Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Pichon
Journal = Nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3320 KiB  
Communication
Colossal Dielectric Constant of Nanocrystalline/Amorphous Homo-Composite BaTiO3 Films Deposited via Pulsed Laser Deposition Technique
by Shinya Kondo, Taichi Murakami, Loick Pichon, Joël Leblanc-Lavoie, Takashi Teranishi, Akira Kishimoto and My Ali El Khakani
Nanomaterials 2024, 14(20), 1677; https://doi.org/10.3390/nano14201677 - 18 Oct 2024
Cited by 1 | Viewed by 1406
Abstract
We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO3 (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant (εr) and extremely low dielectric loss (tan δ). By varying the substrate deposition temperature (T [...] Read more.
We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO3 (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant (εr) and extremely low dielectric loss (tan δ). By varying the substrate deposition temperature (Td) over a wide range (300–800 °C), we identified Td = 550 °C as the optimal temperature for growing BTO films with an εr as high as ~3060 and a tan δ as low as 0.04 (at 20 kHz). High-resolution transmission electron microscopy revealed that the PLD-BTO films consist of BTO nanocrystals (~20–30 nm size) embedded within an otherwise amorphous BTO matrix. The impressive dielectric behavior is attributed to the combination of highly crystallized small BTO nanograins, which amplify interfacial polarization, and the surrounding amorphous matrix, which effectively isolates the nanograins from charge carrier transport. Our findings could facilitate the development of next-generation integrated dielectric devices. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

13 pages, 2988 KiB  
Article
In Cellulo and In Vivo Comparison of Cholesterol, Beta-Sitosterol and Dioleylphosphatidylethanolamine for Lipid Nanoparticle Formulation of mRNA
by Ayoub Medjmedj, Albert Ngalle-Loth, Rudy Clemençon, Josef Hamacek, Chantal Pichon and Federico Perche
Nanomaterials 2022, 12(14), 2446; https://doi.org/10.3390/nano12142446 - 17 Jul 2022
Cited by 16 | Viewed by 5809
Abstract
Lipid Nanoparticles (LNPs) are a leading class of mRNA delivery systems. LNPs are made of an ionizable lipid, a polyethyleneglycol (PEG)-lipid conjugate and helper lipids. The success of LNPs is due to proprietary ionizable lipids and appropriate helper lipids. Using a benchmark lipid [...] Read more.
Lipid Nanoparticles (LNPs) are a leading class of mRNA delivery systems. LNPs are made of an ionizable lipid, a polyethyleneglycol (PEG)-lipid conjugate and helper lipids. The success of LNPs is due to proprietary ionizable lipids and appropriate helper lipids. Using a benchmark lipid (D-Lin-MC3) we compared the ability of three helper lipids to transfect dendritic cells in cellulo and in vivo. Studies revealed that the choice of helper lipid does not influence the transfection efficiency of immortalized cells but, LNPs prepared with DOPE (dioleylphosphatidylethanolamine) and β-sitosterol were more efficient for mRNA transfection in murine dendritic cells than LNPs containing DSPC (distearoylphosphatidylcholine). This higher potency of DOPE and β-sitosterol LNPs for mRNA expression was also evident in vivo but only at low mRNA doses. Overall, these data provide valuable insight for the design of novel mRNA LNP vaccines. Full article
(This article belongs to the Special Issue Functional Nanoparticles for Biomedical and Nanomedicine Application)
Show Figures

