A Review on the Use of Membrane Technology Systems in Developing Countries
Abstract
:1. Introduction
2. Membrane Technology for Water Treatment System
2.1. Membrane Classifications
2.2. Membrane Applications in Water Treatment
2.2.1. Removal of Organic Compound
2.2.2. Removal of Inorganic Compound
2.3. Progress of Membrane Technology for Large-Scale Water Treatment Systems
2.4. Advantages and Disadvantages of Membrane Technologies for Water Treatment
2.5. Fouling in Membrane Systems
2.6. Mitigation of Fouling in Membrane
2.6.1. Membrane Modification
2.6.2. Pre-Treatment
2.6.3. Post-Treatment
2.7. From Laboratory to Commercialization of Membrane Technology
3. Feasible Membrane Technologies for Water Treatment in Developing Countries
3.1. Membrane System for Clean Drinking Water Production
3.2. Cost Analysis of Membrane Systems
3.3. Affordability, Supply and Demand for Clean Water
4. Challenges and Opportunities of Membrane Technology Implementation in Developing Countries
4.1. Current Scenario of Water Treatment Facilities in Developing Countries
4.2. Technology Transfer from Developed/Advanced Countries
5. Current Trends and Future Outlook
5.1. Improvements in Membrane Modules and Membrane System Configurations
5.2. Development of Renewable Energy-Driven Membrane System
5.3. Development of Alternative Pressure-Driven Membrane System for Desalination
5.4. Zero Discharge Liquid (ZLD)
6. Outlook on the Adaptation of Membrane Filtration Technology by Developing Countries
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, H.F.; Ooi, B.S.; Leo, C.P. Future perspectives of nanocellulose-based membrane for water treatment. J. Water Process Eng. 2020, 37, 101502. [Google Scholar] [CrossRef]
- Choo, G.; Oh, J.E. Seasonal occurrence and removal of organophosphate esters in conventional and advanced drinking water treatment plants. Water Res. 2020, 186, 1–6. [Google Scholar] [CrossRef]
- Vilayphone, V.; Outram, J.G.; Collins, F.; Millar, G.J.; Altaee, A. Process design of coal seam gas associated water treatment plants to facilitate beneficial reuse. J. Environ. Chem. Eng. 2020, 8, 104255. [Google Scholar] [CrossRef]
- Adelodun, B.; Ajibade, F.O.; Ighalo, J.O.; Odey, G.; Ibrahim, R.G.; Kareem, K.Y.; Bakare, H.O.; Tiamiyu, A.G.O.; Ajibade, T.F.; Abdulkadir, T.S.; et al. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. Environ. Res. 2021, 192. [Google Scholar] [CrossRef] [PubMed]
- Chew, C.M.; Aroua, M.K.; Hussain, M.A.; Ismail, W.M.Z.W. Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: An industrial scale case study. J. Clean. Prod. 2016, 112, 3152–3163. [Google Scholar] [CrossRef]
- Gordon, C. The challenges of transport PPP’s in low-income developing countries: A case study of Bangladesh. Transp. Policy 2012, 24, 296–301. [Google Scholar] [CrossRef]
- Guo, D.; Thomas, J.; Lazaro, A.B.; Matwewe, F.; Johnson, F. Modelling the influence of short-term climate variability on drinking water quality in tropical developing countries: A case study in Tanzania. Sci. Total Environ. 2021, 763, 142932. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Ahmad, D.; Balkundae, P.; Kausley, S.; Malhotra, C. Development of low cost point-of-use (POU) interventions for instant decontamination of drinking water in developing countries. J. Water Process Eng. 2020, 37, 101435. [Google Scholar] [CrossRef]
- Aemro, Y.B.; Moura, P.; de Almeida, A.T. Experimental evaluation of electric clean cooking options for rural areas of developing countries. Sustain. Energy Technol. Assess. 2021, 43, 100954. [Google Scholar] [CrossRef]
- Fischer, A.; Hope, R.; Manandhar, A.; Hoque, S.; Foster, T.; Hakim, A.; Islam, M.S.; Bradley, D. Risky responsibilities for rural drinking water institutions: The case of unregulated self-supply in Bangladesh. Glob. Environ. Chang. 2020, 65, 102152. [Google Scholar] [CrossRef]
- Foster, T.; Willetts, J.; Lane, M.; Thomson, P.; Katuva, J.; Hope, R. Risk factors associated with rural water supply failure: A 30-year retrospective study of handpumps on the south coast of Kenya. Sci. Total Environ. 2018, 626, 156–164. [Google Scholar] [CrossRef]
- Otter, P.; Sattler, W.; Grischek, T.; Jaskolski, M.; Mey, E.; Ulmer, N.; Grossmann, P.; Matthias, F.; Malakar, P.; Goldmaier, A.; et al. Economic evaluation of water supply systems operated with solar-driven electro-chlorination in rural regions in Nepal, Egypt and Tanzania. Water Res. 2020, 187, 116384. [Google Scholar] [CrossRef] [PubMed]
- Kativhu, T.; Mazvimavi, D.; Tevera, D.; Nhapi, I. Implementation of Community Based Management (CBM) in Zimbabwe: The dichotomy of theory and practice and its influence on sustainability of rural water supply systems. Phys. Chem. Earth 2018, 106, 73–82. [Google Scholar] [CrossRef]
- Lakho, F.H.; Le, H.Q.; Mattheeuws, F.; Igodt, W.; Depuydt, V.; Desloover, J.; Rousseau, D.P.L.; Van Hulle, S.W.H. Decentralized grey and black water reuse by combining a vertical flow constructed wetland and membrane based potable water system: Full scale demonstration. J. Environ. Chem. Eng. 2021, 9, 104688. [Google Scholar] [CrossRef]
- Yoo, S.S.; Chu, K.H.; Choi, I.H.; Mang, J.S.; Ko, K.B. Operating cost reduction of UF membrane filtration process for drinking water treatment attributed to chemical cleaning optimization. J. Environ. Manage. 2018, 206, 1126–1134. [Google Scholar] [CrossRef]
- Karki, A.J.; Cappelli, P.; Dirks, C.; Pekar, H.; Hellenäs, K.E.; Rosén, J.; Westerberg, E. New efficient methodology for screening of selected organic micropollutants in raw- and drinking water from 90 Swedish water treatment plants. Sci. Total Environ. 2020, 724, 138069. [Google Scholar] [CrossRef] [PubMed]
- Setareh, P.; Khezri, S.M.; Hossaini, H.; Pirsaheb, M. Coupling effect of ozone/ultrasound with coagulation for improving NOM and turbidity removal from surface water. J. Water Process Eng. 2020, 37, 101340. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, Y.X. Dosage and pH dependence of coagulation with polytitanium salts for the treatment of Microcystis aeruginosa-laden and Microcystis wesenbergii-laden surface water: The influence of basicity. J. Water Process Eng. 2021, 39, 101726. [Google Scholar] [CrossRef]
