Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Authors = Xiaojian Yang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 28819 KiB  
Article
Dynamical Analysis, Feedback Control Circuit Implementation, and Fixed-Time Sliding Mode Synchronization of a Novel 4D Chaotic System
by Huaigu Tian, Xifeng Yi, Yang Zhang, Zhen Wang, Xiaojian Xi and Jindong Liu
Symmetry 2025, 17(8), 1252; https://doi.org/10.3390/sym17081252 - 6 Aug 2025
Abstract
This paper presents a novel four-dimensional (4D) chaotic system exhibiting parametric symmetry breaking and multistability. Through equilibrium stability analysis, attractor reconstruction, Lyapunov Exponent spectra (LEs), and bifurcation diagrams, we reveal a continuous transition from symmetric period attractors to asymmetric chaotic states and rich [...] Read more.
This paper presents a novel four-dimensional (4D) chaotic system exhibiting parametric symmetry breaking and multistability. Through equilibrium stability analysis, attractor reconstruction, Lyapunov Exponent spectra (LEs), and bifurcation diagrams, we reveal a continuous transition from symmetric period attractors to asymmetric chaotic states and rich dynamical behaviors. Additionally, considering the potential of this system in practical applications, a feedback control simulation circuit is designed and implemented to ensure its stability and effectiveness under real-world conditions. Finally, among various control strategies, this paper proposes an innovative Fixed-Time Sliding Mode Synchronization (FTSMS) strategy, determines its synchronization convergence time, and provides an important theoretical foundation for the practical application of the system. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Chaos Theory and Application)
Show Figures

Figure 1

19 pages, 10370 KiB  
Article
Constructing a Composite Ecological Security Pattern Through Blind Zone Reduction and Ecological Risk Networks: A Case Study of the Middle Yangtze River Urban Agglomeration, China
by Xuankun Yang, Xiaojian Wei and Jin Cai
Sustainability 2025, 17(11), 5099; https://doi.org/10.3390/su17115099 - 2 Jun 2025
Viewed by 451
Abstract
The Middle Yangtze River Urban Agglomeration, a critical ecological barrier in China, faces escalating pressures from rapid urbanization and climate change, leading to fragmented landscapes and degraded ecosystem services. To address the synergistic challenges of ecological protection and risk management, this paper takes [...] Read more.
The Middle Yangtze River Urban Agglomeration, a critical ecological barrier in China, faces escalating pressures from rapid urbanization and climate change, leading to fragmented landscapes and degraded ecosystem services. To address the synergistic challenges of ecological protection and risk management, this paper takes the urban agglomeration in the middle reaches of the Yangtze River as the study area, and obtains the source patches through morphological spatial pattern analysis. Based on the spatial distribution of risky source areas, ecological blind zones are cut down by optimizing buffer zones and merging fragmented patches. Finally, a composite ecological network is constructed through circuit theory superimposed on the dual network method. The results showed that (1) there are 16 ecological source patches and 16 risk source patches in the study area. Six complementary ecological sources and four new ecological sources were obtained through the blind zone reduction strategy. The percentage of ecological blind zones reduced from 58.4% to 39.5%. (2) The integrated nodes with 11,366 connecting edges were identified. The integrated nodes are distributed around the central Jiuling-Mafushan Mountains, mainly in the western and southern areas of the Dongting Lake Plain. (3) Primary integration nodes are critical for network stability, with a 75% node failure threshold triggering systemic collapse. The proposed strategy of “mountain protection–plain control–railway monitoring” is consistent with China’s territorial and spatial planning. By incorporating the risk network into the conservation framework, this study provides feasible insights for balancing development and sustainability in ecologically fragile areas. Full article
Show Figures

