Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Zhangqi Shen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5735 KiB  
Article
Antimicrobial Resistance Genes in Clinical Escherichia coli Strains from Livestock and Poultry in Shandong Province, China During 2015–2020
by Miaoli Wang, Shaopeng Wu, Yao Wang, Feng Chen, Zhangqi Shen and Zouran Lan
Antibiotics 2025, 14(1), 95; https://doi.org/10.3390/antibiotics14010095 - 15 Jan 2025
Viewed by 1663
Abstract
Antimicrobial resistant (AMR) Escherichia coli (E. coli) isolated from animals may lead to antibiotic treatment failure and economic losses to farmers. The co-existence of antimicrobial resistant genes (ARGs) in the same isolate presents a major challenge for the prevention and control [...] Read more.
Antimicrobial resistant (AMR) Escherichia coli (E. coli) isolated from animals may lead to antibiotic treatment failure and economic losses to farmers. The co-existence of antimicrobial resistant genes (ARGs) in the same isolate presents a major challenge for the prevention and control of infection in multidrug-resistant (MDR) Gram-negative organisms. There have been a lot of studies on the antibiotic resistance of E. coli in livestock and poultry, but few of them have focused on clinical pathogens. Objective: The aim of this study was to explore the genetic characteristics, co-occurrence, and correlations between ARGs of E. coli isolated from the pathological tissues of livestock and poultry in Shandong Province, East China during 2015–2020. Methods: A total of 158 E. coli strains were collected and subjected to antimicrobial susceptibility testing and sequencing by whole-genome Next Generation Sequencing (NGS). Results: MDR strains accounted for 46.20% of the 158 E. coli strains with the highest resistant rate of ciprofloxacin (71.52%). In addition, strains with blaNDM-5/mcr-1.1 and mcr-1.1/mcr-3.24 were found in chickens, while three strains with Tet(X4) were found in pigs. In addition, the most common serotypes detected were the O serotype (76/158) and H serotype (36/158). Moreover, seventy-one STs were found and the most common STs were ST10 (6.33%), ST155 (6.33%), and ST101 (5.69%). The genetic environment analysis of the phylogroups revealed that E. coli belonging to phylogroup B1, phylogroup A, and phylogroup C constituted 39.87%, 27.85%, and 15.19%, respectively. Through the correlation analysis, mcr genes were observed to have certain relationships with ARGS such as blaTEM, floR, catA/B, and oqx. Conclusions: This study demonstrates the high prevalence and gene diversity of MDR E. coli isolated from a clinic in Shandong Province, East China. We predicted the transmission risk of animal-borne Tet(X4)-bearing and mcr-harboring E. coli to public health and provided insight into the relationship of co-existence or co-transfer between mcr with ARGS. These relationships present a great challenge for the infection control of MDR Gram-negative organisms. Full article
Show Figures

Figure 1

19 pages, 4699 KiB  
Article
The miRNA-mRNA Regulatory Modules of Pinus massoniana Lamb. in Response to Drought Stress
by Xinhua Chen, Hu Chen, Tengfei Shen, Qunfeng Luo, Meng Xu and Zhangqi Yang
Int. J. Mol. Sci. 2023, 24(19), 14655; https://doi.org/10.3390/ijms241914655 - 28 Sep 2023
Cited by 3 | Viewed by 2264
Abstract
Masson pine (Pinus massoniana Lamb.) is a major fast-growing woody tree species and pioneer species for afforestation in barren sites in southern China. However, the regulatory mechanism of gene expression in P. massoniana under drought remains unclear. To uncover candidate microRNAs, their [...] Read more.
Masson pine (Pinus massoniana Lamb.) is a major fast-growing woody tree species and pioneer species for afforestation in barren sites in southern China. However, the regulatory mechanism of gene expression in P. massoniana under drought remains unclear. To uncover candidate microRNAs, their expression profiles, and microRNA-mRNA interactions, small RNA-seq was used to investigate the transcriptome from seedling roots under drought and rewatering in P. massoniana. A total of 421 plant microRNAs were identified. Pairwise differential expression analysis between treatment and control groups unveiled 134, 156, and 96 differential expressed microRNAs at three stages. These constitute 248 unique microRNAs, which were subsequently categorized into six clusters based on their expression profiles. Degradome sequencing revealed that these 248 differentially expressed microRNAs targeted 2069 genes. Gene Ontology enrichment analysis suggested that these target genes were related to translational and posttranslational regulation, cell wall modification, and reactive oxygen species scavenging. miRNAs such as miR482, miR398, miR11571, miR396, miR166, miRN88, and miRN74, along with their target genes annotated as F-box/kelch-repeat protein, 60S ribosomal protein, copper-zinc superoxide dismutase, luminal-binding protein, S-adenosylmethionine synthase, and Early Responsive to Dehydration Stress may play critical roles in drought response. This study provides insights into microRNA responsive to drought and rewatering in Masson pine and advances the understanding of drought tolerance mechanisms in Pinus. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