- Gough, R.; Holliman, P.J.; Willis, N.; Freeman, C. Dissolved organic carbon and trihalomethane precursor removal at a UK upland water treatment works. Sci. Total Environ. 2014, 468–469, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Neto, S.; Camkin, J. What rights and whose responsibilities in water? Revisiting the purpose and reassessing the value of water services tariffs. Util. Policy 2020, 63, 101016. [Google Scholar] [CrossRef]
- Bai, Y.; Shan, F.; Zhu, Y.; Xu, J.; Wu, Y.; Luo, X.; Wu, Y.; Hu, H.-Y.; Zhang, B. Long-term performance and economic evaluation of full-scale MF and RO process—A case study of the changi NEWater Project Phase 2 in Singapore. Water Cycle 2020, 1, 128–135. [Google Scholar] [CrossRef]
- Chew, C.M.; David Ng, K.M. Utilization of porous and non-porous polymeric materials in ultrafiltration and distillation for water treatment systems. Mater. Today Proc. 2019, 29, 202–206. [Google Scholar] [CrossRef]
- Xiao, P.; Xiao, F.; Wang, D.S.; Qin, T.; He, S.P. Investigation of organic foulants behavior on hollow-fiber UF membranes in a drinking water treatment plant. Sep. Purif. Technol. 2012, 95, 109–117. [Google Scholar] [CrossRef]
- Gu, H.; Rahardianto, A.; Gao, L.X.; Christofides, P.D.; Cohen, Y. Ultrafiltration with self-generated RO concentrate pulse backwash in a novel integrated seawater desalination UF-RO system. J. Memb. Sci. 2016, 520, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.N.; Ma, M.Y.; Pan, X.H.; Hao, J.; Zhang, C.N. Quality of product water by three full-scale seawater reverse osmosis desalination in China. Desalin. Water Treat. 2020, 174, 46–52. [Google Scholar] [CrossRef]
- Ahunbay, M.G. Achieving high water recovery at low pressure in reverse osmosis processes for seawater desalination. Desalination 2019, 465, 58–68. [Google Scholar] [CrossRef]
- Chubaka, C.E.; Whiley, H.; Edwards, J.W.; Ross, K.E. Lead, zinc, copper, and cadmium content of water from South Australian rainwater tanks. Int. J. Environ. Res. Public Health 2018, 15, 1550. [Google Scholar] [CrossRef] [Green Version]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.; Wang, G.; Shi, W.; Zhang, S. Sorption of radiocobalt on a novel γ-MnO 2 hollow structure: Effects of pH, ionic strength, humic substances and temperature. J. Radioanal. Nucl. Chem. 2012, 292, 293–303. [Google Scholar] [CrossRef]
- Masset, S.; Monteil-Rivera, F.; Dupont, L.; Dumonceau, J.; Aplincourt, M. Influence of humic acid on sorption of Co(II), Sr(II), and Se(IV) on goethite. Agronomie 2000, 20, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Levesque, S.; Rodriguez, M.J.; Serodes, J.; Beaulieu, C.; Proulx, F. Effects of indoor drinking water handling on trihalomethanes and haloacetic acids. Water Res. 2006, 40, 2921–2930. [Google Scholar] [CrossRef] [PubMed]
- Zazouli, M.A.; Kalankesh, L.R. Removal of precursors and disinfection byproducts (DBPs) by membrane filtration from water; a review. J. Environ. Health Sci. Eng. 2017, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Xia, Y.; Gong, Y.; Li, W.; Li, Z. Efficient natural organic matter removal from water using nano-MgO coupled with microfiltration membrane separation. Sci. Total Environ. 2020, 711, 135120. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C.; Anderson, A.; Sinha, R.; Muhammad, N.; Pearson, D. Nanofiltration Membranes for Removal of Color and Pathogens in Small Public Drinking Water Sources. J. Environ. Eng. 2012, 138, 48–57. [Google Scholar] [CrossRef]
- Ersan, M.S.; Ladner, D.A.; Karanfil, T. The control of N-nitrosodimethylamine, Halonitromethane, and Trihalomethane precursors by Nanofiltration. Water Res. 2016, 105, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.Y.; Chen, Z.L.; Yang, Y.L.; Liang, H.; Nan, J.; Li, G.B. Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water. Water Res. 2010, 44, 59–68. [Google Scholar] [CrossRef]
- Jacangelo, J.G.; Aieta, E.M.; Carns, K.E.; Cummings, E.W.; Mallevialle, J. Assessing hollow-fibre ultrafiltration for particulate removal. J. Am. Water Work. Assoc. 1989, 81, 68–75. [Google Scholar] [CrossRef]
- Jung, C.W.; Kang, L.S. Application of combined coagulation-ultrafiltration membrane process for water treatment. Korean J. Chem. Eng. 2003, 20, 855–861. [Google Scholar] [CrossRef]
- Ben-Sasson, M.; Zidon, Y.; Calvo, R.; Adin, A. Enhanced removal of natural organic matter by hybrid process of electrocoagulation and dead-end microfiltration. Chem. Eng. J. 2013, 232, 338–3345. [Google Scholar] [CrossRef]
- Lamsal, R.; Montreuil, K.R.; Kent, F.C.; Walsh, M.E.; Gagnon, G.A. Characterization and removal of natural organic matter by an integrated membrane system. Desalination 2012, 303, 12–16. [Google Scholar] [CrossRef]
- Tian, J.; Wu, C.; Yu, H.; Gao, S.; Li, G.; Cui, F.; Qu, F. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res. 2018, 132, 190–199. [Google Scholar] [CrossRef]
- Zularisam, A.W.; Ismail, A.F.; Salim, M.R.; Sakinah, M.; Matsuura, T. Application of coagulation-ultrafiltration hybrid process for drinking water treatment: Optimization of operating conditions using experimental design. Sep. Purif. Technol. 2009, 65, 193–210. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V. Removal of Endocrine Disruptors from Urban Wastewater by Advanced Oxidation Processes (AOPs): A Review. Open Biotechnol. J. 2016, 10, 151–172. [Google Scholar] [CrossRef]
- Zielińska, M.; Bułkowska, K.; Cydzik-Kwiatkowska, A.; Bernat, K.; Wojnowska-Baryła, I. Removal of bisphenol A (BPA) from biologically treated wastewater by microfiltration and nanofiltration. Int. J. Environ. Sci. Technol. 2016, 13, 2239–2248. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Westerhoff, P.; Snyder, S.A.; Wert, E.C.; Yoon, J. Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination 2007, 202, 16–23. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep. Purif. Technol. 2015, 156, 891–914. [Google Scholar] [CrossRef]
- Bodzek, M.; Dudziak, M.; Luks-Betlej, K. Application of membrane techniques to water purification. Removal of phthalates. Desalination 2004, 162, 121–128. [Google Scholar] [CrossRef]
- Rzymski, P.; Drewek, A.; Klimaszyk, P. Pharmaceutical pollution of aquatic environment: An emerging and enormous challenge. Limnol. Rev. 2017, 17, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Kuehnert, M.; Kazemi, A.S.; Abdi, Y.; Schulze, A. Water softening using a light-responsive, spiropyran-modified nanofiltration membrane. Polymers (Basel) 2019, 11, 344. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ju, L.; Xu, F.; Tian, L.; Jia, R.; Song, W.; Li, Y.; Liu, B. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water. Environ. Res. 2020, 182, 109063. [Google Scholar] [CrossRef] [PubMed]
