Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = Ramón Porras

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1299 KiB  
Article
Dietary Exposure to Food Contaminants of Pregnant Women in Northern Spain and Possible Effects on Fetal Anthropometric Parameters
by Daniel Hinojosa-Nogueira, José Ramón Bahamonde, Marta Aguilera-Nieto, Beatriz Navajas-Porras, Verónica González-Vigil, José Ángel Rufián-Henares and Silvia Pastoriza de la Cueva
Toxics 2025, 13(5), 399; https://doi.org/10.3390/toxics13050399 - 16 May 2025
Viewed by 567
Abstract
A considerable number of organizations are working to improve food safety, with particular attention to vulnerable groups such as pregnant women due to the important influence of diet on fetal development. The aim of this study was to evaluate exposure to 11 food [...] Read more.
A considerable number of organizations are working to improve food safety, with particular attention to vulnerable groups such as pregnant women due to the important influence of diet on fetal development. The aim of this study was to evaluate exposure to 11 food processing contaminants and their effects on maternal and fetal health. Online questionnaires during the first and third trimesters were used to analyze the intake and exposure to different food contaminants, estimated from the contaminants food database “CONT11”, in 84 pregnant women in Oviedo (Spain) and their influence on newborn anthropometric data. Exposure to certain contaminants, such as acrylamide or total polycyclic aromatic hydrocarbons, was found to have a significant impact on maternal and fetal health, particularly in relation to birth weight or head circumference. During the third trimester, pregnant women reported dietary improvement and reduced exposure to dietary contaminants. Identifying the foods and food groups that contribute most to exposure and the potential for health professionals will facilitate the development of basic exposure reduction strategies. This study is one of the few to assess the exposure of pregnant women to a wide range of contaminants and their impact on fetal health, providing a baseline for future research. Full article
(This article belongs to the Special Issue Health Risk Evaluation of Hazardous Substances in Food)
Show Figures

Graphical abstract

17 pages, 4071 KiB  
Article
Examining the Effects of the RUNX1 p.Leu43Ser Variant on FPD/AML Phenotypes Using a CRISPR/Cas9-Generated Knock-In Murine Model
by Ana Marin-Quilez, Ignacio García-Tuñón, Rocío Benito, José Luis Ordoñez, Lorena Díaz-Ajenjo, Ana Lama-Villanueva, Carmen Guerrero, Jesús Pérez-Losada, José Ramón González-Porras, Jesús María Hernández-Rivas, Mónica del Rey and José María Bastida
Biomolecules 2025, 15(5), 708; https://doi.org/10.3390/biom15050708 - 12 May 2025
Viewed by 549
Abstract
Germline heterozygous variants in RUNX1 lead to Familial Platelet Disorder with Myeloid Leukemia Predisposition (FPD/AML). Cellular and/or animal models are helpful to uncovering the role of a variant in disease progression. Twenty-five mice per genotype (RUNX1WT/WT, RUNX1WT/L43S, RUNX1L43S/L43S [...] Read more.
Germline heterozygous variants in RUNX1 lead to Familial Platelet Disorder with Myeloid Leukemia Predisposition (FPD/AML). Cellular and/or animal models are helpful to uncovering the role of a variant in disease progression. Twenty-five mice per genotype (RUNX1WT/WT, RUNX1WT/L43S, RUNX1L43S/L43S), previously generated by CRISPR/Cas9, and nine sub-lethally irradiated mice per genotype were investigated. Peripheral blood (PB), bone marrow (BM), and spleen samples were analyzed by flow cytometry and histopathology. Deregulated genes were analyzed by RNA-seq in BM. An aberrant myeloid Mac1+Sca1+ckit population in the PB, BM, and spleen of two homozygous and one heterozygous mouse was observed, as well as BM hypercellularity. No Mac1+Sca1+ckit cells were detected in any RUNX1WT/WT mice. Moreover, the spleen of both homozygous mice showed destruction of the white/red pulp and the presence of apoptotic cells. The aberrant population was also detected in four irradiated mice, two heterozygous and two homozygous, in their PB, BM, and spleen. RNA-seq studies showed 698 genes significantly deregulated in the three non-irradiated Mac1+Sca1+ckit mice vs. six healthy mice, highlighting the alteration of genes involved in apoptosis and DNA repair. These results indicate that the homozygous form of the variant p.Leu43Ser may contribute to the pathogenesis of aberrant cells. Full article
(This article belongs to the Special Issue Molecular Advances in Platelet Disease, Thrombosis and Hemostasis)
Show Figures