9 pages, 867 KiB  
Article
The Rapid Emergence of Ceftazidime-Avibactam Resistance Mediated by KPC Variants in Carbapenem-Resistant Klebsiella pneumoniae in Zhejiang Province, China
by Congcong Liu, Yuchen Wu, Ling Huang, Yanyan Zhang, Qiaoling Sun, Jiayue Lu, Yu Zeng, Ning Dong, Chang Cai, Zhangqi Shen, Gongxiang Chen and Rong Zhang
Antibiotics 2022, 11(6), 731; https://doi.org/10.3390/antibiotics11060731 - 30 May 2022
Cited by 16 | Viewed by 3536
Abstract
Ceftazidime-avibactam (CAV) is a new treatment option against carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. However, the rapid emergence of CAV resistance mediated by KPC variants has posed a severe threat to healthcare after its clinical application. The characteristics of CAV resistance in CRKP strains [...] Read more.
Ceftazidime-avibactam (CAV) is a new treatment option against carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. However, the rapid emergence of CAV resistance mediated by KPC variants has posed a severe threat to healthcare after its clinical application. The characteristics of CAV resistance in CRKP strains needs to be determined in China. A total of 477 CRKP isolates were collected from 46 hospitals in Zhejiang Province from 2018 to 2021. The results demonstrated that CAV had a potent activity against 94.5% of all CRKP (451/477, 95% CI: 93.0–96.1%) and 86.0% of CRKP strains carrying blaKPC genes (410/477, 95% CI: 83.5–88.4%). A total of 26 CAV-resistant strains were found. Among these strains, sixteen harbored metallo-β lactamases, and two carried KPC-2 carbapenemase and mutated ompK35 and ompK36. Eight CRKP strains encoded KPC-33 or KPC-93, belonging to ST11, among which seven strains were detected in patients hospitalized in 2021 after exposure to CAV and one strain was associated with intra-hospital spread. CAV is a potent agent in vitro against CRKP strains. The rapid development of CAV resistance mediated by various KPC variants after a short period of CAV treatment has increased and brought difficulties in treating infections caused by CRKP strains, especially those belonging to ST11. The surveillance of bacterial resistance against CAV is highly recommended due to the steep development of CAV resistance and rapid evolution of KPC enzymes. Full article
(This article belongs to the Special Issue Frontier of Antibiotics in China)
Show Figures

Figure 1

21 pages, 2589 KiB  
Review
The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems
by Chongshan Dai, Jiahao Lin, Hui Li, Zhangqi Shen, Yang Wang, Tony Velkov and Jianzhong Shen
Antioxidants 2022, 11(3), 459; https://doi.org/10.3390/antiox11030459 - 25 Feb 2022
Cited by 187 | Viewed by 36767
Abstract
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and [...] Read more.
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product. Full article
(This article belongs to the Topic Redox in Microorganisms)
Show Figures

Figure 1

14 pages, 4460 KiB  
Article
Characterization of NDM-1-Producing Carbapenemase in Proteus mirabilis among Broilers in China
by Xiaolin Zhu, Yaru Zhang, Zhangqi Shen, Lining Xia, Jinquan Wang, Li Zhao, Ke Wang, Wenhui Wang, Zhihui Hao and Zhihai Liu
Microorganisms 2021, 9(12), 2443; https://doi.org/10.3390/microorganisms9122443 - 26 Nov 2021
Cited by 12 | Viewed by 2888
Abstract
Carbapenem-resistant pathogens mediated by metallo-beta-lactamases (MBLs) have spread worldwide, where NDM-1 is a typical and key MBL. Here, we firstly discussed the distribution characterization of NDM-1, which produces multidrug-resistant Proteus mirabilis among broilers in China. From January to April 2019, 40 (18.1%, 40/221) [...] Read more.
Carbapenem-resistant pathogens mediated by metallo-beta-lactamases (MBLs) have spread worldwide, where NDM-1 is a typical and key MBL. Here, we firstly discussed the distribution characterization of NDM-1, which produces multidrug-resistant Proteus mirabilis among broilers in China. From January to April 2019, 40 (18.1%, 40/221) blaNDM-1-carrying P. mirabilis strains were recovered from commercial broilers in slaughterhouse B in China. All the isolates were resistant to imipenem, meropenem and other β-lactams. These isolates belong to five clusters identified via pulsed field gel electrophoresis (PFGE). Further studies on twenty representative strains revealed that seven blaNDM-1 genes were located on plasmids with sizes of 104.5–138.9 kb. Notably, only three strains (PB72, PB96 and PB109) were successfully transferred to Escherichia coli J53, while the other four isolates were located in nontransferable plasmids. The rest were harbored in chromosomes. Ulteriorly, based on whole genome sequencing (WGS), these twenty isolates showed four typical phylogenetic clades according to single nucleotide polymorphisms (SNPs) of a core genome and presented four main genomic backbone profiles, in which type II/III strains shared a similar genetic context. All of the above is evidence of blaNDM-1 transmission and evolution in P. mirabilis, suggesting that the prevalence may be more diverse in broiler farms. Accordingly, as intestinal and environmental symbiotic pathogens, blaNDM-1-positive P. mirabilis will pose greater threats to the environment and public health. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