- Lust, R.; Nerut, J.; Kasak, K.; Mander, Ü. Enhancing nitrate removal fromwaters with low organic carbon concentration using a bioelectrochemical system-a pilot-scale study. Water (Switzerland) 2020, 12, 516. [Google Scholar] [CrossRef] [Green Version]
- Schoeman, J.J.; Steyn, A. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 2003, 155, 15–26. [Google Scholar] [CrossRef]
- Fakhfekh, R.; Chabanon, E.; Mangin, D.; Amar, R.B.; Charcosse, C. Removal of iron using an oxidation and ceramic microfiltration hybrid process for drinking water treatment. Desalin. Water Treat. 2017, 66, 210–220. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Hilal, N.; Leo, C.P. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 2015, 363, 2–18. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, J.; He, H.; Zhu, Y.; Dionysiou, D.D.; Liu, Z.; Zhao, C. Do membrane filtration systems in drinking water treatment plants release nano/microplastics? Sci. Total Environ. 2021, 755, 142658. [Google Scholar] [CrossRef]
- Chennamsetty, R.; Escobar, I.; Xu, X. Characterization of commercial water treatment membranes modified via ion beam irradiation. Desalination 2006, 188, 203–212. [Google Scholar] [CrossRef]
- Spitzer, S.; Miltner, M.; Harasek, M. Investigation on the influence of membrane selectivity on the performance of mobile biogas upgrading plants by process simulation. J. Clean. Prod. 2019, 231, 43–53. [Google Scholar] [CrossRef]
- López-Roldán, R.; Rubalcaba, A.; Martin-Alonso, J.; González, S.; Martí, V.; Cortina, J.L. Assessment of the water chemical quality improvement based on human health risk indexes: Application to a drinking water treatment plant incorporating membrane technologies. Sci. Total Environ. 2016, 540, 334–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent development in modification of polysulfone membrane for water treatment application. J. Water Process Eng. 2021, 40, 101835. [Google Scholar] [CrossRef]
- Sun, H.; Liu, H.; Zhang, M.; Liu, Y. A novel single-stage ceramic membrane moving bed biofilm reactor coupled with reverse osmosis for reclamation of municipal wastewater to NEWater-like product water. Chemosphere 2021, 268, 128836. [Google Scholar] [CrossRef]
- Noguchi, H.; Oo, M.H.; Niwa, T.; Fong, E.; Yin, R.; Supaat, N. Applications of flat sheet ceramic membrane for surface water and seawater treatments—Introduction of performance in large-scale drinking water plant and seawater pretreatment pilot system in Singapore. Water Pract. Technol. 2019, 14, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Abraham, T.; Luthra, A. Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India. Desalination 2011, 268, 238–248. [Google Scholar] [CrossRef]
- Kouchaki Shalmani, A.; ElSherbiny, I.M.A.; Panglisch, S. Application-oriented mini-plant experiments using non-conventional model foulants to evaluate new hollow fiber membrane materials. Sep. Purif. Technol. 2020, 251, 117345. [Google Scholar] [CrossRef]
- Wang, F.; Dong, B.; Ke, N.; Yang, M.; Qian, R.; Wang, J.; Yu, J.; Hao, L.; Yin, L.; Xu, X.; et al. Superhydrophobic β-Sialon-mullite ceramic membranes with high performance in water treatment. Ceram. Int. 2021, 47, 8375–8381. [Google Scholar] [CrossRef]
- Bao, J.; Li, H.; Xu, Y.; Chen, S.; Wang, Z.; Jiang, C.; Li, H.; Wei, Z.; Sun, S.; Zhao, W.; et al. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria. J. Mater. Sci. Technol. 2021, 78, 131–143. [Google Scholar] [CrossRef]
- Egidi, G.; Salvati, L.; Vinci, S. The long way to tipperary: City size and worldwide urban population trends, 1950–2030. Sustain. Cities Soc. 2020, 60, 102148. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Z.; Zhang, M.; Ding, G.; Zhao, B.; Wang, L.; Zhang, H. Biological membrane fouling control with the integrated and separated processes of MIEX and UF. Sep. Purif. Technol. 2021, 259, 118151. [Google Scholar] [CrossRef]
- Chew, C.M.; Aroua, M.K.; Hussain, M.A.; Ismail, W.M.Z.W. Practical performance analysis of an industrial-scale ultrafiltration membrane water treatment plant. J. Taiwan Inst. Chem. Eng. 2015, 46, 132–139. [Google Scholar] [CrossRef]
- Fan, G.; Li, Z.; Yan, Z.; Wei, Z.; Xiao, Y.; Chen, S.; Shangguan, H.; Lin, H.; Chang, H. Operating parameters optimization of combined UF/NF dual-membrane process for brackish water treatment and its application performance in municipal drinking water treatment plant. J. Water Process Eng. 2020, 38, 101547. [Google Scholar] [CrossRef]
- Yu, H.; Li, X.; Chang, H.; Zhou, Z.; Zhang, T.; Yang, Y.; Li, G.; Ji, H.; Cai, C.; Liang, H. Performance of hollow fiber ultrafiltration membrane in a full-scale drinking water treatment plant in China: A systematic evaluation during 7-year operation. J. Memb. Sci. 2020, 613, 118469. [Google Scholar] [CrossRef]
- Pearce, G.K. UF/MF Membrane Water Treatment: Principles and Design; Water Treatment Academy Bangkok: Bangkok, Thailand, 2011; ISBN 6169083638. [Google Scholar]
- Chew, C.M.; Aroua, M.K.; Hussain, M.A. A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant. J. Ind. Eng. Chem. 2017, 45, 145–155. [Google Scholar] [CrossRef]
- Bonnélye, V.; Guey, L.; Del Castillo, J. UF/MF as RO pre-treatment: The real benefit. Desalination 2008, 222, 59–65. [Google Scholar] [CrossRef]
- Koseoglu, H.; Guler, E.; Harman, B.I.; Gonulsuz, E. Water flux and reverse salt flux. In Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation; Sarp, S., Hilal, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 57–86. ISBN 9780444639615. [Google Scholar]
- Vela, M.C.V.; Blanco, S.Á.; García, J.L.; Rodríguez, E.B. Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Sep. Purif. Technol. 2008, 62, 489–498. [Google Scholar] [CrossRef]
- Iritani, E. A Review on Modeling of Pore-Blocking Behaviors of Membranes During Pressurized Membrane Filtration. Dry. Technol. 2013, 31, 146–162. [Google Scholar] [CrossRef]
- Alvarado, C.; Farris, K.; Kilduff, J. Membrane Fouling, Modelling and Recent Developments for Mitigation; Elsevier: Amsterdam, The Netherlands, 2016; Available online: https://doi.org/10.1016/B978-0-444-63312-5.00017-6 (accessed on 17 October 2021).