Figure 1

14 pages, 643 KiB  
Article
Key Genes of the Immune System and Predisposition to Acquired Hemophilia A: Evidence from a Spanish Cohort of 49 Patients Using Next-Generation Sequencing
by Jose Pardos-Gea, Laura Martin-Fernandez, Laia Closa, Ainara Ferrero, Cristina Marzo, Manuel Rubio-Rivas, Francesca Mitjavila, José Ramón González-Porras, José María Bastida, José Mateo, Marina Carrasco, Ángel Bernardo, Itziar Astigarraga, Reyes Aguinaco, Irene Corrales, Iris Garcia-Martínez and Francisco Vidal
Int. J. Mol. Sci. 2023, 24(22), 16372; https://doi.org/10.3390/ijms242216372 - 15 Nov 2023
Cited by 2 | Viewed by 1766
Abstract
Acquired hemophilia A (AHA) is a rare bleeding disorder caused by the presence of autoantibodies against factor VIII (FVIII). As with other autoimmune diseases, its etiology is complex and its genetic basis is unknown. The aim of this study was to identify the [...] Read more.
Acquired hemophilia A (AHA) is a rare bleeding disorder caused by the presence of autoantibodies against factor VIII (FVIII). As with other autoimmune diseases, its etiology is complex and its genetic basis is unknown. The aim of this study was to identify the immunogenetic background that predisposes individuals to AHA. HLA and KIR gene clusters, as well as KLRK1, were sequenced using next-generation sequencing in 49 AHA patients. Associations between candidate genes involved in innate and adaptive immune responses and AHA were addressed by comparing the alleles, genotypes, haplotypes, and gene frequencies in the AHA cohort with those in the donors’ samples or Spanish population cohort. Two genes of the HLA cluster, as well as rs1049174 in KLRK1, which tags the natural killer (NK) cytotoxic activity haplotype, were found to be linked to AHA. Specifically, A*03:01 (p = 0.024; odds ratio (OR) = 0.26[0.06–0.85]) and DRB1*13:03 (p = 6.8 × 103, OR = 7.56[1.64–51.40]), as well as rs1049174 (p = 0.012), were significantly associated with AHA. In addition, two AHA patients were found to carry one copy each of the low-frequency allele DQB1*03:09 (nallele = 2, 2.04%), which was completely absent in the donors. To the best of our knowledge, this is the first time that the involvement of these specific alleles in the predisposition to AHA has been proposed. Further molecular and functional studies will be needed to unravel their specific contributions. We believe our findings expand the current knowledge on the genetic factors involved in susceptibility to AHA, which will contribute to improving the diagnosis and prognosis of AHA patients. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 1810 KiB  
Systematic Review
Role of Fibroblasts in Chronic Inflammatory Signalling in Chronic Rhinosinusitis with Nasal Polyps—A Systematic Review
by José Palacios-García, Cristina Porras-González, Ramón Moreno-Luna, Juan Maza-Solano, Juan Polo-Padillo, José Luis Muñoz-Bravo and Serafín Sánchez-Gómez
J. Clin. Med. 2023, 12(9), 3280; https://doi.org/10.3390/jcm12093280 - 4 May 2023
Cited by 10 | Viewed by 2917
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease of the nose and paranasal sinuses characterized by the presence of nasal polyps. The symptoms produced by the presence of nasal polyps such as nasal obstruction, nasal discharge, facial pain, headache, and loss [...] Read more.
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease of the nose and paranasal sinuses characterized by the presence of nasal polyps. The symptoms produced by the presence of nasal polyps such as nasal obstruction, nasal discharge, facial pain, headache, and loss of smell cause a worsening in the quality of life of patients. The source of the nasal polyps remains unclear, although it seems to be due to a chronic inflammation process in the sinonasal mucosa. Fibroblasts, the main cells in connective tissue, are intimately involved in the inflammation processes of various diseases; to this end, we carried out a systematic review to evaluate their inflammatory role in nasal polyps. Thus, we evaluated the main cytokines produced by nasal polyp-derived fibroblasts (NPDF) to assess their involvement in the production of nasal polyps and their involvement in different inflammatory pathways. The results of the review highlight the inflammatory role of NPDF through the secretion of various cytokines involved in the T1, T2, and T3 inflammatory pathways, as well as the ability of NPDF to be stimulated by a multitude of substances. With these findings, the fibroblast is positioned as a new potential therapeutic target in the treatment of CRSwNP. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

