Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Authors = Naeem Zafar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5701 KiB  
Review
Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae
by Iram Batool, Ahsan Ayyaz, Tongjun Qin, Xiaofen Wu, Weiqi Chen, Fakhir Hannan, Zafar Ullah Zafar, Muhammad Shahbaz Naeem, Muhammad Ahsan Farooq and Weijun Zhou
Plants 2025, 14(2), 152; https://doi.org/10.3390/plants14020152 - 7 Jan 2025
Cited by 3 | Viewed by 2055
Abstract
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures. Given the rising global [...] Read more.
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures. Given the rising global temperatures, heat stress has become a major abiotic challenge, affecting the growth and development of various crops and significantly reducing productivity. Brassica napus, the second-largest source of vegetable oil worldwide, faces drastic reductions in seed yield and quality under heat stress. This review summarizes recent research on the genetic and physiological impact of heat stress in the Brassicaceae family, as well as in model plants Arabidopsis and rice. Several studies show that extreme temperature fluctuations during crucial growth stages negatively affect plants, leading to impaired growth and reduced seed production. The review discusses the mechanisms of heat stress adaptation and the key regulatory genes involved. It also explores the emerging understanding of epigenetic modifications during heat stress. While such studies are limited in B. napus, contrasting trends in gene expression have been observed across different species and cultivars, suggesting these genes play a complex role in heat stress tolerance. Key knowledge gaps are identified regarding the impact of heat stress during the growth stages of B. napus. In-depth studies of these stages are still needed. The profound understanding of heat stress response mechanisms in tissue-specific models are crucial in advancing our knowledge of thermo-tolerance regulation in B. napus and supporting future breeding efforts for heat-tolerant crops. Full article
(This article belongs to the Special Issue Crop Breeding for Food and Nutrition Security)
Show Figures

Figure 1

24 pages, 3278 KiB  
Article
Fostering Conceptual Understanding of Photocatalysis for Sustainable Development: A Social Constructivism Flipped-Classroom Model
by Muhammad Naeem Sarwar, Muhammad Adnan Maqbool, Shamim Ullah, Amarah Sultan Rana, Salah Uddin Khan, Ahmed Ahmed Ibrahim, Kamran Alam, Sehrish Zafar, Zaka Ullah and Muhammad Faizan Nazar
Sustainability 2024, 16(23), 10324; https://doi.org/10.3390/su162310324 - 26 Nov 2024
Cited by 3 | Viewed by 1991
Abstract
Social constructivism theory embraces peer-to-peer communication that helps students understand, examine, and discern the process of knowledge construction. The Social Constructivism Flipped-Classroom Model (SCFCM) inverts the traditional classroom paradigm by providing content outside of class, often through online materials, and devoting in-class time [...] Read more.
Social constructivism theory embraces peer-to-peer communication that helps students understand, examine, and discern the process of knowledge construction. The Social Constructivism Flipped-Classroom Model (SCFCM) inverts the traditional classroom paradigm by providing content outside of class, often through online materials, and devoting in-class time to active learning and discussion. This study aims to investigate the impact of the SCFCM on the conceptual understanding of photocatalysis, a crucial process in environmental science and chemistry, particularly in relation to sustainability and sustainable development. Photocatalysis, being a self-sustained process, holds potential for addressing global challenges such as renewable energy and pollution reduction, both of which are central to achieving sustainable development goals. A quasi-experimental pre-test–post-test design was employed at a public sector university, involving forty-three (43) students in each of the flipped- and non-flipped-classroom groups. Assessment tools, including pre- and post-tests and an interest survey, were used to gauge students’ conceptual understanding of photocatalysis and their degree of learning interest. The same chemistry teacher, one who had eight years of teaching experience, taught both groups. The analysis of covariance (ANCOVA) results comparing students’ performance showed a significant difference in the performance of students in the experimental group compared to the control group. The multivariate analysis of variance (MANOVA) results, however, revealed substantial differences in attention, relevance, confidence, and satisfaction between the experimental and control groups. The findings highlight that the SCFCM improved students’ understanding of complex photocatalysis concepts and demonstrated its relevance to sustainable development, offering valuable insights into the potential of this teaching approach for Science, Technology, Engineering, Mathematics (STEM) education, especially in addressing sustainability challenges. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