Figure 1

14 pages, 2794 KiB  
Article
Comprehensive Analysis of Ghd7 Variations Using Pan-Genomics and Prime Editing in Rice
by Jiarui Wang, Shihang Liu, Jisong Pu, Jun Li, Changcai He, Lanjing Zhang, Xu Zhou, Dongyu Xu, Luyao Zhou, Yuting Guo, Yuxiu Zhang, Yang Wang, Bin Yang, Pingrong Wang, Xiaojian Deng and Changhui Sun
Genes 2025, 16(4), 462; https://doi.org/10.3390/genes16040462 - 17 Apr 2025
Viewed by 596
Abstract
The Ghd7 gene in rice plays a crucial role in determining heading date, plant height, and grain yield. However, the variations in Ghd7 and their functional implications across different rice accessions are not fully understood. Based on the release of a large amount [...] Read more.
The Ghd7 gene in rice plays a crucial role in determining heading date, plant height, and grain yield. However, the variations in Ghd7 and their functional implications across different rice accessions are not fully understood. Based on the release of a large amount of rice genome data in recent years, we investigated Ghd7 through pan-genome analysis of 372 diverse rice varieties and figured out the structural variations (SVs) in the Ghd7 locus. However, due to the high cost of pan-genomes, most genomes are based on next-generation sequencing (NGS) data now. Therefore, we developed a method for identifying SVs using NGS data and Polymerase Chain Reaction (PCR) based on the results of pan-genome analysis and identified 977 accessions carrying such SVs of Ghd7. Furthermore, we identified 46 single-nucleotide polymorphisms (SNPs) and one insertion-deletion (InDel) in the coding region of Ghd7. They are classified into 49 haplotypes. Notably, a splice-site mutation in haplotype H6 causes aberrant mRNA splicing. Using prime editing (PE) technology, we successfully restored the functional of Ghd7 in Yixiang 1B (YX1B), delaying the heading date by approximately 16 days. This modification synchronized the heading date between YX1B and the restorer line Yahui 2115 (YH2115R), enhancing the hybrid rice seed production efficiency. In conclusion, our findings highlight the potential of integrating pan-genomics and precision gene editing to accelerate crop improvement and enhance agronomic traits. Full article
(This article belongs to the Collection Feature Papers: 'Plant Genetics and Genomics' Section)
Show Figures

Figure 1

34 pages, 13134 KiB  
Article
Induced Pluripotent Stem Cell-Derived Exosomes Promote Peripheral Nerve Regeneration in a Rat Sciatic Nerve Crush Injury Model: A Safety and Efficacy Study
by Fatima Aldali, Yujie Yang, Chunchu Deng, Xiangling Li, Xiaojian Cao, Jia Xu, Yajie Li, Jianlin Ding and Hong Chen
Cells 2025, 14(7), 529; https://doi.org/10.3390/cells14070529 - 2 Apr 2025
Cited by 2 | Viewed by 1469
Abstract
Peripheral nerve injury (PNI) remains a significant clinical challenge, often leading to long-term functional impairment. Despite advances in therapies, current repair strategies offer unsatisfactory clinical outcomes. Exosomes derived from induced pluripotent stem cells (iPSC-Exos) have emerged as a promising therapeutic approach in regenerative [...] Read more.
Peripheral nerve injury (PNI) remains a significant clinical challenge, often leading to long-term functional impairment. Despite advances in therapies, current repair strategies offer unsatisfactory clinical outcomes. Exosomes derived from induced pluripotent stem cells (iPSC-Exos) have emerged as a promising therapeutic approach in regenerative medicine. This study assesses the efficacy and safety of iPSC-Exos in a rat model of sciatic nerve crush injury. Briefly, iPSCs were generated from peripheral blood mononuclear cells (PBMCs) of healthy donors using Sendai virus vectors and validated for pluripotency. iPSC-Exos were characterized and injected at the injury site. Functional recovery was assessed through gait analysis, grip strength, and pain response. Histological and molecular analyses were used to examine axonal regeneration, myelination, Schwann cell (SC) activation, angiogenesis, and changes in gene expression. iPSC-Exos were efficiently internalized by SC, promoting their proliferation. No adverse effects were observed between groups on body weight, organ histology, or hematological parameters. iPSC-Exos injection significantly enhanced nerve regeneration, muscle preservation, and vascularization, with RNA sequencing revealing activation of PI3K-AKT and focal adhesion pathways. These findings support iPSC-Exos as a safe and effective non-cell-based therapy for PNIs, highlighting their potential for clinical applications in regenerative medicine. Full article
Show Figures