- Ying, Y.; Ying, W.; Li, Q.; Meng, D.; Ren, G.; Yan, R.; Peng, X. Recent advances of nanomaterial-based membrane for water purification. Appl. Mater. Today 2017, 7, 144–158. [Google Scholar] [CrossRef]
- Yong, L.; Wahab, A.; Peng, C.; Hilal, N. Polymeric membranes incorporated with metal / metal oxide nanoparticles: A comprehensive review. DES 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Junaidi, N.F.D.; Othman, N.H.; Fuzil, N.S.; Mat Shayuti, M.S.; Alias, N.H.; Shahruddin, M.Z.; Marpani, F.; Lau, W.J.; Ismail, A.F.; Aba, N.F.D. Recent development of graphene oxide-based membranes for oil–water separation: A review. Sep. Purif. Technol. 2021, 258, 118000. [Google Scholar] [CrossRef]
- Wen, Y.; Yuan, J.; Ma, X.; Wang, S.; Liu, Y. Polymeric nanocomposite membranes for water treatment: A review. Environ. Chem. Lett. 2019, 17, 1539–1551. [Google Scholar] [CrossRef]
- Pervez, M.N.; Balakrishnan, M.; Hasan, S.W.; Choo, K.H.; Zhao, Y.; Cai, Y.; Zarra, T.; Belgiorno, V.; Naddeo, V. A critical review on nanomaterials membrane bioreactor (NMS-MBR) for wastewater treatment. npj Clean Water 2020, 3, 43. [Google Scholar] [CrossRef]
- Abadikhah, H.; Kalali, E.N.; Behzadi, S.; Khan, S.A.; Xu, X.; Agathopoulos, S. Amino functionalized silica nanoparticles incorporated thin film nanocomposite membrane with suppressed aggregation and high desalination performance. Polymer (Guildf) 2018, 154, 200–209. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Ray, S.S.; Bakshi, H.S.; Dangayach, R.; Singh, R.; Deb, C.K.; Ganesapillai, M.; Chen, S.S.; Purkait, M.K. Recent developments in nanomaterials-modified membranes for improved membrane distillation performance. Membranes (Basel) 2020, 10, 140. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, S. A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: Pretreatment, membrane modification, and chemical cleaning. Desalin. Water Treat. 2015, 55, 870–891. [Google Scholar] [CrossRef]
- Badruzzaman, M.; Voutchkov, N.; Weinrich, L.; Jacangelo, J.G. Selection of pretreatment technologies for seawater reverse osmosis plants: A review. Desalination 2019, 449, 78–91. [Google Scholar] [CrossRef]
- Liu, T.; Lian, Y.; Graham, N.; Yu, W.; Rooney, D.; Sun, K. Application of polyacrylamide flocculation with and without alum coagulation for mitigating ultrafiltration membrane fouling: Role of floc structure and bacterial activity. Chem. Eng. J. 2017, 307, 41–48. [Google Scholar] [CrossRef]
- Song, Y.; Dong, B.; Gao, N.; Ma, X. Powder activated carbon pretreatment of a microfiltration membrane for the treatment of surface water. Int. J. Environ. Res. Public Health 2015, 12, 11269–11277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, F.; Gao, B.; Shen, X.; Wang, W.; Yue, Q. The combination of coagulation and ozonation as a pre-treatment of ultrafiltration in water treatment. Chemosphere 2019, 231, 349–356. [Google Scholar] [CrossRef]
- Fan, X.; Tao, Y.; Wang, L.; Zhang, X.; Lei, Y.; Wang, Z.; Noguchi, H. Performance of an integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water. Desalination 2014, 335, 47–54. [Google Scholar] [CrossRef]
- McAdam, E.J.; Judd, S.J. A review of membrane bioreactor potential for nitrate removal from drinking water. Desalination 2006, 196, 135–148. [Google Scholar] [CrossRef]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Kalboussi, N.; Harmand, J.; Rapaport, A.; Bayen, T.; Ellouze, F.; Ben Amar, N. Optimal control of physical backwash strategy—Towards the enhancement of membrane filtration process performance. J. Memb. Sci. 2018, 545, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, K.L.; Bram, M.V.; Hansen, L.; Yang, Z.; Lauridsen, S.M.Ø. Online backwash optimization of membrane filtration for produced water treatment. Membranes (Basel) 2019, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.P.; Kim, S.L.; Ting, Y.P. Optimization of membrane physical and chemical cleaning by a statistically designed approach. J. Memb. Sci. 2003, 219, 27–45. [Google Scholar] [CrossRef]
- Porcelli, N.; Judd, S. Chemical cleaning of potable water membranes: A review. Sep. Purif. Technol. 2010, 71, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.C.T.; Lee, D.J.; Huang, C. Membrane fouling mitigation: Membrane cleaning. Sep. Sci. Technol. 2010, 45, 858–872. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Samieirad, S. Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 2010, 257, 80–86. [Google Scholar] [CrossRef]
- Filloux, E.; Wang, J.; Pidou, M.; Gernjak, W.; Yuan, Z. Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. J. Memb. Sci. 2015, 495, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Meng, L.; Zhao, Q.B.; Shi, Y.; Hu, H.Y.; Lu, Y. Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation. Water Res. 2017, 113, 1–10. [Google Scholar] [CrossRef]
- Mo, L.; Huang, X. Fouling characteristics and cleaning strategies in a coagulation-microfiltration combination process for water purification. Desalination 2003, 159, 1–9. [Google Scholar] [CrossRef]
- Morittu, V.M.; Mastellone, V.; Tundis, R.; Loizzo, M.R.; Tudisco, R.; Figoli, A.; Cassano, A.; Musco, N.; Britti, D.; Infascelli, F.; et al. Antioxidant, biochemical, and in-life effects of Punica granatum L. Natural Juice vs. Clarified juice by polyvinylidene fluoride membrane. Foods 2020, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Shim, I.; Zhan, M. Chemical enhanced backwashing for controlling organic fouling in drinkingwater treatment using a novel hollow-fiber polyacrylonitrile nanofiltration membrane. Appl. Sci. 2021, 11, 6764. [Google Scholar] [CrossRef]
- Li, Y.; Luo, J.; Wan, Y. Biofouling in sugarcane juice refining by nanofiltration membrane: Fouling mechanism and cleaning. J. Memb. Sci. 2020, 612, 118432. [Google Scholar] [CrossRef]
- Lee, H.; Amy, G.; Cho, J.; Yoon, Y.; Moon, S.H.; Kim, I.S. Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Res. 2001, 35, 3301–3308. [Google Scholar] [CrossRef]
- Nilusha, R.T.; Wang, T.; Wang, H.; Yu, D.; Zhang, J.; Wei, Y. Optimization of in situ backwashing frequency for stable operation of anaerobic ceramic membrane bioreactor. Processes 2020, 8, 545. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Mohamamdi, T.; Moghadam, M.K. Chemical cleaning of reverse osmosis membranes. Desalination 2001, 134, 77–82. [Google Scholar] [CrossRef]
- Alresheedi, M.T.; Barbeau, B.; Basu, O.D. Comparisons of NOM fouling and cleaning of ceramic and polymeric membranes during water treatment. Sep. Purif. Technol. 2019, 209, 452–460. [Google Scholar] [CrossRef]
