Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Yunfeng Long

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 16032 KiB  
Article
Energy Mechanism and Acoustic Emission Characteristics in Rock-Backfill Composite Structure Specimens under Multi-Level Cyclic Loads: Cement-Tailings Ratio Effect
by Dayu Long, Yu Wang, Changhong Li, Yunfeng Wu and Yongyue Hu
Minerals 2024, 14(7), 665; https://doi.org/10.3390/min14070665 - 27 Jun 2024
Cited by 1 | Viewed by 1047
Abstract
This study aimed to investigate the effects of the cement-tailings ratio (CTR) on the fatigue properties, acoustic emission (AE) activities, energy dissipation, and fracture patterns of rock-backfill composite structure (RBCS) samples. The investigation employed multi-level cyclic loading tests combined with acoustic emission monitoring [...] Read more.
This study aimed to investigate the effects of the cement-tailings ratio (CTR) on the fatigue properties, acoustic emission (AE) activities, energy dissipation, and fracture patterns of rock-backfill composite structure (RBCS) samples. The investigation employed multi-level cyclic loading tests combined with acoustic emission monitoring and post-test CT scanning. The results indicated that the fatigue strength and fatigue lifetime of the RBCS samples initially increased and then decreased as the CTR was reduced from 1:4 to 1:12. The energy dissipation characteristics reflected the optimal energy absorption effect of the backfill at a CTR of 1:8. The AE ring counts/energy apparent skip phenomenon corresponded to the stress-strain curve from a dense to sparse pattern. The samples with CTRs of 1:4 and 1:8 showed a more significant increase in the peak frequency band at failure and released more energy. The fracture of the RBCS specimen was dominated by tensile cracking signals accompanied by some shear cracking signals. However, the proportion of shear signals was higher for samples with CTRs of 1:4 and 1:8. Similarly, the b value was smaller at failure. The 3D visualization images revealed that the fracture pattern of the RBCS was a mixed tensile-shear fracture, including shear fracture within the backfill, tensile cracking in the interface, and tensile-shear fracture within the rock. The volume and complexity of cracks increased and then decreased with decreasing CTR, i.e., from 1:4 to 1:12. The evolution of cracks probably involves internal backfill fracturing first, and then the fracture extends into the surrounding rock. A recommendation for the design of CTB was presented in this study to ensure the safety and stability of mine excavations. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 3956 KiB  
Review
Application of Silver Nanoparticles in Parasite Treatment
by Ping Zhang, Jiahao Gong, Yan Jiang, Yunfeng Long, Weiqiang Lei, Xiuge Gao and Dawei Guo
Pharmaceutics 2023, 15(7), 1783; https://doi.org/10.3390/pharmaceutics15071783 - 21 Jun 2023
Cited by 17 | Viewed by 14440
Abstract
Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, [...] Read more.
Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs. This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application of AgNPs in the prevention and control of parasitic diseases. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

