Yutong Su, Junna Ye, Yue Sun, Qiongyi Hu, Huihui Chi, Zhuochao Zhou, Jinchao Jia, Jianfen Meng, Mengyan Wang, Fan Wang, Jialin Teng, Chengde Yang and Tingting Liu
Biomedicines 2023, 11(1), 55; https://doi.org/10.3390/biomedicines11010055 - 26 Dec 2022
Cited by 4 | Viewed by 2220
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by the persistent presence of antiphospholipid antibodies (aPL) and thrombotic or obstetric events. Given the heterogeneity of the clinical manifestations, it is likely that genetic and acquired factors are involved in the pathogenesis of [...] Read more.
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by the persistent presence of antiphospholipid antibodies (aPL) and thrombotic or obstetric events. Given the heterogeneity of the clinical manifestations, it is likely that genetic and acquired factors are involved in the pathogenesis of APS. The inherited polymorphisms of the thrombophilic gene, including methylenetetrahydrofolate reductase (MTHFR) C677T, type 1 plasminogen activator inhibitor (PAI-1) 4G/5G, factor V Leiden (FVL) G1691A, prothrombin (PT) G20210A, antithrombin (AT), and fibrinogen (Fg) polymorphisms, were analyzed in 67 aPL(+) patients from the Chinese Han population, including 41 APS patients and 26 persistent aPL carriers. The MTHFR C677T genotypes of 105 healthy controls, and the PAI-1 4G/5G polymorphism of 120 healthy controls, from the Chinese Han population were acquired for this study. Both the MTHFR C677T genotype (χ2 = 10.67, p = 0.004) and C/T allele distribution (χ2 = 5.92, p = 0.019) between the aPL(+) patients and healthy controls were found to be significantly different. Furthermore, we observed that the patients with at least one T allele had a higher risk of arterial thrombosis (CT vs. CC, OR 11.00, p= 0.025; CT + TT vs. CC, OR 10.27, p = 0.018). The C677T mutation of MTHFR is a risk factor for arterial thrombosis in Chinese Han patients with APS. Full article
(This article belongs to the Special Issue Basic and Clinical Researches of Antiphospholipid Syndrome)
Show Figures

Figure 1

14 pages, 4834 KiB  
Article
Bio-Inspired Eco-Friendly Superhydrophilic/Underwater Superoleophobic Cotton for Oil-Water Separation and Removal of Heavy Metals
by Feiran Li, Jian Wang, Zhuochao Wang, Dongchao Ji, Shuai Wang, Pengcheng Wei and Wenxin Cao
Biomimetics 2022, 7(4), 177; https://doi.org/10.3390/biomimetics7040177 - 26 Oct 2022
Cited by 8 | Viewed by 2792
Abstract
Effective integrated methods for oil-water separation and water remediation have signifi-cance in both energy and environment fields. Materials with both superlyophobic and superlyophilic properties toward water and oil have aroused great attention due to their energy-saving and high-efficient advantages in oil-water separation. However, [...] Read more.
Effective integrated methods for oil-water separation and water remediation have signifi-cance in both energy and environment fields. Materials with both superlyophobic and superlyophilic properties toward water and oil have aroused great attention due to their energy-saving and high-efficient advantages in oil-water separation. However, in order to fulfill the superlyophobicity, low surface tension fluorinated components are always being introduced. These constituents are environmentally harmful, which may lead to additional contamination during the separating process. Moreover, the heavy metal ions, which are water-soluble and highly toxic, are always contained in the oil-water mixtures created during industrial production. Therefore, material that is integrated by both capacities of oil-water separation and removal of heavy metal contamination would be of significance in both industrial applications and environmental sustainability. Herein, inspired by the composition and wettability of the shrimp shell, an eco-friendly chitosan-coated (CTS) cotton was developed. The treated cotton exhibits the superhydrophilic/underwater superoleophobic property and is capable of separating both immiscible oil-water mixtures and stabilized oil-in-water emulsions. More significantly, various harmful water-soluble heavy metal ions can also be effectively removed during the separation of emulsions. The developed CTS coated cotton demonstrates an attractive perspective toward oil-water separation and wastewater treatment in various applications. Full article
Show Figures