- Khan, I.A.; Lee, Y.S.; Kim, J.O. Identification of scaling during clean-in-place (CIP) in membrane water treatment process. Chemosphere 2019, 237, 124398. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Z.; Wu, Y.; Xu, A.; Liu, J.; Hu, H.Y. Identification of development potentials and routes of wastewater treatment and reuse for Asian countries by key influential factors and prediction models. Resour. Conserv. Recycl. 2021, 168, 105259. [Google Scholar] [CrossRef]
- Sheng, J.; Tang, W. Spatiotemporal variation patterns of water pollution drivers: The case of China’s south-north water transfer project. Sci. Total Environ. 2021, 761, 143190. [Google Scholar] [CrossRef]
- Al Aani, S.; Wright, C.J.; Hilal, N. Investigation of UF membranes fouling and potentials as pre-treatment step in desalination and surface water applications. Desalination 2018, 432, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P.H.; Siverns, S.; Monti, S. UF membranes for RO desalination pretreatment. Desalination 2005, 182, 293–300. [Google Scholar] [CrossRef]
- Schäfer, A.I.; Hughes, G.; Richards, B.S. Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries? Renew. Sustain. Energy Rev. 2014, 40, 542–556. [Google Scholar] [CrossRef]
- Muriu-Ng’ang’a, F.W.; Mucheru-Muna, M.; Waswa, F.; Mairura, F.S. Socio-economic factors influencing utilisation of rain water harvesting and saving technologies in Tharaka South, Eastern Kenya. Agric. Water Manag. 2017, 194, 150–159. [Google Scholar] [CrossRef]
- Kaya, C.; Sert, G.; Kabay, N.; Arda, M.; Yüksel, M.; Egemen, Ö. Pre-treatment with nanofiltration (NF) in seawater desalination-Preliminary integrated membrane tests in Urla, Turkey. Desalination 2015, 369, 10–17. [Google Scholar] [CrossRef]
- Farid, M.U.; Kharraz, J.A.; Wang, P.; An, A.K. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane. J. Clean. Prod. 2020, 271, 122684. [Google Scholar] [CrossRef]
- Chew, C.M.; David Ng, K.M. Feasibility of solar-powered ultrafiltration membrane water treatment systems for rural water supply in Malaysia. Water Sci. Technol. Water Supply 2019, 19, 1758–1766. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Ismail, A.F.; Lau, W.J. Insights into metal-organic frameworks-integrated membranes for desalination process: A review. Desalination 2021, 500, 114867. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F. A review on inorganic membranes for desalination and wastewater treatment. Desalination 2018, 434, 60–80. [Google Scholar] [CrossRef]
- Park, H.M.; Yoo, J.; Lee, Y.T. Improved fouling resistance for RO membranes by a surface modification method. J. Ind. Eng. Chem. 2019, 76, 344–354. [Google Scholar] [CrossRef]
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Davies, J.M.; Mazumder, A. Health and environmental policy issues in Canada: The role of watershed management in sustaining clean drinking water quality at surface sources. J. Environ. Manage. 2003, 68, 273–286. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, H.; Bai, L.; Huang, K.; Xie, B.; Xu, D.; Wang, J.; Li, G.; Tang, X. Application of heat-activated peroxydisulfate pre-oxidation for degrading contaminants and mitigating ultrafiltration membrane fouling in the natural surface water treatment. Water Res. 2020, 179, 115905. [Google Scholar] [CrossRef]
- Ab Razak, N.H.; Praveena, S.M.; Aris, A.Z.; Hashim, Z. Drinking water studies: A review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). J. Epidemiol. Glob. Health 2015, 5, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Molelekwa, G.F.; Mukhola, M.S.; Van Der Bruggen, B.; Luis, P. Preliminary studies on membrane filtration for the production of potable water: A case of Tshaanda rural village in South Africa. PLoS One 2014, 9, e105057. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Venkateshwarlu, N.; Nageswara Rao, R.; Bhattacharjee, C.; Kale, V. Potable water production from pesticide contaminated surface water-A membrane based approach. Desalination 2007, 204, 368–373. [Google Scholar] [CrossRef]
- Harisha, R.S.; Hosamani, K.M.; Keri, R.S.; Nataraj, S.K.; Aminabhavi, T.M. Arsenic removal from drinking water using thin film composite nanofiltration membrane. Desalination 2010, 252, 75–80. [Google Scholar] [CrossRef]
- Arnal, J.M.; García-Fayos, B.; Sancho, M.; Verdú, G.; Lora, J. Design and installation of a decentralized drinking water system based on ultrafiltration in Mozambique. Desalination 2010, 250, 613–617. [Google Scholar] [CrossRef]
- Brião, V.B.; Magoga, J.; Hemkemeier, M.; Brião, E.B.; Girardelli, L.; Sbeghen, L.; Favaretto, D.P.C. Reverse osmosis for desalination of water from the Guarani Aquifer System to produce drinking water in southern Brazil. Desalination 2014, 344, 402–411. [Google Scholar] [CrossRef]
- Finansyah, R.W.; Hadi, W. Appropriate Desalination Technology, Focusing for Low Income Communities Drinking Water in Indonesia. World Appl. Sci. J. 2009, 7, 1188–1194. [Google Scholar]
- Duong, H.C.; Tran, L.T.T.; Truong, H.T.; Nelemans, B. Seawater membrane distillation desalination for potable water provision on remote islands − A case study in Vietnam. Case Stud. Chem. Environ. Eng. 2021, 4, 100110. [Google Scholar] [CrossRef]
- Hung, D.C.; Nguyen, N.C. Membrane processes and their potential applications for fresh water provision in Vietnam. Vietnam J. Chem. 2017, 55, 533. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Gassara, S.; Bui, M.Q.; Zaviska, F.; Sistat, P.; Deratani, A. Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration. Environ. Sci. Pollut. Res. 2019, 26, 32687–32697. [Google Scholar] [CrossRef]
- Francis, M.R.; Sarkar, R.; Roy, S.; Jaffar, S.; Mohan, V.R.; Kang, G.; Balraj, V. Effectiveness of membrane filtration to improve drinking water: A quasi-experimental study from rural southern India. Am. J. Trop. Med. Hyg. 2016, 95, 1192–1200. [Google Scholar] [CrossRef] [Green Version]
- Sartor, M.; Schlichter, B.; Gatjal, H.; Mavrov, V. Demonstration of a new hybrid process for the decentralised drinking and service water production from surface water in Thailand. Desalination 2008, 222, 528–540. [Google Scholar] [CrossRef]
