Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Nelson K. Akafuah ORCID = 0000-0003-1069-7350

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4268 KiB  
Article
Energy and Environmental Analyses of a Solar–Gas Turbine Combined Cycle with Inlet Air Cooling
by Ahmad M. Abubaker, Adnan Darwish Ahmad, Binit B. Singh, Yaman M. Manaserh, Loiy Al-Ghussain, Nelson K. Akafuah and Kozo Saito
Sustainability 2024, 16(14), 6229; https://doi.org/10.3390/su16146229 - 21 Jul 2024
Cited by 1 | Viewed by 1546
Abstract
Sensitivity to ambient air temperatures, consuming a large amount of fuel, and wasting a significant amount of heat dumped into the ambient atmosphere are three major challenges facing gas turbine power plants. This study was conducted to simultaneously solve all three aforementioned GT [...] Read more.
Sensitivity to ambient air temperatures, consuming a large amount of fuel, and wasting a significant amount of heat dumped into the ambient atmosphere are three major challenges facing gas turbine power plants. This study was conducted to simultaneously solve all three aforementioned GT problems using solar energy and introducing a new configuration that consists of solar preheating and inlet-air-cooling systems. In this study, air was preheated at a combustion chamber inlet using parabolic trough collectors. Then, inlet air to the compressor was cooled by these collectors by operating an absorption cooling cycle. At the design point conditions, this novel proposed integration resulted in a 6.87% relative increase in generated power and a 10.53% relative decrement in fuel consumption, achieving a 19.45% relative increment in the plant’s thermal efficiency. This was accompanied by a reduction of 0.026 kg/s, 4.2 kg/s, and 0.278 kg/s in CO2, CO, and NOx emissions, respectively. Finally, spider diagrams were employed to assess the impact of the operating parameters on the overall system’s performance and its associated environmental implications. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

18 pages, 22405 KiB  
Article
Experimental and Mathematical Tools to Predict Droplet Size and Velocity Distribution for a Two-Fluid Nozzle
by Sadegh Poozesh, Nelson K. Akafuah, Heather R. Campbell, Faezeh Bashiri and Kozo Saito
Fluids 2020, 5(4), 231; https://doi.org/10.3390/fluids5040231 - 3 Dec 2020
Cited by 7 | Viewed by 8517
Abstract
Despite progress in laser-based and computational tools, an accessible model that relies on fundamentals and offers a reasonably accurate estimation of droplet size and velocity is lacking, primarily due to entangled complex breakup mechanisms. Therefore, this study aims at using the integral form [...] Read more.
Despite progress in laser-based and computational tools, an accessible model that relies on fundamentals and offers a reasonably accurate estimation of droplet size and velocity is lacking, primarily due to entangled complex breakup mechanisms. Therefore, this study aims at using the integral form of the conservation equations to create a system of equations by solving which, the far-field secondary atomization can be analyzed through predicting droplet size and velocity distributions of the involved phases. To validate the model predictions, experiments are conducted at ambient conditions using water, methanol, and acetone as model fluids with varying formulation properties, such as density, viscosity, and surface tension. Droplet size distribution and velocity are measured with laser diffraction and a high-speed camera, respectively. Finally, an attempt is made to utilize non-scaled parameters to characterize the atomization process, useful for extrapolating the sensitivity analysis to other scales. The merit of this model lies in its simplicity for use in process control and optimization. Full article
(This article belongs to the Special Issue Trends in Spray Atomization)
Show Figures