Figure 1

13 pages, 1801 KiB  
Article
A Comparative Study of Optimizing Genomic Prediction Accuracy in Commercial Pigs
by Xiaojian Chen, Yiyi Liu, Yuling Zhang, Zhanwei Zhuang, Jinyan Huang, Menghao Luan, Xiang Zhao, Linsong Dong, Jian Ye, Ming Yang, Enqin Zheng, Gengyuan Cai, Jie Yang, Zhenfang Wu and Langqing Liu
Animals 2025, 15(7), 966; https://doi.org/10.3390/ani15070966 - 27 Mar 2025
Viewed by 668
Abstract
Genomic prediction (GP), which uses genome-wide markers to estimate breeding values, is a crucial tool for accelerating genetic progress in livestock and plant breeding. The accuracy of GP depends on several factors, including the statistical model, marker density, and cross-validation strategy. This study [...] Read more.
Genomic prediction (GP), which uses genome-wide markers to estimate breeding values, is a crucial tool for accelerating genetic progress in livestock and plant breeding. The accuracy of GP depends on several factors, including the statistical model, marker density, and cross-validation strategy. This study evaluated these factors to optimize GP accuracy for eight economically important carcass and body traits in a Duroc × (Landrace × Yorkshire) (DLY) pig population. This study used 50 K SNP chip data from 1494 DLY pigs, which were imputed to the whole genome sequence (WGS) level. Seven different models were compared, including GBLUP, ssGBLUP, and five Bayesian models. The ssGBLUP model consistently outperformed other models across all traits, with prediction accuracies ranging from 0.371 to 0.502. Further analyses showed that prediction accuracy improved with increasing cross-validation folds and marker density, particularly in the low-density panel. However, the improvement plateaued in medium-to-high-density scenarios. These findings underscore the importance of carefully selecting the model, marker density, and cross-validation strategy to optimize GP accuracy for carcass and body traits in commercial pigs. The insights from this study can guide breeders and researchers in maximizing genetic progress in pig breeding programs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1739 KiB  
Article
Identification of Hybrid Sturgeon (Acipenser baerii × Acipenser schrenckii) from Their Parents Using Germplasm
by Shiyong Yang, Zhongmeng Zhao, Zihan Xu, Ya Liu, Menghao Jiang, Lin Fu, Jin Zhang, Zhaoxin Jing, Xiaojian Pang, Wuyuntana Shao, Chaoyang Zhang, Yunkun Li, Xiaogang Du and Jiayun Wu
Animals 2025, 15(7), 907; https://doi.org/10.3390/ani15070907 - 21 Mar 2025
Viewed by 694
Abstract
The hybrid sturgeon Acipenser baerii × A. schrenckii is the most widely cultured commercial sturgeon in China. However, its morphological similarity to the parental species frequently leads to misuse of germplasm in the breeding process, resulting in a decline in the quality of [...] Read more.
The hybrid sturgeon Acipenser baerii × A. schrenckii is the most widely cultured commercial sturgeon in China. However, its morphological similarity to the parental species frequently leads to misuse of germplasm in the breeding process, resulting in a decline in the quality of the sturgeon production. In this study, we have developed a protocol by using mitochondrial DNA barcoding and microsatellite locus analysis for the accurate identification of sturgeon species. Genetic distance and phylogenetic analysis based on the mitochondrial COI segment showed that A. baerii exhibited the closest genetic relationship with orthogonal individuals A. baerii (♀) × A. schrenckii (♂). Conversely, A. schrenckii displayed the highest genetic similarity with reciprocal individuals A. schrenckii (♀) × A. baerii (♂). Additionally, genetic structure analysis and factor correlation analysis (FCA) were conducted using six microsatellite loci among 100 samples, including eight species and two hybrid sturgeon. The results showed that all samples, encompassing both hybrid sturgeon (A. baerii × A. schrenckii) and their parental species, were accurately grouped into ten clusters, thereby validating the precision of this species assignment method. Full article
(This article belongs to the Special Issue Genetics, Breeding, and Farming of Aquatic Animals)
Show Figures

