Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Rooma Waqar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3867 KiB  
Article
Biosorption Potential of Desmodesmus sp. for the Sequestration of Cadmium and Lead from Contaminated Water
by Rooma Waqar, Sultana Rahman, Javed Iqbal, Muhammad Kaleem, Lubna Anjum Minhas, Nabi Ullah, Farzana Kausar, Wadie Chalgham, Fahad A. Al-Misned, Hamed A. El-Serehy and Abdul Samad Mumtaz
Sustainability 2023, 15(15), 11634; https://doi.org/10.3390/su151511634 - 27 Jul 2023
Cited by 10 | Viewed by 2450
Abstract
Industrialization, urbanization, and natural processes have potentially accelerated the pace and level of heavy metals in the aquatic environment. Recently, modern strategies for heavy metal treatment in wastewater have received the specific attention of the scientific community. The present study aimed to assess [...] Read more.
Industrialization, urbanization, and natural processes have potentially accelerated the pace and level of heavy metals in the aquatic environment. Recently, modern strategies for heavy metal treatment in wastewater have received the specific attention of the scientific community. The present study aimed to assess the amorphous biomass of Desmodesmus sp. as a low-cost adsorbent to remove the cadmium (Cd) and lead (Pb) from aqueous solutions. It involved the optimization of pH, contact time, initial concentration of metal ions, and the dosage of biosorbent. Data collation revealed that an optimum contact time for both metals was 60 min, with an adsorption capacity of 63% for Cd and 66% for Pb. Different models were applied to the equilibrium data. The pseudo 2nd order described the best adsorption of Cd and Pb. The equilibrium data were computed with various isotherms. Langmuir isotherms better suit the adsorption of the above-mentioned metals. Hence, the maximum adsorption capacity of Desmodesmus sp. for Cd and Pb was 64.1 and 62.5 mg/g, respectively. The mechanism of biosorption was validated through a comparative FT-IR and Scanning Electron Microscopy of raw and metal-loaded algal biomass based on cell morphological changes. In order to study the reusability of adsorbent, adsorption-desorption of Cd and Pb ions was repeated three times using HCl. These results did not noticeably change in adsorption capacity during the three cycles. Using HCl (0.1 M), desorption of both metals was achieved up to 90% in three cycles. This work presented a long-term bioremediation approach for heavy metal pollutants in wastewater. This research could be seen as an interdisciplinary approach to large-scale heavy metal remediation. In addition, growing microalgae in wastewater produces animal feed and biodiesel. When compared to other conventional methods for environmental remediation and the manufacture of valuable products, the use of microalgae is a more efficient and cost-effective method. Full article
(This article belongs to the Special Issue Sustainable Management and Remediation of Contaminated Sites)
Show Figures

Figure 1

20 pages, 5851 KiB  
Article
Biogenic Fabrication of Iron Oxide Nanoparticles from Leptolyngbya sp. L-2 and Multiple In Vitro Pharmacogenetic Properties
by Lubna Anjum Minhas, Muhammad Kaleem, Malik Abrar Hassan Minhas, Rooma Waqar, Dunia A. Al Farraj, Mona Abdullah Alsaigh, Hussain Badshah, Muhammad Haris and Abdul Samad Mumtaz
Toxics 2023, 11(7), 561; https://doi.org/10.3390/toxics11070561 - 27 Jun 2023
Cited by 19 | Viewed by 2892
Abstract
Metallic nanoparticles have received a significant amount of reflection over a period of time, attributed to their electronic, specific surface area, and surface atom properties. The biogenic synthesis of iron oxide nanoparticles (FeONPs) is demonstrated in this study. The green synthesis of metallic [...] Read more.
Metallic nanoparticles have received a significant amount of reflection over a period of time, attributed to their electronic, specific surface area, and surface atom properties. The biogenic synthesis of iron oxide nanoparticles (FeONPs) is demonstrated in this study. The green synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. Leptolyngbya sp. L-2 extract was employed as a reducing agent, and iron chloride hexahydrate (FeCl3·6H2O) was used as a substrate for the biogenic synthesis of FeONPs. Different spectral methods were used for the characterization of the biosynthesized FeONPs, ultraviolet-visible (UV-Vis) spectroscopy gave a surface plasmon resonance (SPR) peak of FeONPs at 300 nm; Fourier transform infrared (FTIR) spectral analysis was conducted to identify the functional groups responsible for both the stability and synthesis of FeONPs. The morphology of the FeONPs was investigated using scanning electron microscopy (SEM), which shows a nearly spherical shape, and an X-ray diffraction (XRD) study demonstrated their crystalline nature with a calculated crystallinity size of 23 nm. The zeta potential (ZP) and dynamic light scattering (DLS) measurements of FeONPs revealed values of −8.50 mV, suggesting appropriate physical stability. Comprehensive in-vitro pharmacogenetic properties revealed that FeONPs have significant therapeutic potential. FeONPs have been reported to have potential antibacterial and antifungal properties. Dose-dependent cytotoxic activity was shown against Leishmania tropica promastigotes (IC50: 10.73 µg/mL) and amastigotes (IC50: 16.98 µg/mL) using various concentrations of FeONPs. The cytotoxic potential was also investigated using brine shrimps, and their IC50 value was determined to be 34.19 µg/mL. FeONPs showed significant antioxidant results (DPPH: 54.7%, TRP: 49.2%, TAC: 44.5%), protein kinase (IC50: 96.23 µg/mL), and alpha amylase (IC50: 3745 µg/mL). The biosafety of FeONPs was validated by biocompatibility tests using macrophages (IC50: 918.1 µg/mL) and red blood cells (IC50: 2921 µg/mL). In conclusion, biogenic FeONPs have shown potential biomedical properties and should be the focus of more studies to increase their nano-pharmacological significance for biological applications. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