Figure 1

18 pages, 5611 KiB  
Article
100% Renewable Energy Grid for Rural Electrification of Remote Areas: A Case Study in Jordan
by Loiy Al-Ghussain, Mohammad Abujubbeh, Adnan Darwish Ahmad, Ahmad M. Abubaker, Onur Taylan, Murat Fahrioglu and Nelson K. Akafuah
Energies 2020, 13(18), 4908; https://doi.org/10.3390/en13184908 - 18 Sep 2020
Cited by 29 | Viewed by 6726
Abstract
Many developing countries suffer from high energy-import dependency and inadequate electrification of rural areas, which aggravates the poverty problem. In this work, Al-Tafilah in Jordan was considered as a case study, where the technical, economic, and environmental benefits of a decentralized hybrid renewable [...] Read more.
Many developing countries suffer from high energy-import dependency and inadequate electrification of rural areas, which aggravates the poverty problem. In this work, Al-Tafilah in Jordan was considered as a case study, where the technical, economic, and environmental benefits of a decentralized hybrid renewable energy system that can match 100% of the city demand were investigated. A tri-hybrid system of wind, solar, and hydropower was integrated with an energy storage system and optimized to maximize the match between the energy demand and production profiles. The optimization aimed at maximizing the renewable energy system (RES) fraction while keeping the levelized cost of electricity (LCOE) equal to the electricity purchase tariff. The techno-economic analysis showed that the optimal system in Al-Tafilah comprises a 28 MW wind system, 75.4 MW PV, and 1 MW hydropower, with a 259 MWh energy storage system, for which a RES fraction of 99% can be achieved, and 47,160 MtCO2 are avoided yearly. This study can be easily extended to other rural cities in Jordan, as they have higher renewable energy system (RES) potential. The presented findings are essential not only for Jordan’s planning and economy-boosting but also for contributing to the ongoing force against climate change. Full article
(This article belongs to the Special Issue Green Energy Technology)
Show Figures

Graphical abstract

24 pages, 4482 KiB  
Review
Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review
by Masoud Arabghahestani, Sadegh Poozesh and Nelson K. Akafuah
Appl. Sci. 2019, 9(19), 4041; https://doi.org/10.3390/app9194041 - 27 Sep 2019
Cited by 18 | Viewed by 5823
Abstract
Recently, remarkable developments have taken place, leading to significant improvements in microfluidic methods to capture subtle biological effects down to single cells. As microfluidic devices are getting sophisticated, design optimization through experimentations is becoming more challenging. As a result, numerical simulations have contributed [...] Read more.
Recently, remarkable developments have taken place, leading to significant improvements in microfluidic methods to capture subtle biological effects down to single cells. As microfluidic devices are getting sophisticated, design optimization through experimentations is becoming more challenging. As a result, numerical simulations have contributed to this trend by offering a better understanding of cellular microenvironments hydrodynamics and optimizing the functionality of the current/emerging designs. The need for new marketable designs with advantageous hydrodynamics invokes easier access to efficient as well as time-conservative numerical simulations to provide screening over cellular microenvironments, and to emulate physiological conditions with high accuracy. Therefore, an excerpt overview on how each numerical methodology and associated handling software works, and how they differ in handling underlying hydrodynamic of lab-on-chip microfluidic is crucial. These numerical means rely on molecular and continuum levels of numerical simulations. The current review aims to serve as a guideline for researchers in this area by presenting a comprehensive characterization of various relevant simulation techniques. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

19 pages, 3616 KiB  
Article
Spatial Positioning and Operating Parameters of a Rotary Bell Sprayer: 3D Mapping of Droplet Size Distributions
by Adnan Darwish Ahmad, Binit B. Singh, Mark Doerre, Ahmad M. Abubaker, Masoud Arabghahestani, Ahmad A. Salaimeh and Nelson K. Akafuah
Fluids 2019, 4(3), 165; https://doi.org/10.3390/fluids4030165 - 5 Sep 2019
Cited by 22 | Viewed by 6168
Abstract
In this study, we evaluated the fundamental physical behavior during droplet formation and flow from a rotary bell spray in the absence of an electrostatic field. The impact of a wide range of operating parameters of the rotary bell sprayer, such as flow [...] Read more.
In this study, we evaluated the fundamental physical behavior during droplet formation and flow from a rotary bell spray in the absence of an electrostatic field. The impact of a wide range of operating parameters of the rotary bell sprayer, such as flow rates, rotational speeds, and spatial positioning, on droplet sizes and size distributions using a three-dimensional (3-D) mapping was studied. The results showed that increasing the rotational speed caused the Sauter mean diameter of the droplets to decrease while increasing flow rate increased the droplet sizes. The rotational speed effect, however, was dominant compared to the effect of flow rate. An increase in droplet size radially away from the cup was noted in the vicinity of the cup, nevertheless, as the lateral distances from the cup and rotational speed were increased, the droplet sizes within the flow field became more uniform. This result is of importance for painting industries, which are looking for optimal target distances for uniform painting appearance. Furthermore, the theoretical formulation was validated with experimental data, which provides a wider range of applicability in terms of environment and parameters that could be tested. This work also provides an abundance of measurements, which can serve as a database for the validation of future droplet disintegration simulations. Full article
Show Figures