Figure 1

24 pages, 1222 KiB  
Review
Therapeutic Approaches and Potential Mechanisms of Small Extracellular Vesicles in Treating Vascular Dementia
by Yujie Yang, Chunchu Deng, Fatima Aldali, Yunjie Huang, Hongmei Luo, Yizhou Liu, Danxia Huang, Xiaojian Cao, Qiuzhi Zhou, Jia Xu, Yajie Li and Hong Chen
Cells 2025, 14(6), 409; https://doi.org/10.3390/cells14060409 - 11 Mar 2025
Viewed by 979
Abstract
Small extracellular vesicles (sEVs), including exosomes as a subtype, with a diameter typically less than 200 nm and originating from the endosomal system, are capable of transporting a diverse array of bioactive molecules, including proteins, nucleic acids, and lipids, thereby facilitating intercellular communication [...] Read more.
Small extracellular vesicles (sEVs), including exosomes as a subtype, with a diameter typically less than 200 nm and originating from the endosomal system, are capable of transporting a diverse array of bioactive molecules, including proteins, nucleic acids, and lipids, thereby facilitating intercellular communication and modulating cellular functions. Vascular dementia (VaD) represents a form of cognitive impairment attributed to cerebrovascular disease, characterized by a complex and multifaceted pathophysiological mechanism. Currently, the therapeutic approach to VaD predominantly emphasizes symptom management, as no specific pharmacological treatment exists to cure the condition. Recent investigations have illuminated the significant role of sEVs in the pathogenesis of vascular dementia. This review seeks to provide a comprehensive analysis of the characteristics and functions of sEVs, with a particular focus on their involvement in vascular dementia and its underlying mechanisms. The objective is to advance the understanding of the interplays between sEVs and vascular dementia, thereby offering novel insights for future research and therapeutic strategies. Full article
Show Figures

Figure 1

22 pages, 3681 KiB  
Article
Composition, Antimicrobial, Anti-Inflammatory, and Potential Neuroprotective Activities of Volatile Oils in Solid Wood Boards from Different Tree Ages of Cryptomeria japonica
by Churan Li, Boxiao Wu, Weihua Wang, Xiaoqin Yang, Xiaojian Zhou, Yingjun Zhang, Xiaoping Rao, Cheng Yang and Ping Zhao
Int. J. Mol. Sci. 2025, 26(6), 2400; https://doi.org/10.3390/ijms26062400 - 7 Mar 2025
Viewed by 787
Abstract
The wood of Cryptomeria japonica (Japanese cedar or sugi) is widely used in building and adornment. This study aims to identify the composition of the volatile oils (VOs) extracted from C. japonica solid wood boards by gas chromatography–mass spectroscopy, and to investigate their [...] Read more.
The wood of Cryptomeria japonica (Japanese cedar or sugi) is widely used in building and adornment. This study aims to identify the composition of the volatile oils (VOs) extracted from C. japonica solid wood boards by gas chromatography–mass spectroscopy, and to investigate their antimicrobial, anti-inflammatory, and potential neuroprotective activities. A total of 58 volatile organic compounds (VOCs) were identified in the VOs from C. japonica solid wood boards with tree ages of 40, 50, and 60 years (VO-40, 50, and 60), with sandaracopimarinol (13.74–17.59%), ferruginol (10.23–11.29%), abieta-7,13-diene (8.20–13.66%), (+)-δ-cadinene (7.15–9.27%), cis-cubenol (4.36–6.36%), and sandaracopimarinal (3.23–6.04%) as major compounds. The VOs exhibited antifungal potential, especially VO-50 against Aspergillus fumigatus (MIC = 0.312 mg/mL), and VO-60 against Gloeophyllum trabeum (MIC = 1.25 mg/mL). However, VOs exhibited weak antibacterial activity (MIC > 10 mg/mL). Additionally, VOs (10 μg/mL) exhibited anti-inflammatory and potential neuroprotective activities, with VO-60 demonstrating the strongest inhibition of NO (25.79% reduction), TNF-α (52.24% reduction), and IL-6 (27.10% reduction) production in lipopolysaccharide-induced RAW264.7 cells, while increasing cell viability by 70.36% and reducing lactate dehydrogenase release by 41.10% in corticosterone-induced PC12 cells. Correlation and docking analyses revealed that sandaracopimarinal, sandaracopimarinol, β-eudesmol, and ferruginol were the potential active compounds. The results demonstrated that the volatile components from C. japonica solid wood boards not only enhance the board’s decay resistance, but also exhibit therapeutic potential for inflammatory disorders and neuropathic diseases. Full article
Show Figures