20 pages, 5308 KiB  
Article
Static Compaction on Coupled Precursors and Optimizing Molarity for Enhanced Strength and Durability of Geopolymer
by Khuram Rashid, Mounir Ltifi, Idrees Zafar, Muhammad Hashim Rafiqi and Muhammad Naeem Raoof
Materials 2024, 17(11), 2509; https://doi.org/10.3390/ma17112509 - 23 May 2024
Cited by 3 | Viewed by 824
Abstract
The static compaction technique emphasizes the reduced activator dosage required to develop geopolymers. Therefore, it is crucial to comprehend the optimal alkaline activator concentration for blending low-calcium precursor (fly ash) with high-calcium precursor (GGBS) to produce geopolymer blocks. This work was designed to [...] Read more.
The static compaction technique emphasizes the reduced activator dosage required to develop geopolymers. Therefore, it is crucial to comprehend the optimal alkaline activator concentration for blending low-calcium precursor (fly ash) with high-calcium precursor (GGBS) to produce geopolymer blocks. This work was designed to optimize structural blocks’ compressive strength and durability. In experimentation, fly ash (FA) and slag (GGBS) proportions were initially investigated under NaOH solution with varying molarity (8–12) and curing conditions to develop a load-bearing structural block. Subsequently, the durability of the optimized block was evaluated over 56 days through subjection to sulfate and acidic solutions, with efflorescence monitored over the same period. The results reveal that the structural block comprised of 100% FA exhibits the highest compressive strength and lowest bulk density. Conversely, the block incorporating 25% slag that underwent hot curing demonstrates a remarkable 305% strength increase compared to ambient curing. Considering the physico-mechanical performance, the 100% FA block was chosen for durability investigation. The findings indicate a substantial strength loss exceeding 40% after exposure to sulfate and acidic environments over 56 days, coupled with pronounced efflorescence. Catastrophic failure occurs in all cases due to significant strength deterioration. The FTIR spectrum revealed the shifting of the wavenumber to a higher value and verified the depolymerization and leaching of alumina under acidic exposure. However, the developed geopolymer blocks demonstrate superior sustainability and feasibility compared to conventional fired clay bricks and cement-based FA bricks. Despite slightly higher costs, these blocks exhibit greater strength than their counterparts after enduring severe exposures. Full article
Show Figures

Figure 1

18 pages, 8631 KiB  
Article
Genetic Diversity, Evolutionary Dynamics, and Ongoing Spread of Pedilanthus Leaf Curl Virus
by Zafar Iqbal, Muhammad Shafiq, Muhammad Naeem Sattar, Irfan Ali, Muhammad Khurshid, Umer Farooq and Muhammad Munir
Viruses 2023, 15(12), 2358; https://doi.org/10.3390/v15122358 - 30 Nov 2023
Cited by 3 | Viewed by 1776
Abstract
Pedilanthus leaf curl virus (PeLCV) is a monopartite begomovirus (family Geminiviridae) discovered just a few decades ago. Since then, it has become a widely encountered virus, with reports from ca. 25 plant species across Pakistan and India, indicative of its notable evolutionary [...] Read more.
Pedilanthus leaf curl virus (PeLCV) is a monopartite begomovirus (family Geminiviridae) discovered just a few decades ago. Since then, it has become a widely encountered virus, with reports from ca. 25 plant species across Pakistan and India, indicative of its notable evolutionary success. Viruses mutate at such a swift rate that their ecological and evolutionary behaviors are inextricably linked, and all of these behaviors are imprinted on their genomes as genetic diversity. So, all these imprints can be mapped by computational methods. This study was designed to map the sequence variation dynamics, genetic heterogeneity, regional diversity, phylogeny, and recombination events imprinted on the PeLCV genome. Phylogenetic and network analysis grouped the full-length genome sequences of 52 PeLCV isolates into 7 major clades, displaying some regional delineation but lacking host-specific demarcation. The progenitor of PeLCV was found to have originated in Multan, Pakistan, in 1977, from where it spread concurrently to India and various regions of Pakistan. A high proportion of recombination events, distributed unevenly throughout the genome and involving both inter- and intraspecies recombinants, were inferred. The findings of this study highlight that the PeLCV population is expanding under a high degree of genetic diversity (π = 0.073%), a high rate of mean nucleotide substitution (1.54 × 10−3), demographic selection, and a high rate of recombination. This sets PeLCV apart as a distinctive begomovirus among other begomoviruses. These factors could further exacerbate the PeLCV divergence and adaptation to new hosts. The insights of this study that pinpoint the emergence of PeLCV are outlined. Full article
(This article belongs to the Special Issue Viral Genetic Variation)
Show Figures