17 pages, 4198 KiB  
Article
Uncovering miRNA-mRNA Regulatory Modules in Developing Xylem of Pinus massoniana via Small RNA and Degradome Sequencing
by Tengfei Shen, Mengxuan Xu, Haoran Qi, Yuanheng Feng, Zhangqi Yang and Meng Xu
Int. J. Mol. Sci. 2021, 22(18), 10154; https://doi.org/10.3390/ijms221810154 - 21 Sep 2021
Cited by 17 | Viewed by 3206
Abstract
Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found [...] Read more.
Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found that transcription factors and non-coding RNAs regulate the process of SCW thickening. Pinus massoniana is an important woody tree species in China and is widely used to produce materials for construction, furniture, and packaging. However, the target genes of microRNAs (miRNAs) in the developing xylem of P. massoniana are not known. In this study, a total of 25 conserved miRNAs and 173 novel miRNAs were identified via small RNA sequencing, and 58 differentially expressed miRNAs were identified between the developing xylem (PM_X) and protoplasts isolated from the developing xylem (PM_XP); 26 of these miRNAs were significantly up-regulated in PM_XP compared with PM_X, and 32 were significantly down-regulated. A total of 153 target genes of 20 conserved miRNAs and 712 target genes of 113 novel miRNAs were verified by degradome sequencing. There may be conserved miRNA-mRNA modules (miRNA-MYB, miRNA-ARF, and miRNA-LAC) involved in softwood and hardwood formation. The results of qRT-PCR-based parallel validation were in relatively high agreement. This study explored the potential regulatory network of miRNAs in the developing xylem of P. massoniana and provides new insights into wood formation in coniferous species. Full article
(This article belongs to the Special Issue Plant Non-coding RNAs in the Era of Biological Big Data)
Show Figures

Figure 1

13 pages, 2341 KiB  
Article
Fitness Cost of blaNDM-5-Carrying p3R-IncX3 Plasmids in Wild-Type NDM-Free Enterobacteriaceae
by Tengfei Ma, Jiani Fu, Ning Xie, Shizhen Ma, Lei Lei, Weishuai Zhai, Yingbo Shen, Chengtao Sun, Shaolin Wang, Zhangqi Shen, Yang Wang, Timothy R. Walsh and Jianzhong Shen
Microorganisms 2020, 8(3), 377; https://doi.org/10.3390/microorganisms8030377 - 7 Mar 2020
Cited by 49 | Viewed by 5034
Abstract
The wide dissemination of New Delhi metallo-β-lactamase genes (blaNDM) has resulted in the treatment failure of most available β-lactam antibiotics, with IncX3-type blaNDM-5-carrying plasmids recognised as having spread worldwide. In China, bacteria carrying these plasmids are increasingly being [...] Read more.
The wide dissemination of New Delhi metallo-β-lactamase genes (blaNDM) has resulted in the treatment failure of most available β-lactam antibiotics, with IncX3-type blaNDM-5-carrying plasmids recognised as having spread worldwide. In China, bacteria carrying these plasmids are increasingly being detected from diverse samples, including hospitals, communities, livestock and poultry, and the environment, suggesting that IncX3 plasmids are becoming a vital vehicle for blaNDM dissemination. To elucidate the fitness cost of these plasmids on the bacterial host, we collected blaNDM-negative strains from different sources and tested their ability to acquire the blaNDM-5-harboring p3R-IncX3 plasmid. We then measured changes in antimicrobial susceptibility, growth kinetics, and biofilm formation following plasmid acquisition. Overall, 70.7% (29/41) of our Enterobacteriaceae recipients successfully acquired the blaNDM-5-harboring p3R-IncX3 plasmid. Contrary to previous plasmid burden theory, 75.9% (22/29) of the transconjugates showed little fitness cost as a result of plasmid acquisition, with 6.9% (2/29) of strains exhibiting enhanced growth compared with their respective wild-type strains. Following plasmid acquisition, all transconjugates demonstrated resistance to most β-lactams, while several strains showed enhanced biofilm formation, further complicating treatment and prevention measures. Moreover, the highly virulent Escherichia coli sequence type 131 strain that already harbored mcr-1 also demonstrated the ability to acquire the blaNDM-5-carrying p3R-IncX3 plasmid, resulting in further limited therapeutic options. This low fitness cost may partly explain the rapid global dissemination of blaNDM-5-harboring IncX3 plasmids. Our study highlights the growing threat of IncX3 plasmids in spreading blaNDM-5. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

Back to TopTop