Figure 1

28 pages, 9556 KiB  
Article
Transcriptome Profiling Reveals the Effects of Rootstocks on Scion Architecture in Malus domestica Borkh Var. ‘Harlikar’
by Bin Xie, Junhao Li, Jiangtao Zhou, Guodong Kang, Zhongwen Tang, Xiaojian Ma, Xin Li, Jing Wang, Yanzhen Zhang, Yanhui Chen, Sumiao Yang and Cungang Cheng
Plants 2025, 14(5), 696; https://doi.org/10.3390/plants14050696 - 24 Feb 2025
Viewed by 619
Abstract
Rootstocks largely determine the tree architecture of the grafted scions, significantly affects yield, suitability for mechanical harvesting, and planting pattern of apple orchards. It is thus important to reveal the mechanisms behind the rootstocks influence on the tree architecture of scions in apple [...] Read more.
Rootstocks largely determine the tree architecture of the grafted scions, significantly affects yield, suitability for mechanical harvesting, and planting pattern of apple orchards. It is thus important to reveal the mechanisms behind the rootstocks influence on the tree architecture of scions in apple trees. This study analyzed the grafting survival rate, the physiological parameters including plant growth, photosynthesis and nutrient accumulation in the apple variety ‘Harlikar’ with eight apple rootstocks. We also explored the mechanism of scion architecture formation using transcriptomics based on different scion/rootstock combinations. The results indicated that ‘Harlikar’ had the lowest grafting survival rate with rootstock ‘M26’, with less callus formed at the graft interface, foliage etiolation, and weak photosynthetic capacity. While ‘Harlikar’ had better affinities with ‘M9-T337’, ‘M9-Nic29’, ‘M9-Pajam2’, ‘B9’, ‘71-3-150’, ‘Qingzhen 2’, and ‘Malus baccata’. Among these, the highest plant height and the highest number of lateral branches were observed in ‘Harlikar’ with rootstock ‘Qingzhen 2’, they were 1.12-times and 2.0-times higher than ‘Harlikar’ with vigorous rootstock ‘M. baccata’, respectively. The highest accumulations of total nitrogen, total phosphorus, and total potassium in scions were observed in ‘Harlikar’/‘Qingzhen 2’, they were 2.22-times, 2.10-times, and 11.80-times higher than that in ‘Harlikar’/‘M. baccata’. The lowest plant height was observed in ‘Harlikar’/‘71-3-150’, only 50.47% of ‘Harlikar’/‘Qingzhen 2’ and 56.51% of ‘Harlikar’/‘M. baccata’, and the lowest internode length was observed in ‘Harlikar’/‘M9-Nic29’, only 60.76% of ‘Harlikar’/‘Qingzhen 2’ and 79.11% of ‘Harlikar’/‘M. baccata’. The transcriptome, weighted gene co-expression network and KEGG enrichment analyses revealed that, compared to ‘Harlikar’/‘M. baccata’, most differentially expressed genes screened from ‘Harlikar’/‘Qingzhen 2’, ‘Harlikar’/‘71-3-150’, and ‘Harlikar’/‘M9-Nic29’ were enriched in hormone signal transduction pathways. Specifically, auxin-repressed protein gene ARP, cytokinin synthesis related genes CKXs and CYP92A6, and brassinosteroid synthesis related gene CYP87A3 were involved in the dwarfing of ‘Harlikar’/‘71-3-150’ and ‘Harlikar’/‘M9-Nic29’. Cytokinin synthesis related gene ARR-A and abscisic acid-responsive element binding factor gene ABF were the key to increased branching in ‘Harlikar’/‘Qingzhen 2’. In addition, acid phosphatase genes ACPs, and serine/threonine-protein kinase genes PBLs were involved in the vegetative growth of scions in ‘Harlikar’/‘Qingzhen 2’ by affecting the absorption and utilization of nutrients. These results provide theoretical guidance for cultivating high-quality ‘Harlikar’ apple trees and elucidate the molecular mechanisms regulating plant height and lateral branch formation in apple. Full article
(This article belongs to the Special Issue Effect of Rootstocks and Planting Systems on Fruit Quality)
Show Figures