Graphical abstract

17 pages, 3747 KiB  
Article
A Realistic and Integrated Model for Evaluating Offshore Oil Development
by Rui Qiu, Zhuochao Li, Qin Zhang, Xin Yao, Shuyi Xie, Qi Liao and Bohong Wang
J. Mar. Sci. Eng. 2022, 10(8), 1155; https://doi.org/10.3390/jmse10081155 - 20 Aug 2022
Cited by 5 | Viewed by 7028
Abstract
With the rising consumption of oil resources, major oil companies around the world have increasingly engaged in offshore oil exploration and development, and offshore oil resources have accounted for an increasing proportion. Offshore oil engineering projects are capital intensive, and the development of [...] Read more.
With the rising consumption of oil resources, major oil companies around the world have increasingly engaged in offshore oil exploration and development, and offshore oil resources have accounted for an increasing proportion. Offshore oil engineering projects are capital intensive, and the development of offshore oil fields faces a tough battle, especially in a period of low oil prices. Thus, a comprehensive evaluation model is highly needed to help assess economic benefits and provide meaningful and valuable information for operators and investors to make sensible decisions. This study firstly proposed a realistic and integrated evaluation model for offshore oil development based on actual historical project data. This evaluation model incorporated modules from the underwater system to the platform system and processes from oil reservoir extraction to oil, gas and water treatment. The uncertain parameters in the evaluation process are dealt with by sensitivity analysis and Monte Carlo simulation. The proposed model is applied to a typical offshore oil development project in Bohai Bay, China. The results reveal that the recovery factor and oil price have the greatest impact on the economic benefits. In the case of deterministic analysis, the breakeven oil price of the project is 40.59 USD/bbl. After considering the uncertainty of project parameters, the higher the oil price, the greater the probability of NPV > 0. When the oil price is higher than 70 USD/bbl, even with uncertain project parameters, the probability of NPV > 0 can still be as high as 97.39%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 6367 KiB  
Article
Theoretical Perspectives on the Gas-Phase Oxidation Mechanism and Kinetics of Carbazole Initiated by OH Radical in the Atmosphere
by Zhuochao Teng, Xiaotong Wang, Mohammad Hassan Hadizadeh, Yanan Han, Xianwei Zhao, Qi Zhang, Hetong Wang, Ying Li, Fei Xu and Yanhui Sun
Atmosphere 2022, 13(7), 1129; https://doi.org/10.3390/atmos13071129 - 18 Jul 2022
Cited by 7 | Viewed by 2697
Abstract
Carbazole is one of the typical heterocyclic aromatic compounds (NSO-HETs) observed in polluted urban atmosphere, which has become a serious environmental concern. The most important atmospheric loss process of carbazole is the reaction with OH radical. The present work investigated the mechanism of [...] Read more.
Carbazole is one of the typical heterocyclic aromatic compounds (NSO-HETs) observed in polluted urban atmosphere, which has become a serious environmental concern. The most important atmospheric loss process of carbazole is the reaction with OH radical. The present work investigated the mechanism of OH-initiated atmospheric oxidation degradation of carbazole by using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,2p)//M06-2X/6-311+G(d,p) level. The rate constants were determined by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The lifetime of carbazole determined by OH was compared with other typical NSO-HETs. The theoretical results show that the degradation of carbazole initiated by OH radical includes four types of reactions: OH additions to “bend” C atoms, OH additions to “benzene ring” C atoms, H abstractions from C-H bonds and the H abstraction from N-H bond. The OH addition to C1 atom and the H abstraction from N-H bond are energetically favorable. The main oxidation products are hydroxycarbazole, dialdehyde, carbazolequinone, carbazole-ol, hydroxy-carbazole-one and hydroperoxyl-carbazole-one. The calculated overall rate constant of carbazole oxidation by OH radical is 6.52 × 10−12 cm3 molecule−1 s−1 and the atmospheric lifetime is 37.70 h under the condition of 298 K and 1 atm. The rate constant of carbazole determined by OH radical is similar with that of dibenzothiophene oxidation but lower than those of pyrrole, indole, dibenzofuran and fluorene. This work provides a theoretical investigation of the oxygenated mechanism of NSO-HETs in the atmosphere and should help to clarify their potential health risk for determining the reaction pathways and environmental influence of carbazole. Full article
(This article belongs to the Special Issue New Insights into Secondary Organic Aerosol Formation)
Show Figures