15 pages, 1139 KiB  
Review
Inherited Thrombocytopenia Caused by Variants in Crucial Genes for Glycosylation
by Ana Marín-Quílez, Lorena Díaz-Ajenjo, Christian A. Di Buduo, Ana Zamora-Cánovas, María Luisa Lozano, Rocío Benito, José Ramón González-Porras, Alessandra Balduini, José Rivera and José María Bastida
Int. J. Mol. Sci. 2023, 24(6), 5109; https://doi.org/10.3390/ijms24065109 - 7 Mar 2023
Cited by 9 | Viewed by 3662
Abstract
Protein glycosylation, including sialylation, involves complex and frequent post-translational modifications, which play a critical role in different biological processes. The conjugation of carbohydrate residues to specific molecules and receptors is critical for normal hematopoiesis, as it favors the proliferation and clearance of hematopoietic [...] Read more.
Protein glycosylation, including sialylation, involves complex and frequent post-translational modifications, which play a critical role in different biological processes. The conjugation of carbohydrate residues to specific molecules and receptors is critical for normal hematopoiesis, as it favors the proliferation and clearance of hematopoietic precursors. Through this mechanism, the circulating platelet count is controlled by the appropriate platelet production by megakaryocytes, and the kinetics of platelet clearance. Platelets have a half-life in blood ranging from 8 to 11 days, after which they lose the final sialic acid and are recognized by receptors in the liver and eliminated from the bloodstream. This favors the transduction of thrombopoietin, which induces megakaryopoiesis to produce new platelets. More than two hundred enzymes are responsible for proper glycosylation and sialylation. In recent years, novel disorders of glycosylation caused by molecular variants in multiple genes have been described. The phenotype of the patients with genetic alterations in GNE, SLC35A1, GALE and B4GALT is consistent with syndromic manifestations, severe inherited thrombocytopenia, and hemorrhagic complications. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 7716 KiB  
Article
Expression of Basement Membrane Molecules by Wharton Jelly Stem Cells (WJSC) in Full-Term Human Umbilical Cords, Cell Cultures and Microtissues
by David Sánchez-Porras, Daniel Durand-Herrera, Ramón Carmona, Cristina Blanco-Elices, Ingrid Garzón, Michela Pozzobon, Sebastián San Martín, Miguel Alaminos, Óscar Darío García-García, Jesús Chato-Astrain and Víctor Carriel
Cells 2023, 12(4), 629; https://doi.org/10.3390/cells12040629 - 15 Feb 2023
Cited by 4 | Viewed by 2601
Abstract
Wharton’s jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to [...] Read more.
Wharton’s jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues. Epithelial BMs are well-known, but similar structures are present in other histological structures, such as in peripheral nerve fibers, myocytes or chondrocytes. Previous studies suggest the expression of some BM molecules within the Wharton’s Jelly (WJ) of UC, but the distribution pattern and full expression profile of these molecules have not been yet elucidated. In this sense, the aim of this histological study was to evaluate the expression of main BM molecules within the WJ, cultured WJSC and during WJSC microtissue (WJSC-MT) formation process. Results confirmed the presence of a pericellular matrix composed by the main BM molecules—collagens (IV, VII), HSPG2, agrin, laminin and nidogen—around the WJSC within UC. Additionally, ex vivo studies demonstrated the synthesis of these BM molecules, except agrin, especially during WJSC-MT formation process. The WJSC capability to synthesize main BM molecules could offer new alternatives for the generation of biomimetic-engineered substitutes where these molecules are particularly needed. Full article
Show Figures