Figure 1

12 pages, 2754 KiB  
Article
A Deep Learning Model for Detecting the Arrival Time of Weak Underwater Signals in Fluvial Acoustic Tomography Systems
by Weicong Zheng, Xiaojian Yu, Xuming Peng, Chen Yang, Shu Wang, Hanyin Chen, Zhenxuan Bu, Yu Zhang, Yili Zhang and Lingli Lin
Sensors 2025, 25(3), 922; https://doi.org/10.3390/s25030922 - 3 Feb 2025
Viewed by 790
Abstract
The fluvial acoustic tomography (FAT) system relies on the arrival time of the system signal to calculate the parameters of the region. The traditional method uses the matching filter method to calculate the peak position of the received acoustic signal after cross-correlation calculation [...] Read more.
The fluvial acoustic tomography (FAT) system relies on the arrival time of the system signal to calculate the parameters of the region. The traditional method uses the matching filter method to calculate the peak position of the received acoustic signal after cross-correlation calculation within a certain time as the signal arrival time point, but this method is difficult to be effectively applied to the complex underwater environment, especially in the case of extremely low SNR. To solve this problem, a two-channel deep learning model (DCA-Net) is proposed to detect the arrival time of acoustic chromatographic signals. Firstly, an interactive module is designed to transmit the auxiliary information from the cross-correlation subnetwork to the original signal subnet to improve the feature information extraction capability of the network. In addition, an attention module is designed to enable the network to selectively focus on the important features of the received acoustic signals. Under the background of white Gaussian noise and real river environment noise, we use the received signals of the acoustic tomography system collected in the field to synthesize low SNR data of −10, −15, and −20 different decibels as datasets. The experimental results show that the proposed network model is superior to the traditional matching filtering method and some other deep neural networks in three low SNR datasets. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

16 pages, 3548 KiB  
Article
Metal Ions Fortified Tannin-Furanic Rigid Foam: The Impact on the Uniformity and Mechanical Performance
by Yang Yang, Haizhu Wu, Jun Zhang, Fajian Li, Bertrand Charrier, Hisham Essawy, Antonio Pizzi, Xiaojian Zhou and Xinyi Chen
Materials 2025, 18(3), 585; https://doi.org/10.3390/ma18030585 - 27 Jan 2025
Viewed by 762
Abstract
Tannin-furanic foams with excellent properties have attracted increasing interest due to their advantages such as easy preparation, light weight, and thermal insulation. However, unsatisfactory mechanical strength has limited the expansion of their applications. Herein, three different metal ions (Cu2+, Fe3+ [...] Read more.
Tannin-furanic foams with excellent properties have attracted increasing interest due to their advantages such as easy preparation, light weight, and thermal insulation. However, unsatisfactory mechanical strength has limited the expansion of their applications. Herein, three different metal ions (Cu2+, Fe3+, and Zn2+) were chosen to enhance the properties of tannin-furanic foam prepared by mechanical stirring provoked a foaming approach. The positive effects originating from the complexation are attributed to the associated connection between tannin molecules and metal ions. The results indicated that the apparent performance was improved, resulting in even foam cell structures. The apparent densities for the tannin-furanic foam modified with metal ions were located in the range of 36.57–47.84 kg/m3, showing the feature of lightweight material. The enhanced mechanical strength was verified by the compression strength (0.097–0.163 MPa) and pulverization ratio (7.57–11.01%) of the modified foams, which increased by 56–163% and decreased by 61–73%, respectively, in comparison with tannin-furanic foam without the metal ions. Additionally, the thermal conductivity of the modified tannin-furanic foams was in the range of 0.0443 to 0.0552 W/m·K. This indicates that they inherited the excellent thermal insulation typically associated with tannin-based foams. Interestingly, higher mechanical performance was obtained by comparison with other bio-sourced foams even with similar densities. In summary, by introducing only a small amount of metal ions, the foam performance was greatly improved, with a moderate cost increase, which reflects a good development prospect. Full article
Show Figures