- Cooray, T.; Wei, Y.; Zhang, J.; Zheng, L.; Zhong, H.; Weragoda, S.K.; Weerasooriya, R. Drinking-Water supply for CKDu affected areas of Sri Lanka, using nanofiltration membrane technology: From laboratory to practice. Water (Switzerland) 2019, 11, 2512. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Nan, J.; Liu, R.; Li, G. Study of drinking water treatment by ultrafiltration of surfacewater and its application to China. Desalination 2004, 170, 41–47. [Google Scholar] [CrossRef]
- Pryor, M.J.; Jacobs, E.P.; Botes, J.P.; Pillay, V.L. A low pressure ultrafiltration membrane system for potable water supply to developing communities in South Africa. Desalination 1998, 119, 103–111. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Dudek, M.; Qin, J.; Oye, G.; Osterhus, S.W. A multivariate study of backpulsing for membrane fouling mitigation in produced water treatment. J. Environ. Chem. Eng. 2021, 9, 104839. [Google Scholar] [CrossRef]
- Wang, Y. Urban land and sustainable resource use: Unpacking the countervailing effects of urbanization on water use in China, 1990–2014. Land Use Policy 2020, 90, 104307. [Google Scholar] [CrossRef]
- Sousa, V.S.; Ribau Teixeira, M. Conventional water treatment improvement through enhanced conventional and hybrid membrane processes to remove Ag, CuO and TiO2 nanoparticles mixture in surface waters. Sep. Purif. Technol. 2020, 248, 117047. [Google Scholar] [CrossRef]
- de Souza, F.H.; Roecker, P.B.; Silveira, D.D.; Sens, M.L.; Campos, L.C. Influence of slow sand filter cleaning process type on filter media biomass: Backwashing versus scraping. Water Res. 2021, 189, 116581. [Google Scholar] [CrossRef]
- Anwar, S.; Cooray, A. Financial flows and per capita income in developing countries. Int. Rev. Econ. Financ. 2015, 35, 304–314. [Google Scholar] [CrossRef]
- Libey, A.; Adank, M.; Thomas, E. Who pays for water? Comparing life cycle costs of water services among several low, medium and high-income utilities. World Dev. 2020, 136, 105155. [Google Scholar] [CrossRef]
- Fuente, D. The design and evaluation of water tariffs: A systematic review. Util. Policy 2019, 61, 100975. [Google Scholar] [CrossRef]
- Sanchez, G.M.; Terando, A.; Smith, J.W.; García, A.M.; Wagner, C.R.; Meentemeyer, R.K. Forecasting water demand across a rapidly urbanizing region. Sci. Total Environ. 2020, 730, 139050. [Google Scholar] [CrossRef]
- Fitriani, N.; Kusuma, M.N.; Wirjodirdjo, B.; Hadi, W.; Hermana, J.; Kurniawan, S.B.; Abdullah, S.R.S.; Mohamed, R.M.S.R. Performance of geotextile-based slow sand filter media in removing total coli for drinking water treatment using system dynamics modelling. Heliyon 2020, 6, e04967. [Google Scholar] [CrossRef]
- Kang, Y.; Jiao, S.; Zhao, Y.; Wang, B.; Zhang, Z.; Yin, W.; Tan, Y.; Pang, G. High-flux and high rejection TiO2 nanofibers ultrafiltration membrane with porous titanium as supporter. Sep. Purif. Technol. 2020, 248, 117000. [Google Scholar] [CrossRef]
- Grossi, L.B.; Magalhães, N.C.; Araújo, B.M.; De Carvalho, F.; Andrade, L.H.; Amaral, M.C.S. Water conservation in mining industry by integrating pressure-oriented membrane processes for nitrogen-contaminated wastewater treatment: Bench and pilot-scale studies. J. Environ. Chem. Eng. 2021, 9. [Google Scholar] [CrossRef]
- Sampaio, P.R.P.; Sampaio, R.S.R. The challenges of regulating water and sanitation tariffs under a three-level shared-authority federalism model: The case of Brazil. Util. Policy 2020, 64, 101049. [Google Scholar] [CrossRef]
- Bouhadjar, S.I.; Kopp, H.; Britsch, P.; Deowan, S.A.; Hoinkis, J.; Bundschuh, J. Solar powered nanofiltration for drinking water production from fluoride-containing groundwater—A pilot study towards developing a sustainable and low-cost treatment plant. J. Environ. Manage. 2019, 231, 1263–1269. [Google Scholar] [CrossRef]
- Stoquart, C.; Servais, P.; Bérubé, P.R.; Barbeau, B. Hybrid Membrane Processes using activated carbon treatment for drinking water: A review. J. Memb. Sci. 2012, 411–412, 1–12. [Google Scholar] [CrossRef]
- Touati, K.; Usman, H.S.; Mulligan, C.N.; Rahaman, M.S. Energetic and economic feasibility of a combined membrane-based process for sustainable water and energy systems. Appl. Energy 2020, 264, 114699. [Google Scholar] [CrossRef]
- Sharif, A.; Meo, M.S.; Chowdhury, M.A.F.; Sohag, K. Role of solar energy in reducing ecological footprints: An empirical analysis. J. Clean. Prod. 2021, 292, 126028. [Google Scholar] [CrossRef]
- Otanicar, T.P.; Wingert, R.; Orosz, M.; McPheeters, C. Concentrating photovoltaic retrofit for existing parabolic trough solar collectors: Design, experiments, and levelized cost of electricity. Appl. Energy 2020, 265, 114751. [Google Scholar] [CrossRef]
- Pichel, N.; Vivar, M.; Fuentes, M.; Eugenio-Cruz, K. Study of a hybrid photovoltaic-photochemical technology for meeting the needs of safe drinking water and electricity in developing countries: First field trial in rural Mexico. J. Water Process Eng. 2020, 33, 101056. [Google Scholar] [CrossRef]
- Chaidez, C.; Ibarra-Rodríguez, J.R.; Valdez-Torres, J.B.; Soto, M.; Gerba, C.P.; Castro-del Campo, N. Point-of-use Unit Based on Gravity Ultrafiltration Removes Waterborne Gastrointestinal Pathogens from Untreated Water Sources in Rural Communities. Wilderness Environ. Med. 2016, 27, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Lv, M.; Zhang, Z.; Zeng, J.; Liu, J.; Sun, M.; Yadav, R.S.; Feng, Y. Roles of magnetic particles in magnetic seeding coagulation-flocculation process for surface water treatment. Sep. Purif. Technol. 2019, 212, 337–343. [Google Scholar] [CrossRef]
- Morton, P.A.; Cassidy, R.; Floyd, S.; Doody, D.G.; McRoberts, W.C.; Jordan, P. Approaches to herbicide (MCPA) pollution mitigation in drinking water source catchments using enhanced space and time monitoring. Sci. Total Environ. 2021, 755, 142827. [Google Scholar] [CrossRef]
- Ma, C.; Wang, L.; Li, S.; Heijman, S.G.J.; Rietveld, L.C.; Su, X.B. Practical experience of backwashing with RO permeate for UF fouling control treating surface water at low temperatures. Sep. Purif. Technol. 2013, 119, 136–142. [Google Scholar] [CrossRef]
- Li, F.; Li, S. The impact of cross-subsidies on utility service quality in developing countries. Econ. Model. 2018, 68, 217–228. [Google Scholar] [CrossRef]
- Pianta, R.; Boller, M.; Urfer, D.; Chappaz, A.; Gmünder, A. Costs of conventional vs. membrane treatment for karstic spring water. Desalination 2000, 131, 245–255. [Google Scholar] [CrossRef]
- Chen, C. Can the pilot BOT Project provide a template for future projects? A case study of the Chengdu No. 6 Water Plant B Project. Int. J. Proj. Manag. 2009, 27, 573–583. [Google Scholar] [CrossRef]