Figure 1

24 pages, 939 KiB  
Review
Novel Therapies to Address Unmet Needs in ITP
by María Eva Mingot-Castellano, José María Bastida, Gonzalo Caballero-Navarro, Laura Entrena Ureña, Tomás José González-López, José Ramón González-Porras, Nora Butta, Mariana Canaro, Reyes Jiménez-Bárcenas, María del Carmen Gómez del Castillo Solano, Blanca Sánchez-González, Cristina Pascual-Izquierdo and on behalf of the GEPTI
Pharmaceuticals 2022, 15(7), 779; https://doi.org/10.3390/ph15070779 - 23 Jun 2022
Cited by 17 | Viewed by 5165
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune disorder that causes low platelet counts and subsequent bleeding risk. Although current corticosteroid-based ITP therapies are able to improve platelet counts, up to 70% of subjects with an ITP diagnosis do not achieve a sustained clinical [...] Read more.
Primary immune thrombocytopenia (ITP) is an autoimmune disorder that causes low platelet counts and subsequent bleeding risk. Although current corticosteroid-based ITP therapies are able to improve platelet counts, up to 70% of subjects with an ITP diagnosis do not achieve a sustained clinical response in the absence of treatment, thus requiring a second-line therapy option as well as additional care to prevent bleeding. Less than 40% of patients treated with thrombopoietin analogs, 60% of those treated with splenectomy, and 20% or fewer of those treated with rituximab or fostamatinib reach sustained remission in the absence of treatment. Therefore, optimizing therapeutic options for ITP management is mandatory. The pathophysiology of ITP is complex and involves several mechanisms that are apparently unrelated. These include the clearance of autoantibody-coated platelets by splenic macrophages or by the complement system, hepatic desialylated platelet destruction, and the inhibition of platelet production from megakaryocytes. The number of pathways involved may challenge treatment, but, at the same time, offer the possibility of unveiling a variety of new targets as the knowledge of the involved mechanisms progresses. The aim of this work, after revising the limitations of the current treatments, is to perform a thorough review of the mechanisms of action, pharmacokinetics/pharmacodynamics, efficacy, safety, and development stage of the novel ITP therapies under investigation. Hopefully, several of the options included herein may allow us to personalize ITP management according to the needs of each patient in the near future. Full article
(This article belongs to the Special Issue Drug Design and Development for Rare Hematologic Diseases)
Show Figures

Figure 1

15 pages, 3576 KiB  
Article
Venous Thrombosis within 30 Days after Vaccination against SARS-CoV-2 in a Multinational Venous Thromboembolism Registry
by Behnood Bikdeli, David Jiménez, Pablo Demelo-Rodriguez, Francisco Galeano-Valle, José Antonio Porras, Raquel Barba, Cihan Ay, Radovan Malý, Andrei Braester, Egidio Imbalzano, Vladimir Rosa, Ramón Lecumberri, Carmine Siniscalchi, Ángeles Fidalgo, Salvador Ortiz, Manuel Monreal and for the RIETE Investigators
Viruses 2022, 14(2), 178; https://doi.org/10.3390/v14020178 - 18 Jan 2022
Cited by 20 | Viewed by 4735
Abstract
Background: Venous thromboembolism (VTE)—including deep vein thrombosis, pulmonary embolism, and cerebral venous sinus thrombosis (CVST)—may occur early after vaccination against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We sought to describe the site, clinical characteristics, and outcomes of VTE after vaccination against [...] Read more.
Background: Venous thromboembolism (VTE)—including deep vein thrombosis, pulmonary embolism, and cerebral venous sinus thrombosis (CVST)—may occur early after vaccination against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We sought to describe the site, clinical characteristics, and outcomes of VTE after vaccination against SARS-CoV-2. Methods: In a prospective study using the Registro Informatizado de Enfermedad TromboEmbólica (RIETE) platform, patients with VTE 4–30 days after vaccination against SARS-CoV-2 (1 February 2021 through 30 April 2021) were included. VTE patients recruited from the same centers into RIETE in the same months in 2018–2019 were selected as the reference group. All-cause mortality and major bleeding were the main study outcomes. Results: As of 30 April 2020, 102 patients with post-vaccination VTEs had been identified (28 after adenovirus-based vaccination [ChAdOx1 nCov-19; AstraZeneca] and 74 after mRNA-based vaccination [mRNA-1273; Moderna, and BNT162b2; Pfizer]). Compared with 911 historical controls, patients with VTE after adenovirus-based vaccination more frequently had CVST (10.7% vs. 0.4%, p < 0.001) or thrombosis at multiple sites (17.9% vs. 1.3%, p < 0.001), more frequently had thrombocytopenia (40.7% vs. 14.7%, p < 0.001), and had higher 14-day mortality (14.3% vs. 0.7%; odds ratio [OR]: 25.1; 95% confidence interval [CI]: 6.7–94.9) and major bleeding rates (10.3% vs. 1.0%, OR: 12.03, 95% CI: 3.07–47.13). The site of thrombosis, accompanying thrombocytopenia, and 14-day mortality rates were not significantly different for patients with VTE after mRNA-based vaccination, compared with historical controls. Conclusions: Compared with historical controls, VTE after adenovirus-based vaccination against SARS-CoV-2 is accompanied by thrombocytopenia, occurs in unusual sites, and is associated with worse clinical outcomes. Full article
(This article belongs to the Special Issue COVID-19 and Thrombosis)
Show Figures