Graphical abstract

5 pages, 194 KiB  
Article
Reduction of Order: Analytical Solution of Film Formation in the Electrostatic Rotary Bell Sprayer
by Mark Doerre and Nelson K. Akafuah
Symmetry 2019, 11(7), 937; https://doi.org/10.3390/sym11070937 - 18 Jul 2019
Cited by 2 | Viewed by 3887
Abstract
This brief paper explains the slight differences in governing equations for a fluid film in a spinning cone, and the mechanism that reduces the order of a solution. Spinning cones with a centrally supplied fluid that spreads over its inner surface as a [...] Read more.
This brief paper explains the slight differences in governing equations for a fluid film in a spinning cone, and the mechanism that reduces the order of a solution. Spinning cones with a centrally supplied fluid that spreads over its inner surface as a thin film have been the subject of interest for many years. Though often cast as a mathematical analysis, understanding this process is important, especially in the application of automotive painting. The analysis consists of a system of equations obtained from the Navier–Stokes equations along with simple boundary conditions that describe radial and tangential momentum conservation. Solutions to this system of equations are shown using several techniques. The connection between these techniques is slightly subtle. However, the conditions that enable reduction of order are clear once they are exposed. Directional velocity profiles in the film can be a combination of four roots in the complex plane. This system of roots also contains two diagonal axes of symmetry that are offset by 90 degrees. Alternatively, if the radial and tangential velocity profiles are expressed as a single complex function, a reduced order solution that is a combination of one set of diagonal set of roots can be found. Full article
16 pages, 2929 KiB  
Review
Advances in Automotive Conversion Coatings during Pretreatment of the Body Structure: A Review
by Mark Doerre, Larry Hibbitts, Gabriela Patrick and Nelson K. Akafuah
Coatings 2018, 8(11), 405; https://doi.org/10.3390/coatings8110405 - 15 Nov 2018
Cited by 66 | Viewed by 20428
Abstract
Automotive conversion coatings consist of layers of materials that are chemically applied to the body structures of vehicles before painting to improve corrosion protection and paint adhesion. These coatings are a consequence of surface-based chemical reactions and are sandwiched between paint layers and [...] Read more.
Automotive conversion coatings consist of layers of materials that are chemically applied to the body structures of vehicles before painting to improve corrosion protection and paint adhesion. These coatings are a consequence of surface-based chemical reactions and are sandwiched between paint layers and the base metal; the chemical reactions involved distinctly classify conversion coatings from other coating technologies. Although the tri-cationic conversion coating bath chemistry that was developed around the end of the 20th century remains persistent, environmental, health, and cost issues favor a new generation of greener methods and materials such as zirconium. Environmental forces driving lightweight material selection during automobile body design are possibly more influential for transitioning to zirconium than the concerns regarding the body coating process. The chemistry involved in some conversion coatings processing has been known for over 100 years. However, recent advances in chemical processing, changes in the components used for vehicle body structures, environmental considerations and costs have prompted the automobile industry to embrace new conversion coatings technologies. These are discussed herein along with a historical perspective that has led to the use of current conversion coatings technologies. In addition, future directions for automobile body conversion coatings are discussed that may affect conversion coatings in the age of multi-material body structures. Full article
Show Figures