- Koyuncu, I.; Sengur, R.; Turken, T.; Guclu, S.; Pasaoglu, M.E. Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. In Advances in Membrane Technologies for Water Treatment; Woodhead Publishing: Sawston, UK, 2015; Volume 2019, pp. 83–128. [Google Scholar] [CrossRef]
- Shenvi, S.S.; Isloor, A.M.; Ismail, A.F. A review on RO membrane technology: Developments and challenges. Desalination 2015, 368, 10–26. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Fane, A.G.; Tang, C.Y.; Wenten, I.G. Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: A review. Desalin. Water Treat. 2013, 51, 3604–3627. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.; Jian, M.; Lin, T.; Ma, B.; Wu, R.; Li, X. A novel strategy to alleviate ultrafiltration membrane fouling by rotating membrane module. Chemosphere 2020, 260, 127535. [Google Scholar] [CrossRef]
- Jaffrin, M.Y. Dynamic filtration with rotating disks, and rotating and vibrating membranes: An update. Curr. Opin. Chem. Eng. 2012, 1, 171–177. [Google Scholar] [CrossRef]
- Bilad, M.R.; Mezohegyi, G.; Declerck, P.; Vankelecom, I.F.J. Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors. Water Res. 2012, 46, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xu, X.; Zhao, C.; Yang, F. A new helical membrane module for increasing permeate flux. J. Memb. Sci. 2010, 360, 142–148. [Google Scholar] [CrossRef]
- Barambu, N.U.; Bilad, M.R.; Wibisono, Y.; Jaafar, J.; Mahlia, T.M.I.; Khan, A.L. Membrane surface patterning as a fouling mitigation strategy in liquid filtration: A review. Polymers (Basel) 2019, 11, 1687. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Tan, W.S.; An, J.; Chua, C.K.; Tang, C.Y.; Fane, A.G.; Chong, T.H. The potential to enhance membrane module design with 3D printing technology. J. Memb. Sci. 2016, 499, 480–490. [Google Scholar] [CrossRef]
- Ghaffour, N.; Bundschuh, J.; Mahmoudi, H.; Goosen, M.F.A. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination 2015, 356, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Elmaadawy, K.; Kotb, K.M.; Elkadeem, M.R.; Sharshir, S.W.; Dán, A.; Moawad, A.; Liu, B. Optimal sizing and techno-enviro-economic feasibility assessment of large-scale reverse osmosis desalination powered with hybrid renewable energy sources. Energy Convers. Manag. 2020, 224, 113377. [Google Scholar] [CrossRef]
- Li, S.; de Carvalho, A.P.S.G.; Schäfer, A.I.; Richards, B.S. Renewable energy powered membrane technology: Electrical energy storage options for a photovoltaic-powered brackish water desalination system. Appl. Sci. 2021, 11, 856. [Google Scholar] [CrossRef]
- Ray, S.S.; Chen, S.S.; Sangeetha, D.; Chang, H.M.; Thanh, C.N.D.; Le, Q.H.; Ku, H.M. Developments in forward osmosis and membrane distillation for desalination of waters. Environ. Chem. Lett. 2018, 16, 1247–1265. [Google Scholar] [CrossRef]
- Ray, S.S.; Chen, S.S.; Nguyen, N.C.; Nguyen, H.T.; Li, C.W.; Wang, J.; Yan, B. Forward osmosis desalination by utilizing chlorhexidine gluconate based mouthwash as a reusable draw solute. Chem. Eng. J. 2016, 304, 962–969. [Google Scholar] [CrossRef]
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Forward osmosis technology for water treatment: Recent advances and future perspectives. J. Clean. Prod. 2021, 280, 124354. [Google Scholar] [CrossRef]
- Mohammadifakhr, M.; de Grooth, J.; Roesink, H.D.; Kemperman, A.J. Forward osmosis: A critical review. Processes 2020, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Sanmartino, J.A.; Khayet, M.; García-Payo, M.C. Desalination by Membrane Distillation; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780444633125. [Google Scholar]
- Tow, E.W.; Warsinger, D.M.; Trueworthy, A.M.; Swaminathan, J.; Thiel, G.P.; Zubair, S.M.; Myerson, A.S. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. J. Memb. Sci. 2018, 556, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Xevgenos, D.; Moustakas, K.; Malamis, D.; Loizidou, M. An overview on desalination & sustainability: Renewable energy-driven desalination and brine management. Desalin. Water Treat. 2016, 57, 2304–2314. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, M.; Lee, W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Sci. Total Environ. 2019, 681, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Mani, P.; Madhusudanan, M. Zero liquid discharge scheme in a common effluent treatment plant for textile Industries in Tamilnadu, India. Nat. Environ. Pollut. Technol. 2014, 13, 769–774. [Google Scholar]
- Linares, R.V.; Francis, L. Case Study: Oasys Water-forward Osmosis; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780444639615. [Google Scholar]
Fouling Type | Chemical Cleaning and Findings | Ref |
---|---|---|
Municipal wastewater: Organic, inorganic and biofouling and microbial | NaOH-EDTA-SDS alkaline treatment and citric acid (pH 2) treatment. 70% of membrane foulants were removed by cleaning. Bacteria with excessive extracellular polymeric substance (EPS) such as Pseudomonas and Zoogloea were more resistant to chemical cleaning | [101] |
Surface water: Organic, inorganic and biofouling | 2% HCl and caustic 2% NaClO. Alkaline cleaning removed most of the microorganisms and organic foulants on both membrane’s external and inner surfaces. Acidic cleaning effectively removed the inorganic scales. | [102] |
P. granatum (pomegranate) juice | 1%w/w P3 Ultrasil 53 solution (a neutral enzymatic powder containing organic and inorganic surfactants). 90–95% of the initial water permeability was recovered | [103] |
Humic acid and Sodium alginate mixture: Organic fouling | sodium hypochlorite (NaClO). Concentration as low as 1 mg/L and backwash time 30 s leads to flux recovery of 92.1%. | [104] |
Sugarcane juice: biofouling | Acidic, alkaline, protease (i.e., trypsin), dextranase and lysozyme solutions. The use of enzymatic dextranase cleaning to degrade dextran foulant layer prior alkaline cleaning leads better removal rate. | [105] |
Surface water and ground water with NOM: Organic fouling | 0.1 M Citric acid, 0.1 M caustic NaOH, and 0.001 M surfactant SDS. Surfactant was not effective to remove high NOM content. High cross-flow velocity and longer cleaning time influenced the efficiency of caustic cleaning. | [106] |
Domestic wastewater: Organic and biofouling | NaOCl and citric acid as the order. The organic foulants such as FA and HA and microbes (proteobacteria, Firmucutes, Epsilon bacteria and Bacteroides) were effectively removed by NaOCl | [107] |