Figure 1

19 pages, 7911 KiB  
Article
Identification of a Cucumber Mosaic Virus from Cucurbita pepo on New Reclamation Land in Egypt and the Changes Induced in Pumpkin Plants
by Wael Fathy Shehata, Zafar Iqbal, Tarek Elsayed Abdelbaset, Khalied Ibrahiem Saker, Ahmed Elnabawy El Shorbagy, Ahmed Mohamed Soliman, Muhammad Naeem Sattar and Sherif Mohamed El-Ganainy
Sustainability 2023, 15(12), 9751; https://doi.org/10.3390/su15129751 - 19 Jun 2023
Cited by 6 | Viewed by 4349
Abstract
In 2020, the leaves and fruit of 50 pumpkin plants with suspected cucumber mosaic virus (CMV) symptoms of leaf mosaic, vein yellowing, and mild leaf curling were collected from Sharq El-Owainat (Al Wadi El-Gaded governorate), a new reclamation land in Egypt. This study [...] Read more.
In 2020, the leaves and fruit of 50 pumpkin plants with suspected cucumber mosaic virus (CMV) symptoms of leaf mosaic, vein yellowing, and mild leaf curling were collected from Sharq El-Owainat (Al Wadi El-Gaded governorate), a new reclamation land in Egypt. This study was aimed at deciphering and characterizing the causal agent of the leaf yellowing disease associated with pumpkin plants in Egypt. The causal agent was identified by serological, cytological, and molecular means. The serological identification by DAS–ELISA confirmed the presence of CMV in 20% of the plants. The cytological identification by electron microscopy revealed typical cucumovirus isometric particles of 28–30 nm diameter in the cytoplasm of the leaf parenchyma, epidermal cells, the integument, and the nucleus. Molecular characterization by one-step reverse transcriptase-PCR yielded the required size of amplicon (678 bp) for CMV. Additionally, mechanical sap inoculation was used to determine the host range and symptomatology of the isolated CMV in seventeen different plant species belonging to six different plant families. CMV replicated, moved systemically, and induced a range of symptoms in sixteen plant species. The isolated CMV was transmitted to pumpkin plants at a 16.4% rate by seeds. CMV-infected pumpkin plant leaves were characterized by a substantially low concentration of photosynthetic pigments, a high level of reducing sugars, relatively low protein levels, and a significant increase in total phenol contents, implying their potential role as antiviral agents. Ultrathin sections of infected cells revealed histological changes and cytological abnormalities in comparison to healthy plants. This is the first identification of CMV on new reclamation land in Egypt, pinpointing its swift spread, which could pose a major constraint to pumpkin production in Egypt. Full article
Show Figures

Figure 1

16 pages, 8127 KiB  
Article
Real-Time Human Authentication System Based on Iris Recognition
by Huma Hafeez, Muhammad Naeem Zafar, Ch Asad Abbas, Hassan Elahi and Muhammad Osama Ali
Eng 2022, 3(4), 693-708; https://doi.org/10.3390/eng3040047 - 15 Dec 2022
Cited by 10 | Viewed by 6285
Abstract
Biometrics deals with the recognition of humans based on their unique physical characteristics. It can be based on face identification, iris, fingerprint and DNA. In this paper, we have considered the iris as a source of biometric verification as it is the unique [...] Read more.
Biometrics deals with the recognition of humans based on their unique physical characteristics. It can be based on face identification, iris, fingerprint and DNA. In this paper, we have considered the iris as a source of biometric verification as it is the unique part of eye which can never be altered, and it remains the same throughout the life of an individual. We have proposed the improved iris recognition system including image registration as a main step as well as the edge detection method for feature extraction. The PCA-based method is also proposed as an independent iris recognition method based on a similarity score. Experiments conducted using our own developed database demonstrate that the first proposed system reduced the computation time to 6.56 sec, and it improved the accuracy to 99.73, while the PCA-based method has less accuracy than this system does. Full article
(This article belongs to the Special Issue Feature Papers in Eng 2022)
Show Figures

Figure 1

28 pages, 2453 KiB  
Review
CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives
by Yaxin Wang, Naeem Zafar, Qurban Ali, Hakim Manghwar, Guanying Wang, Lu Yu, Xiao Ding, Fang Ding, Ni Hong, Guoping Wang and Shuangxia Jin
Cells 2022, 11(23), 3928; https://doi.org/10.3390/cells11233928 - 5 Dec 2022
Cited by 43 | Viewed by 11108
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with [...] Read more.
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress. Full article
(This article belongs to the Special Issue Plant Genome Editing: State-of-the-Art and Perspectives in China)
Show Figures

