Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Nur Hashimah Alias ORCID = 0000-0001-5061-8253

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9947 KiB  
Review
Progress on Improved Fouling Resistance-Nanofibrous Membrane for Membrane Distillation: A Mini-Review
by Yong Zen Tan, Nur Hashimah Alias, Mohd Haiqal Abd Aziz, Juhana Jaafar, Faten Ermala Che Othman and Jia Wei Chew
Membranes 2023, 13(8), 727; https://doi.org/10.3390/membranes13080727 - 11 Aug 2023
Cited by 9 | Viewed by 2794
Abstract
Nanofibrous membranes for membrane distillation (MD) have demonstrated promising results in treating various water and wastewater streams. Significant progress has been made in recent decades because of the development of sophisticated membrane materials, such as superhydrophobic, omniphobic and Janus membranes. However, fouling and [...] Read more.
Nanofibrous membranes for membrane distillation (MD) have demonstrated promising results in treating various water and wastewater streams. Significant progress has been made in recent decades because of the development of sophisticated membrane materials, such as superhydrophobic, omniphobic and Janus membranes. However, fouling and wetting remain crucial issues for long-term operation. This mini-review summarizes ideas as well as their limitations in understanding the fouling in membrane distillation, comprising organic, inorganic and biofouling. This review also provides progress in developing antifouling nanofibrous membranes for membrane distillation and ongoing modifications on nanofiber membranes for improved membrane distillation performance. Lastly, challenges and future ways to develop antifouling nanofiber membranes for MD application have been systematically elaborated. The present mini-review will interest scientists and engineers searching for the progress in MD development and its solutions to the MD fouling issues. Full article
Show Figures

Figure 1

22 pages, 7057 KiB  
Review
A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment
by Hadi Nugraha Cipta Dharma, Juhana Jaafar, Nurul Widiastuti, Hideto Matsuyama, Saied Rajabsadeh, Mohd Hafiz Dzarfan Othman, Mukhlis A Rahman, Nurul Natasha Mohammad Jafri, Nuor Sariyan Suhaimin, Atikah Mohd Nasir and Nur Hashimah Alias
Membranes 2022, 12(3), 345; https://doi.org/10.3390/membranes12030345 - 19 Mar 2022
Cited by 198 | Viewed by 12875
Abstract
Oilfield produced water (OPW) has become a primary environmental concern due to the high concentration of dissolved organic pollutants that lead to bioaccumulation with high toxicity, resistance to biodegradation, carcinogenicity, and the inhibition of reproduction, endocrine, and non-endocrine systems in aquatic biota. Photodegradation [...] Read more.
Oilfield produced water (OPW) has become a primary environmental concern due to the high concentration of dissolved organic pollutants that lead to bioaccumulation with high toxicity, resistance to biodegradation, carcinogenicity, and the inhibition of reproduction, endocrine, and non-endocrine systems in aquatic biota. Photodegradation using photocatalysts has been considered as a promising technology to sustainably resolve OPW pollutants due to its benefits, including not requiring additional chemicals and producing a harmless compound as the result of pollutant photodegradation. Currently, titanium dioxide (TiO2) has gained great attention as a promising photocatalyst due to its beneficial properties among the other photocatalysts, such as excellent optical and electronic properties, high chemical stability, low cost, non-toxicity, and eco-friendliness. However, the photoactivity of TiO2 is still inhibited because it has a wide band gap and a low quantum field. Hence, the modification approaches for TiO2 can improve its properties in terms of the photocatalytic ability, which would likely boost the charge carrier transfer, prevent the recombination of electrons and holes, and enhance the visible light response. In this review, we provide an overview of several routes for modifying TiO2. The as-improved photocatalytic performance of the modified TiO2 with regard to OPW treatment is reviewed. The stability of modified TiO2 was also studied. The future perspective and challenges in developing the modification of TiO2-based photocatalysts are explained. Full article
(This article belongs to the Section Biological Membrane Dynamics and Computation)
Show Figures