Boiler water: Inorganic fouling | HCl, H2SO4, H3PO4, nitric acid, citric acid, NaOH, potassium, EDTA, SDS and commercial dish washing detergents | [108] |
Country | Water Source | Membrane System | Pre-Treatment (Capacity) | Conclusions | Ref |
---|---|---|---|---|---|
Malaysia | Surface water and Groundwater | UF | Nil (15,536 MLD) | Effective at removing heavy metals (Cr, Cd, Zn, Cu, Ni, and Pb from 92% to 100%) but expensive. | [126] |
Turkey | Seawater | RO and NF-Desalination | NF (Not available) | NF could be an ideal pre-treatment step for the SWRO desalination to improve permeate flux and recovery by eliminating the scaling problem and reducing the cost of the desalination process | [117] |
South Africa | Groundwater | Gravity driven UF | -Nil (5000 L/d) | The microbiological quality of the permeate was acceptable, and the integrity of the filtration membrane was still maintained after ten months. Total coliform removal (2419.2 to 7 cfu/100 mL) and E. coli and Enterococc: Complete removal | [127] |
South Africa | Borehole Water | RO Denitrification and Desalination | 3 dual media sand filters using 2.5-μm cartridge filter (50 m3/d) | RO effectively for water denitrification in a rural setting. Nitrate–nitrogen (reduced from 42.5 to 0.9 mg/L) and TDS of RO (reduced from 1292 to 24 mg/L) | [52] |
India | Pesticide contaminated surface water | NF and RO | Coagulation and Adsorption (Not available) | Needs a pre-treatment to produce drinking water. NF reduced hardness, COD, TOC, and completely removed microbial content. | [128] |
India | Arsenic contaminated water | NF | Nil (Not available) | NF remove arsenic (99.80%) following World Health Organization (WHO) level | [129] |
Mozambique | Freshwater | UF | Sand filter of 150 µm and 25µm (Not available) | Permeate flux remained constant and post-chlorination is required at the permeate tank prior to the distribution point to ensure suitable microbiological criteria. | [130] |
Brazil | Brackish Water | RO-Desalination | Nil (Not available) | The desalinated water showed rejections ~ 94% for SO42−, 97% for TDS and 100% for F−. | [131] |
Indonesia | Brackish Water | RO-Desalination | Degasifier, coagulation and dual-media filter (Not available) | The groundwater can be treated by RO powered using renewable energy or a simple desalination plant using solar still. Both technologies are efficient and cheap. Modularity allows for upgrades and minimizes operational interruptions when membrane under maintenance. | [132] |
Vietnam | Seawater | Air gap membrane distillation (AGMD) | MF HF (46 L/h) | The seawater AGMD desalination proved feasible for both technical and economic. Produce 46 L h−1 of high-quality distillate with specific energy consumption of 87 kWh·m−3 without any issue of membrane fouling and wetting when dealing with real seawater. | [133] |
Vietnam | Wastewater and Seawater | MF, UF, NF, RO, FO and MD | Filtration (Not available) | FO and MD can be used in small-scale systems at low expenses. A membrane offers compactness, system modularization, and lower energy consumption | [134] |
Vietnam | Surface Water | NF and ED hybrid process | Electrodialysis (Not available) | ED–NF is an effective alternative for small surface water treatment plants in rural Vietnam. The water quality generated was according VN guideline. | [135] |
Southern India | Membrane filtered water and household container water samples | Decentralized membrane filtration | Filtration (Not available) | Membrane filters helped reduce faecal coliform bacteria and decentralized water filtration infrastructure may be effective in places where the microbiological quality of water is not addressed correctly. Initial costs for installation and maintenance are affordable. | [136] |
Thailand | Freshwater | Ozonation (Submerged Ceramic MD and UF | AC filter with 50µm (5 m3/h) | This multi-stage process ensures efficient drinking water production free from viruses and pathogens. Due to low space requirements, compact treatment units for decentralised units are needed. | [137] |
Sri Lanka | Groundwater | Nanofiltration (NF) | Sand and AC filters, cation exchange resin, precision filter (20 m3/d) | The NF plant’s permeate water reduce hardness, fluoride, and DOC. Fulfils Sri Lankan drinking water requirements and is well approved by society’s stakeholders. | [138] |
China | Reservoir | Hollow fibre UF | Filtration (100,000 m3/d) | During the 7-year operation, the UF membrane was effective to avoid breakthrough of organic substance from microorganism metabolic activity. | [70] |
China | Raw Water | UF | Coagulation (Not available) | Effective turbidity and other metals removals, including total removal of coliform bacteria. Coagulation process is needed before UF for surface water with high turbidity and varying quality. | [139] |
South Africa | Surface Water | Low Pressure UF | Sand Filter (Not available) | UF produce quality potable water at low operating pressures ranging from 100 to 150 kPa hydrostatic pressure. Excellent removal of turbidity and no coliforms or faecal coliforms. | [140] |
UF Membrane System | Conventional Sand/Media System | |
---|---|---|
Construction/Capital Cost | Higher | Lower |
Operational Cost | Higher | Lower |
Maintenance Cost | Higher | Lower |
Land Requirement | Lower | Higher |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othman, N.H.; Alias, N.H.; Fuzil, N.S.; Marpani, F.; Shahruddin, M.Z.; Chew, C.M.; David Ng, K.M.; Lau, W.J.; Ismail, A.F. A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes 2022, 12, 30. https://doi.org/10.3390/membranes12010030
Othman NH, Alias NH, Fuzil NS, Marpani F, Shahruddin MZ, Chew CM, David Ng KM, Lau WJ, Ismail AF. A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes. 2022; 12(1):30. https://doi.org/10.3390/membranes12010030
Chicago/Turabian StyleOthman, Nur Hidayati, Nur Hashimah Alias, Nurul Syazana Fuzil, Fauziah Marpani, Munawar Zaman Shahruddin, Chun Ming Chew, Kam Meng David Ng, Woei Jye Lau, and Ahmad Fauzi Ismail. 2022. "A Review on the Use of Membrane Technology Systems in Developing Countries" Membranes 12, no. 1: 30. https://doi.org/10.3390/membranes12010030
APA StyleOthman, N. H., Alias, N. H., Fuzil, N. S., Marpani, F., Shahruddin, M. Z., Chew, C. M., David Ng, K. M., Lau, W. J., & Ismail, A. F. (2022). A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes, 12(1), 30. https://doi.org/10.3390/membranes12010030