Figure 1

18 pages, 1692 KiB  
Article
The Homogeneous Gas-Phase Formation Mechanism of PCNs from Cross-Condensation of Phenoxy Radical with 2-CPR and 3-CPR: A Theoretical Mechanistic and Kinetic Study
by Zhuochao Teng, Yanan Han, Shuming He, Mohammad Hassan Hadizadeh, Qi Zhang, Xurong Bai, Xiaotong Wang, Yanhui Sun and Fei Xu
Int. J. Mol. Sci. 2022, 23(11), 5866; https://doi.org/10.3390/ijms23115866 - 24 May 2022
Cited by 4 | Viewed by 1768
Abstract
Chlorophenols (CPs) and phenol are abundant in thermal and combustion procedures, such as stack gas production, industrial incinerators, metal reclamation, etc., which are key precursors for the formation of polychlorinated naphthalenes (PCNs). CPs and phenol can react with H or OH radicals to [...] Read more.
Chlorophenols (CPs) and phenol are abundant in thermal and combustion procedures, such as stack gas production, industrial incinerators, metal reclamation, etc., which are key precursors for the formation of polychlorinated naphthalenes (PCNs). CPs and phenol can react with H or OH radicals to form chlorophenoxy radicals (CPRs) and phenoxy radical (PhR). The self-condensation of CPRs or cross-condensation of PhR with CPRs is the initial and most important step for PCN formation. In this work, detailed thermodynamic and kinetic calculations were carried out to investigate the PCN formation mechanisms from PhR with 2-CPR/3-CPR. Several energetically advantageous formation pathways were obtained. The rate constants of key elementary steps were calculated over 600~1200 K using the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution method. The mechanisms were compared with the experimental observations and our previous works on the PCN formation from the self-condensation of 2-CPRs/3-CPRs. This study shows that naphthalene and 1-monochlorinated naphthalene (1-MCN) are the main PCN products from the cross-condensation of PhR with 2-CPR, and naphthalene and 2-monochlorinated naphthalene (2-MCN) are the main PCN products from the cross-condensation of PhR with 3-CPR. Pathways terminated with Cl elimination are preferred over those terminated with H elimination. PCN formation from the cross-condensation of PhR with 3-CPR can occur much easier than that from the cross-condensation of PhR with 2-CPR. This study, along with the study of PCN formation from the self-condensation 2-CPRs/3-CPRs, can provide reasonable explanations for the experimental observations that the formation potential of naphthalene is larger than that of 1-MCN using 2-CP as a precursor, and an almost equal yield of 1-MCN and 2-MCN can be produced with 3-CP as a precursor. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

18 pages, 53862 KiB  
Review
Metasurface Holography in the Microwave Regime
by Guanyu Shang, Zhuochao Wang, Haoyu Li, Kuang Zhang, Qun Wu, Shah Nawaz Burokur and Xumin Ding
Photonics 2021, 8(5), 135; https://doi.org/10.3390/photonics8050135 - 22 Apr 2021
Cited by 35 | Viewed by 11138
Abstract
Hologram technology has attracted a great deal of interest in a wide range of optical fields owing to its potential use in future optical applications, such as holographic imaging and optical data storage. Although there have been considerable efforts to develop holographic technologies [...] Read more.
Hologram technology has attracted a great deal of interest in a wide range of optical fields owing to its potential use in future optical applications, such as holographic imaging and optical data storage. Although there have been considerable efforts to develop holographic technologies using conventional optics, critical issues still hinder their future development. A metasurface, as an emerging multifunctional device, can manipulate the phase, magnitude, polarization and resonance properties of electromagnetic fields within a sub-wavelength scale, opening up an alternative for a compact holographic structure and high imaging quality. In this review paper, we first introduce the development history of holographic imaging and metasurfaces, and demonstrate some applications of metasurface holography in the field of optics. We then summarize the latest developments in holographic imaging in the microwave regime. These functionalities include phase- and amplitude-based design, polarization multiplexing, wavelength multiplexing, spatial asymmetric propagation, and a reconfigurable mechanism. Finally, we conclude briefly on this rapidly developing research field and present some outlooks for the near future. Full article
(This article belongs to the Special Issue Holography)
Show Figures

Figure 1

Back to TopTop