Figure 1

18 pages, 3811 KiB  
Article
Generation and Evaluation of Novel Biomaterials Based on Decellularized Sturgeon Cartilage for Use in Tissue Engineering
by Olimpia Ortiz-Arrabal, Ramón Carmona, Óscar-Darío García-García, Jesús Chato-Astrain, David Sánchez-Porras, Alberto Domezain, Roke-Iñaki Oruezabal, Víctor Carriel, Antonio Campos and Miguel Alaminos
Biomedicines 2021, 9(7), 775; https://doi.org/10.3390/biomedicines9070775 - 4 Jul 2021
Cited by 12 | Viewed by 3413
Abstract
Because cartilage has limited regenerative capability, a fully efficient advanced therapy medicinal product is needed to treat severe cartilage damage. We evaluated a novel biomaterial obtained by decellularizing sturgeon chondral endoskeleton tissue for use in cartilage tissue engineering. In silico analysis suggested high [...] Read more.
Because cartilage has limited regenerative capability, a fully efficient advanced therapy medicinal product is needed to treat severe cartilage damage. We evaluated a novel biomaterial obtained by decellularizing sturgeon chondral endoskeleton tissue for use in cartilage tissue engineering. In silico analysis suggested high homology between human and sturgeon collagen proteins, and ultra-performance liquid chromatography confirmed that both types of cartilage consisted mainly of the same amino acids. Decellularized sturgeon cartilage was recellularized with human chondrocytes and four types of human mesenchymal stem cells (MSC) and their suitability for generating a cartilage substitute was assessed ex vivo and in vivo. The results supported the biocompatibility of the novel scaffold, as well as its ability to sustain cell adhesion, proliferation and differentiation. In vivo assays showed that the MSC cells in grafted cartilage disks were biosynthetically active and able to remodel the extracellular matrix of cartilage substitutes, with the production of type II collagen and other relevant components, especially when adipose tissue MSC were used. In addition, these cartilage substitutes triggered a pro-regenerative reaction mediated by CD206-positive M2 macrophages. These preliminary results warrant further research to characterize in greater detail the potential clinical translation of these novel cartilage substitutes. Full article
(This article belongs to the Section Biomedical Materials and Nanomedicine)
Show Figures