Graphical abstract

37 pages, 4714 KiB  
Review
A Review on the Use of Membrane Technology Systems in Developing Countries
by Nur Hidayati Othman, Nur Hashimah Alias, Nurul Syazana Fuzil, Fauziah Marpani, Munawar Zaman Shahruddin, Chun Ming Chew, Kam Meng David Ng, Woei Jye Lau and Ahmad Fauzi Ismail
Membranes 2022, 12(1), 30; https://doi.org/10.3390/membranes12010030 - 27 Dec 2021
Cited by 133 | Viewed by 18249
Abstract
Fulfilling the demand of clean potable water to the general public has long been a challenging task in most developing countries due to various reasons. Large-scale membrane water treatment systems have proven to be successful in many advanced countries in the past two [...] Read more.
Fulfilling the demand of clean potable water to the general public has long been a challenging task in most developing countries due to various reasons. Large-scale membrane water treatment systems have proven to be successful in many advanced countries in the past two decades. This paves the way for developing countries to study the feasibility and adopt the utilization of membrane technology in water treatment. There are still many challenges to overcome, particularly on the much higher capital and operational cost of membrane technology compared to the conventional water treatment system. This review aims to delve into the progress of membrane technology for water treatment systems, particularly in developing countries. It first concentrates on membrane classification and its application in water treatment, including membrane technology progress for large-scale water treatment systems. Then, the fouling issue and ways to mitigate the fouling will be discussed. The feasibility of membrane technologies in developing countries was then evaluated, followed by a discussion on the challenges and opportunities of the membrane technology implementation. Finally, the current trend of membrane research was highlighted to address future perspectives of the membrane technologies for clean water production. Full article
(This article belongs to the Special Issue Special Issue in Honor of Professor Ahmad Fauzi Ismail)
Show Figures

Figure 1

28 pages, 2642 KiB  
Review
A Review on the Design and Performance of Enzyme-Aided Catalysis of Carbon Dioxide in Membrane, Electrochemical Cell and Photocatalytic Reactors
by Fatin Nasreen Ahmad Rizal Lim, Fauziah Marpani, Victoria Eliz Anak Dilol, Syazana Mohamad Pauzi, Nur Hidayati Othman, Nur Hashimah Alias, Nik Raikhan Nik Him, Jianquan Luo and Norazah Abd Rahman
Membranes 2022, 12(1), 28; https://doi.org/10.3390/membranes12010028 - 27 Dec 2021
Cited by 9 | Viewed by 4800
Abstract
Multi-enzyme cascade catalysis involved three types of dehydrogenase enzymes, namely, formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), alcohol dehydrogenase (ADH), and an equimolar electron donor, nicotinamide adenine dinucleotide (NADH), assisting the reaction is an interesting pathway to reduce thermodynamically stable molecules of CO2 [...] Read more.
Multi-enzyme cascade catalysis involved three types of dehydrogenase enzymes, namely, formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), alcohol dehydrogenase (ADH), and an equimolar electron donor, nicotinamide adenine dinucleotide (NADH), assisting the reaction is an interesting pathway to reduce thermodynamically stable molecules of CO2 from the atmosphere. The biocatalytic sequence is interesting because it operates under mild reaction conditions (low temperature and pressure) and all the enzymes are highly selective, which allows the reaction to produce three basic chemicals (formic acid, formaldehyde, and methanol) in just one pot. There are various challenges, however, in applying the enzymatic conversion of CO2, namely, to obtain high productivity, increase reusability of the enzymes and cofactors, and to design a simple, facile, and efficient reactor setup that will sustain the multi-enzymatic cascade catalysis. This review reports on enzyme-aided reactor systems that support the reduction of CO2 to methanol. Such systems include enzyme membrane reactors, electrochemical cells, and photocatalytic reactor systems. Existing reactor setups are described, product yields and biocatalytic productivities are evaluated, and effective enzyme immobilization methods are discussed. Full article
(This article belongs to the Special Issue Special Issue in Honor of Professor Ahmad Fauzi Ismail)
Show Figures

