Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Peter N. Alexandrov

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 781 KiB  
Communication
Alteration of Biomolecular Conformation by Aluminum-Implications for Protein Misfolding Disease
by Yuhai Zhao, Aileen I. Pogue, Peter N. Alexandrov, Leslie G. Butler, Wenhong Li, Vivian R. Jaber and Walter J. Lukiw
Molecules 2022, 27(16), 5123; https://doi.org/10.3390/molecules27165123 - 11 Aug 2022
Cited by 5 | Viewed by 2719
Abstract
The natural element aluminum possesses a number of unique biochemical and biophysical properties that make this highly neurotoxic species deleterious towards the structural integrity, conformation, reactivity and stability of several important biomolecules. These include aluminum’s (i) small ionic size and highly electrophilic nature, [...] Read more.
The natural element aluminum possesses a number of unique biochemical and biophysical properties that make this highly neurotoxic species deleterious towards the structural integrity, conformation, reactivity and stability of several important biomolecules. These include aluminum’s (i) small ionic size and highly electrophilic nature, having the highest charge density of any metallic cation with a Z2/r of 18 (ionic charge +3, radius 0.5 nm); (ii) inclination to form extremely stable electrostatic bonds with a tendency towards covalency; (iii) ability to interact irreversibly and/or significantly slow down the exchange-rates of complex aluminum–biomolecular interactions; (iv) extremely dense electropositive charge with one of the highest known affinities for oxygen-donor ligands such as phosphate; (v) presence as the most abundant metal in the Earth’s biosphere and general bioavailability in drinking water, food, medicines, consumer products, groundwater and atmospheric dust; and (vi) abundance as one of the most commonly encountered intracellular and extracellular metallotoxins. Despite aluminum’s prevalence and abundance in the biosphere it is remarkably well-tolerated by all plant and animal species; no organism is known to utilize aluminum metabolically; however, a biological role for aluminum has been assigned in the compaction of chromatin. In this Communication, several examples are given where aluminum has been shown to irreversibly perturb and/or stabilize the natural conformation of biomolecules known to be important in energy metabolism, gene expression, cellular homeostasis and pathological signaling in neurological disease. Several neurodegenerative disorders that include the tauopathies, Alzheimer’s disease and multiple prion disorders involve the altered conformation of naturally occurring cellular proteins. Based on the data currently available we speculate that one way aluminum contributes to neurological disease is to induce the misfolding of naturally occurring proteins into altered pathological configurations that contribute to the neurodegenerative disease process. Full article
(This article belongs to the Special Issue Interactions between Metal Complexes and Biomolecules)
Show Figures

Figure 1

23 pages, 3297 KiB  
Article
Antifungal Thiazolidines: Synthesis and Biological Evaluation of Mycosidine Congeners
by Igor B. Levshin, Alexander Y. Simonov, Sergey N. Lavrenov, Alexey A. Panov, Natalia E. Grammatikova, Alexander A. Alexandrov, Eslam S. M. O. Ghazy, Nikita A. Savin, Peter V. Gorelkin, Alexander S. Erofeev and Vladimir I. Polshakov
Pharmaceuticals 2022, 15(5), 563; https://doi.org/10.3390/ph15050563 - 1 May 2022
Cited by 20 | Viewed by 4257
Abstract
Novel derivatives of Mycosidine (3,5-substituted thiazolidine-2,4-diones) are synthesized by Knoevenagel condensation and reactions of thiazolidines with chloroformates or halo-acetic acid esters. Furthermore, 5-Arylidene-2,4-thiazolidinediones and their 2-thioxo analogs containing halogen and hydroxy groups or di(benzyloxy) substituents in 5-benzylidene moiety are tested for antifungal activity [...] Read more.
Novel derivatives of Mycosidine (3,5-substituted thiazolidine-2,4-diones) are synthesized by Knoevenagel condensation and reactions of thiazolidines with chloroformates or halo-acetic acid esters. Furthermore, 5-Arylidene-2,4-thiazolidinediones and their 2-thioxo analogs containing halogen and hydroxy groups or di(benzyloxy) substituents in 5-benzylidene moiety are tested for antifungal activity in vitro. Some of the synthesized compounds exhibit high antifungal activity, both fungistatic and fungicidal, and lead to morphological changes in the Candida yeast cell wall. Based on the use of limited proteomic screening and toxicity analysis in mutants, we show that Mycosidine activity is associated with glucose transport. This suggests that this first-in-class antifungal drug has a novel mechanism of action that deserves further study. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Graphical abstract

9 pages, 744 KiB  
Communication
Deficiency in the Ubiquitin Conjugating Enzyme UBE2A in Alzheimer’s Disease (AD) is Linked to Deficits in a Natural Circular miRNA-7 Sponge (circRNA; ciRS-7)
by Yuhai Zhao, Peter N. Alexandrov, Vivian Jaber and Walter J. Lukiw
Genes 2016, 7(12), 116; https://doi.org/10.3390/genes7120116 - 5 Dec 2016
Cited by 275 | Viewed by 11044
Abstract
Our understanding of the highly specialized functions for small non-coding single-stranded RNA (ssRNA) in the transcriptome of the human central nervous system (CNS) continues to evolve. Circular RNAs (circRNAs), a recently discovered class of ssRNA enriched in the brain and retina, are extremely [...] Read more.
Our understanding of the highly specialized functions for small non-coding single-stranded RNA (ssRNA) in the transcriptome of the human central nervous system (CNS) continues to evolve. Circular RNAs (circRNAs), a recently discovered class of ssRNA enriched in the brain and retina, are extremely stable and intrinsically resilient to degradation by exonuclease. Conventional methods of ssRNA, microRNA (miRNA), or messenger RNA (mRNA) detection and quantitation requiring free ribonucleotide ends may have considerably underestimated the quantity and significance of CNS circRNA in the CNS. Highly-specific small ssRNAs, such as the ~23 nucleotide (nt) Homo sapien microRNA-7 (hsa-miRNA-7; chr 9q21.32), are not only abundant in the human limbic system but are, in addition, associated with a ~1400 nt circRNA for miRNA-7 (ciRS-7) in the same anatomical region. Structurally, ciRS-7 contains about ~70 tandem anti-miRNA-7 sequences and acts as an endogenous, anti-complementary miRNA-7 “sponge” that attracts, binds, and, hence, quenches, natural miRNA-7 functions. Using a combination of DNA and miRNA array technologies, enhanced LED-Northern and Western blot hybridization, and the magnesium-dependent exoribonuclease and circRNA-sensitive probe RNaseR, here we provide evidence of a significantly misregulated ciRS-7-miRNA-7-UBE2A circuit in sporadic Alzheimer’s disease (AD) neocortex (Brodmann A22) and hippocampal CA1. Deficits in ciRS-7-mediated “sponging events”, resulting in excess ambient miRNA-7 appear to drive the selective down-regulation in the expression of miRNA-7-sensitive mRNA targets, such as that encoding the ubiquitin conjugating enzyme E2A (UBE2A; chr Xq24). UBE2A, which normally serves as a central effector in the ubiquitin-26S proteasome system, coordinates the clearance of amyloid peptides via proteolysis, is known to be depleted in sporadic AD brain and, hence, contributes to amyloid accumulation and the formation of senile plaque deposits. Dysfunction of circRNA-miRNA-mRNA regulatory systems appears to represent another important layer of epigenetic control over pathogenic gene expression programs in the human CNS that are targeted by the sporadic AD process. Full article
(This article belongs to the Special Issue microRNAs and Other Non-Coding RNAs in Human Diseases)
Show Figures

Figure 1

Back to TopTop