18 pages, 5974 KiB  
Article
Kinetic and Equilibrium Studies on the Adsorption of Lead and Cadmium from Aqueous Solution Using Scenedesmus sp.
by Rooma Waqar, Muhammad Kaleem, Javed Iqbal, Lubna Anjum Minhas, Muhammad Haris, Wadie Chalgham, Ajaz Ahmad and Abdul Samad Mumtaz
Sustainability 2023, 15(7), 6024; https://doi.org/10.3390/su15076024 - 30 Mar 2023
Cited by 27 | Viewed by 3195
Abstract
The current study aimed to investigate the viability and characteristics of Scenedesmus sp. as an adsorbent system to remove lead (Pb) and cadmium (Cd) through an in vitro exposure to a metal solution. In batch sorption experiments, the effects of pH, contact time, [...] Read more.
The current study aimed to investigate the viability and characteristics of Scenedesmus sp. as an adsorbent system to remove lead (Pb) and cadmium (Cd) through an in vitro exposure to a metal solution. In batch sorption experiments, the effects of pH, contact time, initial concentration of metal ions, and sorbent dosage on the adsorption process were trialed. The ideal biosorption conditions for each of the two metals were recorded. The biosorption process was quick, and the equilibrium times for the above-mentioned metals were recorded as 90 and 60 min, with removal percentages of 85% and 83%, respectively. The point zero charge of algal biomass was 4.5, which indicates a negative charge on the surface of the biosorbent. The model-based assessment of the biosorption process was revealed to have followed pseudo-second-order kinetics. The adsorption isotherms for lead and cadmium achieved a best fit with the Langmuir model, with monolayer biosorption capacities of 102 and 128 mg g−1, respectively. The desorption of both metals achieved more than 70% by using HCl. The FT-IR revealed the presence of hydroxyl and amine groups on the surface of the adsorbent that are involved in the biosorption process, and morphological changes were assessed by SEM. Hence, Scenedesmus sp. from a Himalayan provenance showed considerable promise as an alternate sorbent for the treatment of heavy-metal-contaminated wastewater. Full article
Show Figures