Figure 1

19 pages, 3894 KiB  
Article
Highly Efficient Wideband Microwave Absorbers Based on Zero-Valent Fe@γ-Fe2O3 and Fe/Co/Ni Carbon-Protected Alloy Nanoparticles Supported on Reduced Graphene Oxide
by Francisco Mederos-Henry, Julien Mahin, Benoit P. Pichon, Marinela M. Dîrtu, Yann Garcia, Arnaud Delcorte, Christian Bailly, Isabelle Huynen and Sophie Hermans
Nanomaterials 2019, 9(9), 1196; https://doi.org/10.3390/nano9091196 - 25 Aug 2019
Cited by 24 | Viewed by 4216
Abstract
Electronic systems and telecommunication devices based on low-power microwaves, ranging from 2 to 40 GHz, have massively developed in the last decades. Their extensive use has contributed to the emergence of diverse electromagnetic interference (EMI) phenomena. Consequently, EMI shielding has become a ubiquitous [...] Read more.
Electronic systems and telecommunication devices based on low-power microwaves, ranging from 2 to 40 GHz, have massively developed in the last decades. Their extensive use has contributed to the emergence of diverse electromagnetic interference (EMI) phenomena. Consequently, EMI shielding has become a ubiquitous necessity and, in certain countries, a legal requirement. Broadband absorption is considered the only convincing EMI shielding solution when the complete disappearance of the unwanted microwave is required. In this study, a new type of microwave absorber materials (MAMs) based on reduced graphene oxide (rGO) decorated with zero-valent Fe@γ-Fe2O3 and Fe/Co/Ni carbon-protected alloy nanoparticles (NPs) were synthesized using the Pechini sol-gel method. Synthetic parameters were varied to determine their influence on the deposited NPs size and spatial distribution. The deposited superparamagnetic nanoparticles were found to induce a ferromagnetic resonance (FMR) absorption process in all cases. Furthermore, a direct relationship between the nanocomposites’ natural FMR frequency and their composition-dependent saturation magnetization (Ms) was established. Finally, the microwave absorption efficiency (0.4 MHz to 20 GHz) of these new materials was found to range from 60% to 100%, depending on the nature of the metallic particles grafted onto rGO. Full article
Show Figures

Graphical abstract

16 pages, 3414 KiB  
Article
Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles
by Geoffrey Cotin, Céline Kiefer, Francis Perton, Dris Ihiawakrim, Cristina Blanco-Andujar, Simona Moldovan, Christophe Lefevre, Ovidiu Ersen, Benoit Pichon, Damien Mertz and Sylvie Bégin-Colin
Nanomaterials 2018, 8(11), 881; https://doi.org/10.3390/nano8110881 - 29 Oct 2018
Cited by 79 | Viewed by 7305
Abstract
Iron oxide nanoparticles are widely used as a contrast agent in magnetic resonance imaging (MRI), and may be used as therapeutic agent for magnetic hyperthermia if they display in particular high magnetic anisotropy. Considering the effect of nanoparticles shape on anisotropy, a reproducible [...] Read more.
Iron oxide nanoparticles are widely used as a contrast agent in magnetic resonance imaging (MRI), and may be used as therapeutic agent for magnetic hyperthermia if they display in particular high magnetic anisotropy. Considering the effect of nanoparticles shape on anisotropy, a reproducible shape control of nanoparticles is a current synthesis challenge. By investigating reaction parameters, such as the iron precursor structure, its water content, but also the amount of the surfactant (sodium oleate) reported to control the shape, iron oxide nanoparticles with different shape and composition were obtained, in particular, iron oxide nanoplates. The effect of the surfactant coming from precursor was taking into account by using in house iron stearates bearing either two or three stearate chains and the negative effect of water on shape was confirmed by considering these precursors after their dehydration. Iron stearates with three chains in presence of a ratio sodium oleate/oleic acid 1:1 led mainly to nanocubes presenting a core-shell Fe1−xO@Fe3−xO4 composition. Nanocubes with straight faces were only obtained with dehydrated precursors. Meanwhile, iron stearates with two chains led preferentially to the formation of nanoplates with a ratio sodium oleate/oleic acid 4:1. The rarely reported flat shape of the plates was confirmed with 3D transmission electronic microscopy (TEM) tomography. The investigation of the synthesis mechanisms confirmed the major role of chelating ligand and of the heating rate to drive the cubic shape of nanoparticles and showed that the nanoplate formation would depend mainly on the nucleation step and possibly on the presence of a given ratio of oleic acid and chelating ligand (oleate and/or stearate). Full article
(This article belongs to the Special Issue Magnetic Nanoparticles in Biological Applications)
Show Figures

Figure 1

Back to TopTop