Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Naomi J. Boxall ORCID = 0000-0002-1707-014X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2912 KiB  
Article
A Comparison of Methods for the Characterisation of Waste-Printed Circuit Boards
by Jonovan Van Yken, Ka Yu Cheng, Naomi J. Boxall, Chris Sheedy, Aleksandar N. Nikoloski, Navid R. Moheimani and Anna H. Kaksonen
Metals 2021, 11(12), 1935; https://doi.org/10.3390/met11121935 - 30 Nov 2021
Cited by 14 | Viewed by 4933
Abstract
Electronic waste is a growing waste stream globally. With 54.6 million tons generated in 2019 worldwide and with an estimated value of USD 57 billion, it is often referred to as an urban mine. Printed circuit boards (PCBs) are a major component of [...] Read more.
Electronic waste is a growing waste stream globally. With 54.6 million tons generated in 2019 worldwide and with an estimated value of USD 57 billion, it is often referred to as an urban mine. Printed circuit boards (PCBs) are a major component of electronic waste and are increasingly considered as a secondary resource for value recovery due to their high precious and base metals content. PCBs are highly heterogeneous and can vary significantly in composition depending on the original function. Currently, there are no standard methods for the characterisation of PCBs that could provide information relevant to value recovery operations. In this study, two pre-treatments, smelting and ashing of PCB samples, were investigated to determine the effect on PCB characterisation. In addition, to determine the effect of particle size and element-specific effects on the characterisation of PCBs, samples were processed using four different analytical methods. These included multi-acid digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, nitric acid digestion followed by X-ray fluorescence (XRF) analysis, multi-acid digestion followed by fusion digestion and analysis using ICP-OES, and microwave-assisted multi-acid digestion followed by ICP-OES analysis. In addition, a mixed-metal standard was created to serve as a reference material to determine the accuracy of the various analytical methods. Smelting and ashing were examined as potential pre-treatments before analytical characterisation. Smelting was found to reduce the accuracy of further analysis due to the volatilisation of some metal species at high temperatures. Ashing was found to be a viable pre-treatment. Of the four analytical methods, microwave-assisted multi-acid digestion offered the most precision and accuracy. It was found that the selection of analytical methods can significantly affect the accuracy of the observed metal content of PCBs, highlighting the need for a standardised method and the use of certified reference material. Full article
(This article belongs to the Special Issue Processing and Characterization of Metal Containing Wastes)
Show Figures

Figure 1

40 pages, 3037 KiB  
Review
E-Waste Recycling and Resource Recovery: A Review on Technologies, Barriers and Enablers with a Focus on Oceania
by Jonovan Van Yken, Naomi J. Boxall, Ka Yu Cheng, Aleksandar N. Nikoloski, Navid R. Moheimani and Anna H. Kaksonen
Metals 2021, 11(8), 1313; https://doi.org/10.3390/met11081313 - 19 Aug 2021
Cited by 148 | Viewed by 37356
Abstract
Electronic e-waste (e-waste) is a growing problem worldwide. In 2019, total global production reached 53.6 million tons, and is estimated to increase to 74.7 million tons by 2030. This rapid increase is largely fuelled by higher consumption rates of electrical and electronic goods, [...] Read more.
Electronic e-waste (e-waste) is a growing problem worldwide. In 2019, total global production reached 53.6 million tons, and is estimated to increase to 74.7 million tons by 2030. This rapid increase is largely fuelled by higher consumption rates of electrical and electronic goods, shorter life cycles and fewer repair options. E-waste is classed as a hazardous substance, and if not collected and recycled properly, can have adverse environmental impacts. The recoverable material in e-waste represents significant economic value, with the total value of e-waste generated in 2019 estimated to be US $57 billion. Despite the inherent value of this waste, only 17.4% of e-waste was recycled globally in 2019, which highlights the need to establish proper recycling processes at a regional level. This review provides an overview of global e-waste production and current technologies for recycling e-waste and recovery of valuable material such as glass, plastic and metals. The paper also discusses the barriers and enablers influencing e-waste recycling with a specific focus on Oceania. Full article
(This article belongs to the Special Issue Processing and Characterization of Metal Containing Wastes)
Show Figures