Graphical abstract

17 pages, 4204 KiB  
Article
Green Synthesis of Zinc Oxide Nanoparticles Using Nostoc sp. and Their Multiple Biomedical Properties
by Lubna Anjum Minhas, Abdul Samad Mumtaz, Muhammad Kaleem, Dunia Al Farraj, Khalid Kamal, Malik Aamer Hassan Minhas, Rooma Waqar and Rania M. Mahmoud
Catalysts 2023, 13(3), 549; https://doi.org/10.3390/catal13030549 - 9 Mar 2023
Cited by 27 | Viewed by 4360
Abstract
Zinc oxide nanoparticles (ZnONPs) are the top candidate in the field of biological applications because of their high surface area and excellent catalytic activities. In the present study, the cyanobacteria-mediated biosynthesis of zinc oxide NPs using Nostoc sp. extract as a stabilizing, chelating, [...] Read more.
Zinc oxide nanoparticles (ZnONPs) are the top candidate in the field of biological applications because of their high surface area and excellent catalytic activities. In the present study, the cyanobacteria-mediated biosynthesis of zinc oxide NPs using Nostoc sp. extract as a stabilizing, chelating, and reducing agent is reported. ZnONPs were biologically synthesized using an eco-friendly and simple technique with a minimal reaction time and calcination temperature. Various methods, including X-ray diffraction (XRD), ultraviolet spectroscopy (UV), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the biosynthesized zinc oxide NPs. XRD analysis depicted the crystalline form of zinc oxide NPs, and the Scherrer equation determined a mean crystalline size of ~28.21 nm. The SEM results reveal the spherical shape of the biosynthesized nanoparticles. Various functional groups were involved in the capping and stabilization of the zinc oxide NPs, which were confirmed by FTIR analysis. The zinc oxide NPs showed strong UV-vis absorption at 340 nm. Multiple in vitro biological applications showed significant therapeutic potential for zinc oxide NPs. Potential antimicrobial assays were reported for zinc oxide NPs via the disc-diffusion method and food poisoning method, respectively. All other activities mentioned below are described with the concentration and IC50 values. Biocompatibility with human erythrocytes and macrophages (IC50: 433 µg/mL, IC50 > 323 µg/mL) and cytotoxic properties using brine shrimps (IC50: 11.15 µg/mL) and Leishmania tropics (Amastigotes IC50: 43.14 µg mL−1 and Promastigotes IC50: 14.02 µg mL−1) were determined. Enzyme inhibition assays (protein kinase and alpha amylase) were performed and showed strong potential. Free radical scavenging tests showed strong antioxidant capacities. These results indicate that zinc oxide NPs synthesized by Nostoc sp. have strong biological applications and are promising candidates for clinical development. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for a Green World II)
Show Figures

Figure 1

15 pages, 3798 KiB  
Article
Evaluation of Antimicrobial and Anticancer Activities of Selected Medicinal Plants of Himalayas, Pakistan
by Farzana Kausar, Kyung-Hwan Kim, Hafiz Muhammad Umer Farooqi, Muhammad Awais Farooqi, Muhammad Kaleem, Rooma Waqar, Atif Ali Khan Khalil, Fazli Khuda, Chethikkattuveli Salih Abdul Rahim, Kinam Hyun, Kyung-Hyun Choi and Abdul Samad Mumtaz
Plants 2022, 11(1), 48; https://doi.org/10.3390/plants11010048 - 24 Dec 2021
Cited by 27 | Viewed by 5507
Abstract
Medicinal plants are known for their diverse use in the traditional medicine of the Himalayan region of Pakistan. The present study is designed to investigate the anticancer and antimicrobial activities of Prunus cornuta and Quercus semicarpifolia. The anticancer activity was performed using [...] Read more.
Medicinal plants are known for their diverse use in the traditional medicine of the Himalayan region of Pakistan. The present study is designed to investigate the anticancer and antimicrobial activities of Prunus cornuta and Quercus semicarpifolia. The anticancer activity was performed using cancerous human cell lines (HepG2, Caco-2, A549, MDA-MB-231, and NCI-H1437 carcinoma cells), while the antimicrobial activity was conducted with the agar-well diffusion method. Furthermore, toxicity studies were performed on alveolar and renal primary epithelial cells. Initially, different extracts were prepared by maceration techniques using n-hexane, chloroform, ethyl acetate, butanol, and methanol. The preliminary phytochemical screening showed the presence of secondary metabolites such as alkaloids, tannins, saponins, flavonoids, glycosides, and quinones. The chloroform extract of P. cornuta (PCC) exhibited significant inhibitory activity against Acinetobacter baumannii (16 mm) and Salmonella enterica (14.5 mm). The A. baumannii and S. enterica strains appeared highly susceptible to n-hexane extract of P. cornuta (PCN) with an antibacterial effect of 15 mm and 15.5 mm, respectively. The results also showed that the methanolic extracts of Quercus semecarpifolia (QSM) exhibited considerable antibacterial inhibitory activity in A. baumannii (18 mm), Escherichia coli (15 mm). The QSN and QSE extracts also showed good inhibition in A. baumannii with a 16 mm zone of inhibition. The Rhizopus oryzae strain has shown remarkable mycelial inhibition by PCM and QSN with 16 mm and 21 mm inhibition, respectively. Furthermore, the extracts of P. cornuta and Q. semicarpifolia exhibited prominent growth inhibition of breast (MDA-MB-231) and lung (A549) carcinoma cells with 19–30% and 22–39% cell viabilities, respectively. The gut cell line survival was also significantly inhibited by Q. semicarpifolia (24–34%). The findings of this study provide valuable information for the future development of new antibacterial and anticancer medicinal agents from P. cornuta and Q. semicarpifolia extracts. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Graphical abstract

Back to TopTop