Graphical abstract

19 pages, 1187 KiB  
Review
Recent Mitigation Strategies on Membrane Fouling for Oily Wastewater Treatment
by Nur Fatihah Zulkefli, Nur Hashimah Alias, Nur Shafiqah Jamaluddin, Norfadhilatuladha Abdullah, Shareena Fairuz Abdul Manaf, Nur Hidayati Othman, Fauziah Marpani, Muhammad Shafiq Mat-Shayuti and Tutuk Djoko Kusworo
Membranes 2022, 12(1), 26; https://doi.org/10.3390/membranes12010026 - 25 Dec 2021
Cited by 54 | Viewed by 7115
Abstract
The discharge of massive amounts of oily wastewater has become one of the major concerns among the scientific community. Membrane filtration has been one of the most used methods of treating oily wastewater due to its stability, convenience handling, and durability. However, the [...] Read more.
The discharge of massive amounts of oily wastewater has become one of the major concerns among the scientific community. Membrane filtration has been one of the most used methods of treating oily wastewater due to its stability, convenience handling, and durability. However, the continuous occurrence of membrane fouling aggravates the membrane’s performance efficiency. Membrane fouling can be defined as the accumulation of various materials in the pores or surface of the membrane that affect the permeate’s quantity and quality. Many aspects of fouling have been reviewed, but recent methods for fouling reduction in oily wastewater have not been explored and discussed sufficiently. This review highlights the mitigation strategies to reduce membrane fouling from oily wastewater. We first review the membrane technology principle for oily wastewater treatment, followed by a discussion on different fouling mechanisms of inorganic fouling, organic fouling, biological fouling, and colloidal fouling for better understanding and prevention of membrane fouling. Recent mitigation strategies to reduce fouling caused by oily wastewater treatment are also discussed. Full article
(This article belongs to the Special Issue Special Issue in Honor of Professor Ahmad Fauzi Ismail)
Show Figures

Figure 1

19 pages, 8262 KiB  
Article
Synthesis and Characterization of Titanium Dioxide Hollow Nanofiber for Photocatalytic Degradation of Methylene Blue Dye
by Nurul Natasha Mohammad Jafri, Juhana Jaafar, Nur Hashimah Alias, Sadaki Samitsu, Farhana Aziz, Wan Norharyati Wan Salleh, Mohd Zamri Mohd Yusop, Mohd Hafiz Dzarfan Othman, Mukhlis A Rahman, Ahmad Fauzi Ismail, Takeshi Matsuura and Arun M. Isloor
Membranes 2021, 11(8), 581; https://doi.org/10.3390/membranes11080581 - 30 Jul 2021
Cited by 28 | Viewed by 4386
Abstract
Environmental crisis and water contamination have led to worldwide exploration for advanced technologies for wastewater treatment, and one of them is photocatalytic degradation. A one-dimensional hollow nanofiber with enhanced photocatalytic properties is considered a promising material to be applied in the field. Therefore, [...] Read more.
Environmental crisis and water contamination have led to worldwide exploration for advanced technologies for wastewater treatment, and one of them is photocatalytic degradation. A one-dimensional hollow nanofiber with enhanced photocatalytic properties is considered a promising material to be applied in the field. Therefore, we synthesized titanium dioxide hollow nanofibers (THNF) with extended surface area, light-harvesting properties and an anatase–rutile heterojunction via a template synthesis method and followed by a calcination process. The effect of calcination temperature on the formation and properties of THNF were determined and the possible mechanism of THNF formation was proposed. THNF nanofibers produced at 600 °C consisted of a mixture of 24.2% anatase and 75.8% rutile, with a specific surface area of 81.2776 m2/g. The hollow nanofibers also outperformed the other catalysts in terms of photocatalytic degradation of MB dye, at 85.5%. The optimum catalyst loading, dye concentration, pH, and H2O2 concentration were determined at 0.75 g/L, 10 ppm, pH 11, and 10 mM, respectively. The highest degradation of methylene blue dye achieved was 95.2% after 4 h of UV irradiation. Full article
(This article belongs to the Section Membrane Chemistry)
Show Figures

Figure 1

Back to TopTop