15 pages, 3416 KiB  
Article
Biodegradation of Oil by a Newly Isolated Strain Acinetobacter junii WCO-9 and Its Comparative Pan-Genome Analysis
by Shijie Jiang, Qingfeng Fan, Zeying Zhang, Yunfeng Deng, Lihong Wang, Qilin Dai, Jin Wang, Min Lin, Jian Zhou, Zhijian Long, Guiqiang He and Zhengfu Zhou
Microorganisms 2023, 11(2), 407; https://doi.org/10.3390/microorganisms11020407 - 6 Feb 2023
Cited by 10 | Viewed by 3045
Abstract
Waste oil pollution and the treatment of oily waste present a challenge, and the exploitation of microbial resources is a safe and efficient method to resolve these problems. Lipase-producing microorganisms can directly degrade waste oil and promote the degradation of oily waste and, [...] Read more.
Waste oil pollution and the treatment of oily waste present a challenge, and the exploitation of microbial resources is a safe and efficient method to resolve these problems. Lipase-producing microorganisms can directly degrade waste oil and promote the degradation of oily waste and, therefore, have very significant research and application value. The isolation of efficient oil-degrading strains is of great practical significance in research into microbial remediation in oil-contaminated environments and for the enrichment of the microbial lipase resource library. In this study, Acinetobacter junii WCO-9, an efficient oil-degrading bacterium, was isolated from an oil-contaminated soil using olive oil as the sole carbon source, and its enzyme activity of ρ-nitrophenyl decanoate (ρ-NPD) decomposition was 3000 U/L. The WCO-9 strain could degrade a variety of edible oils, and its degradation capability was significantly better than that of the control strain, A junii ATCC 17908. Comparative pan-genome and lipid degradation pathway analyses indicated that A. junii isolated from the same environment shared a similar set of core genes and that the species accumulated more specific genes that facilitated resistance to environmental stresses under different environmental conditions. WCO-9 has accumulated a complete set of oil metabolism genes under a long-term oil-contamination environment, and the compact arrangement of abundant lipase and lipase chaperones has further strengthened the ability of the strain to survive in such environments. This is the main reason why WCO-9 is able to degrade oil significantly more effectively than ATCC 17908. In addition, WCO-9 possesses a specific lipase that is not found in homologous strains. In summary, A. junii WCO-9, with a complete triglyceride degradation pathway and the specific lipase gene, has great potential in environmental remediation and lipase for industry. Full article
(This article belongs to the Collection Biodegradation and Environmental Microbiomes)
Show Figures

Figure 1

11 pages, 1415 KiB  
Article
Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of Porcine Circovirus 2, 3, and 4 in East China from 2020 to 2022
by Jianwen Zou, Huaicheng Liu, Jing Chen, Jin Zhang, Xiaohan Li, Yunfeng Long, Yan Jiang, Wenliang Li and Bin Zhou
Vet. Sci. 2023, 10(1), 29; https://doi.org/10.3390/vetsci10010029 - 31 Dec 2022
Cited by 14 | Viewed by 3742
Abstract
Porcine circovirus disease (PCVD) caused by porcine circovirus (PCV) is an important swine disease that is characterized by porcine dermatitis, nephropathy syndrome, and reproductive disorders in sows. However, disease caused by PCV2, PCV3, or PCV4 is hard to distinguish, so a rapid and [...] Read more.
Porcine circovirus disease (PCVD) caused by porcine circovirus (PCV) is an important swine disease that is characterized by porcine dermatitis, nephropathy syndrome, and reproductive disorders in sows. However, disease caused by PCV2, PCV3, or PCV4 is hard to distinguish, so a rapid and sensitive detection method is urgently needed to differentiate these three types. In this study, four pairs of specific primers and the corresponding probes for PCV 2, -3, and -4, and porcine endogenous gene β-Actin as the positive internal reference index, were designed to establish a TaqMan multiplex real-time PCR (qPCR) assay for the simultaneous differential diagnosis of different types of viruses. The results showed that this assay has good specificity and no cross-reactivity with other important porcine viral pathogens. Furthermore, it has high sensitivity, with a detection limit of 101 copies/μL, and good reproducibility, with intra- and inter-group coefficients of variation below 2%. Subsequently, 535 clinical samples of suspected sow reproductive disorders collected from Shandong, Zhejiang, Anhui, and Jiangsu provinces from 2020 to 2022 were analyzed using the established assay. The results showed that the individual positive rates of PCV2, PCV3, and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rates of PCV2 and PCV3, PCV2 and PCV4, and PCV3 and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rate of PCV2, PCV3, and PCV4 was 28.22%. This indicated that this assay provides a convenient tool for the rapid detection and differentiation of PCV2, PCV3, and PCV4 in pig farms in East China. Our findings highlight that there are different types of porcine circovirus infection in pig farms in East China, which makes pig disease prevention and control difficult. Full article
(This article belongs to the Special Issue Prevention and Control of Swine Infectious Diseases)
Show Figures