Figure 1

17 pages, 1006 KiB  
Review
Mechanisms and Countermeasures for Muscle Atrophy in Microgravity
by Yizhou Liu, Xiaojian Cao, Qiuzhi Zhou, Chunchu Deng, Yujie Yang, Danxia Huang, Hongmei Luo, Song Zhang, Yajie Li, Jia Xu and Hong Chen
Cells 2024, 13(24), 2120; https://doi.org/10.3390/cells13242120 - 20 Dec 2024
Cited by 4 | Viewed by 2378
Abstract
Previous studies have revealed that muscle atrophy emerges as a significant challenge faced by astronauts during prolonged missions in space. A loss in muscle mass results in a weakening of skeletal muscle strength and function, which will not only contribute to a decline [...] Read more.
Previous studies have revealed that muscle atrophy emerges as a significant challenge faced by astronauts during prolonged missions in space. A loss in muscle mass results in a weakening of skeletal muscle strength and function, which will not only contribute to a decline in overall physical performance but also elevate the risk of various age-related diseases. Skeletal muscle atrophy in the microgravity environment is thought to be associated with changes in energy metabolism, protein metabolism, calcium ion homeostasis, myostatin levels, and apoptosis. Modulating some pathways could be a promising approach to mitigating muscle atrophy in the microgravity environment. This review serves as a comprehensive summary of research on the impact of microgravity on skeletal muscle, with the aim of providing insights into its pathogenesis and the development of effective treatments. Full article
Show Figures

Figure 1

12 pages, 2881 KiB  
Article
Self-Assembly of the Block Copolymer Containing Discotic Mesogens Driven by Liquid Crystalline Ordering Effect
by Xiaojian Hou, Lingjuan Hu, Huanzhi Yang, Bixin Jin, Yunjun Luo and Xiaoyu Li
Polymers 2024, 16(23), 3339; https://doi.org/10.3390/polym16233339 - 28 Nov 2024
Viewed by 857
Abstract
Block copolymers (BCPs) have attracted considerable attention due to their ability to form a variety of complex assemblies with diverse morphologies and functions in solution. By incorporating liquid crystalline (LC) moieties, the LC side chains significantly affect the morphologies and sizes of BCP [...] Read more.
Block copolymers (BCPs) have attracted considerable attention due to their ability to form a variety of complex assemblies with diverse morphologies and functions in solution. By incorporating liquid crystalline (LC) moieties, the LC side chains significantly affect the morphologies and sizes of BCP assemblies. In this study, we synthesized the copolymer with an LC block containing triphenylene (HAT) discotic mesogen and short methylene side chains. By enhancing the π–π interaction between triphenylene discotic mesogens, and doping the discotic mesogens, the LC orderedness was significantly enhanced and able to dictate the self-assembly behaviors of the BCP in solution. Additionally, the lengths of resultant fibrillar micelles were easily tuned by adjusting the dopant content. More interestingly, two growth modes, nucleation growth and coupling, were observed during the formation of fibrils. Consequently, with long-term aging and sufficient concentration, a large portion of these fibrils underwent end-to-end coupling to form long fibrils, allowing the formation of organogel via inter-fibrillar entanglement. Full article
(This article belongs to the Special Issue New Progress in Polymer Self-Assembly)
Show Figures