Figure 1

20 pages, 3836 KiB  
Article
Effect of Initial Cell Concentration on Bio-Oxidation of Pyrite before Gold Cyanidation
by Ka Yu Cheng, Caroline C. Rubina Acuña, Naomi J. Boxall, Jian Li, David Collinson, Christina Morris, Chris A. du Plessis, Natalia Streltsova and Anna H. Kaksonen
Minerals 2021, 11(8), 834; https://doi.org/10.3390/min11080834 - 31 Jul 2021
Cited by 6 | Viewed by 2935
Abstract
Bio-oxidation of refractory sulfidic gold minerals has been applied at the commercial scale as a pre-treatment to improve gold yields and reduce chemical consumption during gold cyanidation. In this study, the effect of initial cell concentration on the oxidation of pyritic gold ore [...] Read more.
Bio-oxidation of refractory sulfidic gold minerals has been applied at the commercial scale as a pre-treatment to improve gold yields and reduce chemical consumption during gold cyanidation. In this study, the effect of initial cell concentration on the oxidation of pyritic gold ore was evaluated with four aerated bioreactors at 30 °C with 10% pulp density and pH maintained at 1.4 with NaOH. Results of NaOH consumption and changes in soluble Fe and S concentrations indicated that increasing the initial cell concentration from 2.3 × 107 to 2.3 × 1010 cells mL−1 enhanced pyrite oxidation during the first week. However, by day 18 the reactor with the lowest initial cell concentration showed profound performance enhancement based on soluble Fe and S concentrations, sulfide-S and pyrite contents in the residues, and subsequent gold leaching of the bio-oxidation residues by cyanidation. Overall, the results showed that the cell concentration was clearly beneficial during the initial stages of oxidation (first 7–8 days). Full article
(This article belongs to the Special Issue Bio-Metallurgical Processes and Sustainable Metal Recovery)
Show Figures

Figure 1

19 pages, 2229 KiB  
Article
Recovery of Metals from Waste Lithium Ion Battery Leachates Using Biogenic Hydrogen Sulfide
by Giles Calvert, Anna H. Kaksonen, Ka Yu Cheng, Jonovan Van Yken, Barbara Chang and Naomi J. Boxall
Minerals 2019, 9(9), 563; https://doi.org/10.3390/min9090563 - 17 Sep 2019
Cited by 29 | Viewed by 6846
Abstract
Lithium ion battery (LIB) waste is increasing globally and contains an abundance of valuable metals that can be recovered for re-use. This study aimed to evaluate the recovery of metals from LIB waste leachate using hydrogen sulfide generated by a consortium of sulfate-reducing [...] Read more.
Lithium ion battery (LIB) waste is increasing globally and contains an abundance of valuable metals that can be recovered for re-use. This study aimed to evaluate the recovery of metals from LIB waste leachate using hydrogen sulfide generated by a consortium of sulfate-reducing bacteria (SRB) in a lactate-fed fluidised bed reactor (FBR). The microbial community analysis showed Desulfovibrio as the most abundant genus in a dynamic and diverse bioreactor consortium. During periods of biogenic hydrogen sulfide production, the average dissolved sulfide concentration was 507 mg L−1 and the average volumetric sulfate reduction rate was 278 mg L−1 d−1. Over 99% precipitation efficiency was achieved for Al, Ni, Co, and Cu using biogenic sulfide and NaOH, accounting for 96% of the metal value contained in the LIB waste leachate. The purity indices of the precipitates were highest for Co, being above 0.7 for the precipitate at pH 10. However, the process was not selective for individual metals due to simultaneous precipitation and the complexity of the metal content of the LIB waste. Overall, the process facilitated the production of high value mixed metal precipitates, which could be purified further or used as feedstock for other processes, such as the production of steel. Full article
(This article belongs to the Special Issue The Processing of Alternative and Urban Ores)
Show Figures

Figure 1

28 pages, 6500 KiB  
Review
In a quest for engineering acidophiles for biomining applications: challenges and opportunities
by Yosephine Gumulya, Naomi J. Boxall, Himel N. Khaleque, Ville Santala, Ross P. Carlson and Anna H. Kaksonen
Genes 2018, 9(2), 116; https://doi.org/10.3390/genes9020116 - 21 Feb 2018
Cited by 92 | Viewed by 14783
Abstract
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing [...] Read more.
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing interest in applying biomining technology, in particular for leaching metals from low grade minerals and wastes. However, bioprocessing is often hampered by the presence of inhibitory compounds that originate from complex ores. Synthetic biology could provide tools to improve the tolerance of biomining microbes to various stress factors that are present in biomining environments, which would ultimately increase bioleaching efficiency. This paper reviews the state-of-the-art tools to genetically modify acidophilic biomining microorganisms and the limitations of these tools. The first part of this review discusses resilience pathways that can be engineered in acidophiles to enhance their robustness and tolerance in harsh environments that prevail in bioleaching. The second part of the paper reviews the efforts that have been carried out towards engineering robust microorganisms and developing metabolic modelling tools. Novel synthetic biology tools have the potential to transform the biomining industry and facilitate the extraction of value from ores and wastes that cannot be processed with existing biomining microorganisms. Full article
(This article belongs to the Special Issue Genetics and Genomics of Extremophiles)
Show Figures

Figure 1

Back to TopTop