Figure 1

9 pages, 2124 KiB  
Article
As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor
by Yunfeng Long, Sheng-Yuan Xia, Liang-Yan Guo, Yaxiong Tan and Zhengyong Huang
Sensors 2022, 22(13), 4797; https://doi.org/10.3390/s22134797 - 24 Jun 2022
Cited by 17 | Viewed by 2235
Abstract
SF6 is a common insulating medium of gas-insulated switchgear (GIS). However, it is inevitable that SF6 will be decomposed due to partial discharge (PD) in GIS, which will cause hidden dangers to the safe and stable operation of equipment. Based on [...] Read more.
SF6 is a common insulating medium of gas-insulated switchgear (GIS). However, it is inevitable that SF6 will be decomposed due to partial discharge (PD) in GIS, which will cause hidden dangers to the safe and stable operation of equipment. Based on the DFT method, the two-dimensional nano-composite As-doped h-BN (As-BN) monolayer was proposed. By modeling and calculating, the ability of an As-BN monolayer as a specific sensor for SO2F2 (compared with an H2O adsorption system and CO2 adsorption system) was evaluated by parameters such as the binding energy (Eb), adsorption energy (Eads), transfer charge (ΔQ), geometric structure parameters, the total density of states (TDOS), band structure, charge difference density (CDD), electron localization function (ELF), sensitivity (S), and recovery time (τ). The results showed that an As-BN monolayer showed strong adsorption specificity, high sensitivity, and short recovery time for SO2F2 gas molecules. Therefore, the As-BN monolayer sensor has great application potential in the detection of SF6 decomposition gases. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 26320 KiB  
Article
Effect of Cellulose Nanocrystal Addition on the Physicochemical Properties of Hydroxypropyl Guar-Based Intelligent Films
by Yahui Meng, Yunfeng Cao, Kaifeng Xiong, Li Ma, Wenyuan Zhu, Zhu Long and Cuihua Dong
Membranes 2021, 11(4), 242; https://doi.org/10.3390/membranes11040242 - 29 Mar 2021
Cited by 5 | Viewed by 2687
Abstract
As an important functional material in food industry, intelligent packaging films can bring great convenience for consumers in the field of food preservation and freshness detection. Herein, we fabricated pH-sensing films employing hydroxypropyl guar (HPG), 1-butyl-3-methylimidazolium chloride (BmimCl), and anthocyanin (Anth). Besides, the [...] Read more.
As an important functional material in food industry, intelligent packaging films can bring great convenience for consumers in the field of food preservation and freshness detection. Herein, we fabricated pH-sensing films employing hydroxypropyl guar (HPG), 1-butyl-3-methylimidazolium chloride (BmimCl), and anthocyanin (Anth). Besides, the effects of adding cellulose nanocrystals (CNC) into the composite films upon the films’ structures and physicochemical properties are elucidated. The addition of CNC promoted more compact film structures. Moreover, CNC dramatically improved several properties of the pH-sensing films, including the distinguishability of their color changes, sensitivity to pH, permeability to oxygen and water vapor, solvent resistance, durability, and low-temperature resistance. These results expand the application range of pH-sensing films containing CNC in the fields of food freshness detection and intelligent packaging. Full article
(This article belongs to the Special Issue Advances on Bio-Based Materials for Food Packaging Applications)
Show Figures

Graphical abstract

27 pages, 7171 KiB  
Review
Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application
by Lili Yang, Yong Yang, Yunfeng Ma, Shuai Li, Yuquan Wei, Zhengren Huang and Nguyen Viet Long
Nanomaterials 2017, 7(11), 398; https://doi.org/10.3390/nano7110398 - 19 Nov 2017
Cited by 83 | Viewed by 12093
Abstract
Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, [...] Read more.
Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF) of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0–3 dimensions). Finally, we present an overview of ZnO nanostructures for the versatile SERS application. Full article
(This article belongs to the Special Issue ZnO and TiO2 Based Nanostructures)
Show Figures

Graphical abstract

Back to TopTop