Figure 1

14 pages, 4146 KiB  
Article
Preparation and Characterization of Glucose-Based Self-Blowing Non-Isocyanate Polyurethane (NIPU) Foams with Different Acid Catalysts
by Tianjiao Yang, Antonio Pizzi, Xuedong Xi, Xiaojian Zhou and Qianyu Zhang
Polymers 2024, 16(20), 2899; https://doi.org/10.3390/polym16202899 - 15 Oct 2024
Cited by 2 | Viewed by 1509
Abstract
The preparation and application of non-isocyanate polyurethane (NIPU) from biomass raw materials as a substitute for traditional polyurethane (PU) has recently become a research hot topic as it avoids the toxicity and moisture sensitivity of isocyanate-based PU. In the work presented here, self-blowing [...] Read more.
The preparation and application of non-isocyanate polyurethane (NIPU) from biomass raw materials as a substitute for traditional polyurethane (PU) has recently become a research hot topic as it avoids the toxicity and moisture sensitivity of isocyanate-based PU. In the work presented here, self-blowing GNIPU non-isocyanate polyurethane (NIPU) rigid foams were prepared at room temperature, based on glucose, with acids as catalysts and glutaraldehyde as a cross-linker. The effects of different acids and glutaraldehyde addition on foam morphology and properties were investigated. The water absorption, compressive resistance, fire resistance, and limiting oxygen index (LOI) were tested to evaluate the relevant properties of the foams, and scanning electron microscopy (SEM) was used to observe the foams’ cell structure. The results show that all these foams have a similar apparent density, while their 24 h water absorption is different. The foam prepared with phosphoric acid as a catalyst presented a better compressive strength compared to the other types prepared with different catalysts when above 65% compression. It also presents the best fire resistance with an LOI value of 24.3% (great than 22%), indicating that it possesses a good level of flame retardancy. Thermogravimetric analysis also showed that phosphoric acid catalysis slightly improved the GNIPU foams’ thermal stability. This is mainly due to the flame-retardant effect of the phosphate ion. In addition, scanning electron microscopy (SEM) results showed that all the GNIPU foams exhibited similar open-cell morphologies with the cell pore sizes mainly distributed in the 200–250 μm range. Full article
Show Figures

Figure 1

16 pages, 8483 KiB  
Article
Isolation of Haustorium Protoplasts Optimized by Orthogonal Design for Transient Gene Expression in Phelipanche aegyptiaca
by Xiaojian Zeng, Xiaolei Cao, Qiuyue Zhao, Siyuan Hou, Xin Hu, Zheyu Yang, Tingli Hao, Sifeng Zhao and Zhaoqun Yao
Plants 2024, 13(15), 2163; https://doi.org/10.3390/plants13152163 - 5 Aug 2024
Cited by 1 | Viewed by 1474
Abstract
The efficient protoplast transient transformation system in plants is an important tool to study gene expression, metabolic pathways, and various mutagenic parameters, but it has not been established in Phelipanche aegyptiaca. As a root parasitic weed that endangers the growth of 29 [...] Read more.
The efficient protoplast transient transformation system in plants is an important tool to study gene expression, metabolic pathways, and various mutagenic parameters, but it has not been established in Phelipanche aegyptiaca. As a root parasitic weed that endangers the growth of 29 species of plants in 12 families around the world, there is still no good control method for P. aegyptiaca. Even the parasitic mechanisms of P. aegyptiaca and the related genes regulating parasitism are not yet understood. In this study, by comparing the factors related to protoplast isolation and transfection, we developed the optimal protocol for protoplast isolation and transfection in Phelipanche aegyptiaca haustorium. The optimal protoplast yield and activity were 6.2 × 106 protoplasts/g fresh weight [FW] and 87.85%, respectively, by using 0.5 mol/L mannitol, enzyme concentrations of 2.5% cellulase R-10 and 0.8% Macerozyme R-10 at 24 °C for 4 h. At the same time, transfection efficiency of protoplasts was up to 78.49% when using 30 μg plasmid, 40% polyethylene glycol (PEG) concentration, 24 °C incubation temperature, and 20 min transfection time. This is the first efficient protoplasts’ isolation and transient transformation system of Phelipanche aegyptiaca haustorium, laying a foundation for future studies on the gene function and mechanisms of haustorium formation in parasitic plants. Full article
(This article belongs to the Special Issue Advances in Plant Anatomy and Cell Biology)
Show Figures

Figure 1

Back to TopTop