Figure 1

13 pages, 7683 KiB  
Article
Schlieren Visualization of Shaping Air during Operation of an Electrostatic Rotary Bell Sprayer: Impact of Shaping Air on Droplet Atomization and Transport
by Adnan Darwish Ahmad, Ahmad M. Abubaker, Ahmad A. Salaimeh and Nelson K. Akafuah
Coatings 2018, 8(8), 279; https://doi.org/10.3390/coatings8080279 - 11 Aug 2018
Cited by 35 | Viewed by 9106
Abstract
Electrostatic rotary bell sprayers (ERBSs) are widely used in the automotive industry. In ERBS, atomization is facilitated using centrifugal forces which disintegrate the paint film inside the cup into droplets at the cup edge. The droplets are then transported by the flow of [...] Read more.
Electrostatic rotary bell sprayers (ERBSs) are widely used in the automotive industry. In ERBS, atomization is facilitated using centrifugal forces which disintegrate the paint film inside the cup into droplets at the cup edge. The droplets are then transported by the flow of a shaping air (SA) and electrostatic forces to a target surface; the characteristics of these droplets dramatically influence the quality of a painted surface and the painting transfer efficiency. In the current paper, a novel Schlieren-based visualization of the shaping air in the absence of paint droplets was performed during a qualitative investigation to delineate shaping air flow behavior and its interaction with droplets and droplet transport. An infrared thermographic flow visualization (IRFV) method and droplet size measurement were used to complement the Schlieren data for providing insight into shaping air-droplet interactions. The results demonstrated the impact of different operating conditions on the SA flow pattern, and the influence SA has on the secondary atomization and transport of droplets. Hence, these experimental methods combine with a useful tool for optimizing SA configurations that improve spray quality, droplet transport, and the efficiency of ERBS operations. Full article
Show Figures

Figure 1

22 pages, 5006 KiB  
Review
Evolution of the Automotive Body Coating Process—A Review
by Nelson K. Akafuah, Sadegh Poozesh, Ahmad Salaimeh, Gabriela Patrick, Kevin Lawler and Kozo Saito
Coatings 2016, 6(2), 24; https://doi.org/10.3390/coatings6020024 - 13 Jun 2016
Cited by 222 | Viewed by 90373
Abstract
Automotive coatings and the processes used to coat automobile surfaces exemplify the avant-garde of technologies that are capable of producing durable surfaces, exceeding customers’ expectations of appearance, maximizing efficiency, and meeting environmental regulations. These accomplishments are rooted in 100 years of experience, trial-and-error [...] Read more.
Automotive coatings and the processes used to coat automobile surfaces exemplify the avant-garde of technologies that are capable of producing durable surfaces, exceeding customers’ expectations of appearance, maximizing efficiency, and meeting environmental regulations. These accomplishments are rooted in 100 years of experience, trial-and-error approaches, technique and technology advancements, and theoretical assessments. Because of advancements directed at understanding the how, why, when, and where of automobile coatings, the progress in controlling droplets and their deposition attributes, and the development of new technologies and paint chemistries, a comprehensive and up-to-date review of automobile coatings and coating technologies was considered to be of value to industrial practitioners and researchers. Overall, the critical performance factors driving the development and use of advanced automotive coatings and coating technologies are (a) aesthetic characteristics; (b) corrosion protection; (c) mass production; (d) cost and environmental requirements; and (e) appearance and durability. Although the relative importance of each of these factors is debatable, the perfection of any one at the expense of another would be unacceptable. Hence, new developments in automotive coatings are described and discussed in the following review, and then related to improvements in production technologies and paints. Modern automotive coating procedures are also discussed in detail. Finally, an extrapolation into the future of automotive coating is offered with a view of the developments and technologies needed for an increasingly efficient and more sustainable coatings industry. Full article
(This article belongs to the Special Issue Innovative Coatings for Automotive Industry)
Show Figures

Figure 1

Back to TopTop