Figure 1

31 pages, 2858 KiB  
Review
Inherited Platelet Disorders: An Updated Overview
by Verónica Palma-Barqueros, Nuria Revilla, Ana Sánchez, Ana Zamora Cánovas, Agustín Rodriguez-Alén, Ana Marín-Quílez, José Ramón González-Porras, Vicente Vicente, María Luisa Lozano, José María Bastida and José Rivera
Int. J. Mol. Sci. 2021, 22(9), 4521; https://doi.org/10.3390/ijms22094521 - 26 Apr 2021
Cited by 68 | Viewed by 17366
Abstract
Platelets play a major role in hemostasis as ppwell as in many other physiological and pathological processes. Accordingly, production of about 1011 platelet per day as well as appropriate survival and functions are life essential events. Inherited platelet disorders (IPDs), affecting either [...] Read more.
Platelets play a major role in hemostasis as ppwell as in many other physiological and pathological processes. Accordingly, production of about 1011 platelet per day as well as appropriate survival and functions are life essential events. Inherited platelet disorders (IPDs), affecting either platelet count or platelet functions, comprise a heterogenous group of about sixty rare diseases caused by molecular anomalies in many culprit genes. Their clinical relevance is highly variable according to the specific disease and even within the same type, ranging from almost negligible to life-threatening. Mucocutaneous bleeding diathesis (epistaxis, gum bleeding, purpura, menorrhagia), but also multisystemic disorders and/or malignancy comprise the clinical spectrum of IPDs. The early and accurate diagnosis of IPDs and a close patient medical follow-up is of great importance. A genotype–phenotype relationship in many IPDs makes a molecular diagnosis especially relevant to proper clinical management. Genetic diagnosis of IPDs has been greatly facilitated by the introduction of high throughput sequencing (HTS) techniques into mainstream investigation practice in these diseases. However, there are still unsolved ethical concerns on general genetic investigations. Patients should be informed and comprehend the potential implications of their genetic analysis. Unlike the progress in diagnosis, there have been no major advances in the clinical management of IPDs. Educational and preventive measures, few hemostatic drugs, platelet transfusions, thrombopoietin receptor agonists, and in life-threatening IPDs, allogeneic hematopoietic stem cell transplantation are therapeutic possibilities. Gene therapy may be a future option. Regular follow-up by a specialized hematology service with multidisciplinary support especially for syndromic IPDs is mandatory. Full article
(This article belongs to the Special Issue Congenital and Acquired Platelet Disease)
Show Figures

Figure 1

21 pages, 846 KiB  
Review
Role of Thrombopoietin Receptor Agonists in Inherited Thrombocytopenia
by José María Bastida, José Ramón Gonzalez-Porras, José Rivera and María Luisa Lozano
Int. J. Mol. Sci. 2021, 22(9), 4330; https://doi.org/10.3390/ijms22094330 - 21 Apr 2021
Cited by 21 | Viewed by 4449
Abstract
In the last decade, improvements in genetic testing have revolutionized the molecular diagnosis of inherited thrombocytopenias (ITs), increasing the spectrum of knowledge of these rare, complex and heterogeneous disorders. In contrast, the therapeutic management of ITs has not evolved in the same way. [...] Read more.
In the last decade, improvements in genetic testing have revolutionized the molecular diagnosis of inherited thrombocytopenias (ITs), increasing the spectrum of knowledge of these rare, complex and heterogeneous disorders. In contrast, the therapeutic management of ITs has not evolved in the same way. Platelet transfusions have been the gold standard treatment for a long time. Thrombopoietin receptor agonists (TPO-RA) were approved for immune thrombocytopenia (ITP) ten years ago and there is evidence for the use of TPO-RA not only in other forms of ITP, but also in ITs. We have reviewed in the literature the existing evidence on the role of TPO-RAs in ITs from 2010 to February 2021. A total of 24 articles have been included, 4 clinical trials, 3 case series and 17 case reports. A total of 126 patients with ITs have received TPO-RA. The main diagnoses were Wiskott–Aldrich syndrome, MYH9-related disorder and ANKRD26-related thrombocytopenia. Most patients were enrolled in clinical trials and were treated for short periods of time with TPO-RA as bridging therapies towards surgical interventions, or other specific approaches, such as hematopoietic stem cell transplantation. Here, we have carried out an updated and comprehensive review about the efficacy and safety of TPO-RA in ITs. Full article
(This article belongs to the Special Issue Congenital and Acquired Platelet Disease)
Show Figures

Figure 1

2 pages, 122 KiB  
Short Note
3-Methyl-3-(6,6,6a-trimethyl-hexahydro-cyclopenta[b]furan-2-yl)-butan-2-one
by Juan M. Castro, Ramón Porras, Pablo J. Linares-Palomino, Sofía Salido, Joaquín Altarejos, Manuel Nogueras and Adolfo Sánchez
Molbank 2005, 2005(1), M393; https://doi.org/10.3390/M393 - 1 Jul 2005
Cited by 1 | Viewed by 3247
Abstract
A 40% aqueous solution of sulfuric acid (0.5 mL) was added to a stirred solution of 3,3-dimethyl- 4-hydroxy-5-(2,2,3-trimethyl-3-cyclopentenyl)-pentan-2-one (1) (630 mg, 2.65 mmol) in methanol (5 mL) and the mixture refluxed for 1.5 h.[...] Full article
Back to TopTop