Figure 1

15 pages, 5899 KiB  
Article
Cyclophosphazene Intrinsically Derived Heteroatom (S, N, P, O)-Doped Carbon Nanoplates for Ultrasensitive Monitoring of Dopamine from Chicken Samples
by Yasir Abbas, Naeem Akhtar, Sania Ghaffar, Ahlam I. Al-Sulami, Muhammad Asad, Muhammad Ehsan Mazhar, Farhan Zafar, Akhtar Hayat and Zhanpeng Wu
Biosensors 2022, 12(12), 1106; https://doi.org/10.3390/bios12121106 - 1 Dec 2022
Cited by 7 | Viewed by 2213
Abstract
A novel, metal-free electrode based on heteroatom (S, N, P, O)-doped carbon nanoplates (SNPO-CPL) modifying lead pencil graphite (LPG) has been synthesized by carbonizing a unique heteroatom (S, N, P, O)-containing novel polymer, poly(cyclcotriphosphazene-co-2,5-dioxy-1,4-dithiane) (PCD), for precise screening of dopamine (DA). The designed [...] Read more.
A novel, metal-free electrode based on heteroatom (S, N, P, O)-doped carbon nanoplates (SNPO-CPL) modifying lead pencil graphite (LPG) has been synthesized by carbonizing a unique heteroatom (S, N, P, O)-containing novel polymer, poly(cyclcotriphosphazene-co-2,5-dioxy-1,4-dithiane) (PCD), for precise screening of dopamine (DA). The designed electrode, SNPO-CPL-800, with optimized percentage of S, N, P, O doping through the sp2-carbon chain, and a large number of surface defects (thus leading to a maximum exposition number of catalytic active sites) led to fast molecular diffusion through the micro-porous structure and facilitated strong binding interaction with the targeted molecules in the interactive signaling transducer at the electrode–electrolyte interface. The designed SNPO-CPL-800 electrode exhibited a sensitive and selective response towards DA monitoring, with a limit of detection (LOD) of 0.01 nM. We also monitored DA levels in commercially available chicken samples using the SNPO-CPL-800 electrode even in the presence of interfering species, thus proving the effectiveness of the designed electrode for the precise monitoring of DA in real samples. This research shows there is a strong potential for opening new windows for ultrasensitive DA monitoring with metal-free electrodes. Full article
(This article belongs to the Special Issue Biosensors and Their Application in Agriculture and Food Science)
Show Figures

Figure 1

14 pages, 407 KiB  
Article
Cadmium (Cd) and Copper (Cu) Exposure and Bioaccumulation Arrays in Farm Ruminants: Impact of Forage Ecotypes, Ecological Sites and Body Organs
by Muhammad Iftikhar Hussain, Majida Naeem, Zafar Iqbal Khan, Shahzad Akhtar, Muhammad Nadeem, Maha Abdallah Alnuwaiser, Kafeel Ahmad, Oscar Vicente and Hsi-Hsien Yang
Sustainability 2022, 14(19), 12595; https://doi.org/10.3390/su141912595 - 3 Oct 2022
Cited by 5 | Viewed by 2615
Abstract
Copper (Cu) and cadmium (Cd) metal distribution in soil–plant ecosystems and their public health risk impact on ruminants (cows, buffalo, and sheep) are explored in the present investigation. Five different forage crops were selected, and the foraging responses of three types of ruminants [...] Read more.
Copper (Cu) and cadmium (Cd) metal distribution in soil–plant ecosystems and their public health risk impact on ruminants (cows, buffalo, and sheep) are explored in the present investigation. Five different forage crops were selected, and the foraging responses of three types of ruminants (cows, buffalo, and sheep) at three ecological sites were evaluated. The soil of these three ecological sites was metal polluted (due to wastewater irrigation) and was studied to evaluate the metal contamination and pollution load index. For the assessment of Cd and Cu, soil, vegetation, blood, hair, and feces samples were collected and analysed using an atomic absorption spectrophotometer. High consumption of fodder crops (Sorghum bicolor Kuntze, Sesbania bispinosa (Jacq.) W. Wight, Cynodon dactylon (L.) Pers., Suaeda fruticosa (L.) Forssk., and Tribulus terrestris L.) by cows and buffalo at site-III resulted in an increase in daily Cu and Cd intake. The pollution load index was higher at site-II and site-III, indicating a severe health risk scenario for local inhabitants. Cd and Cu were at their maximum levels in fodder crops. A significant increase in the concentrations of Cd and Cu was found in the blood, hair, and feces of cows and buffalo at site-III. Ecological indicators such as the bioaccumulation factor, the pollution load index, and the enrichment factor were found to be higher in buffalo than cows. The Cd level in forages was highest at the site-III Cd level and in the order of S. bispinosa > S. fruticosa > T. terresteris > C. dactylon > S. bicolor. Although these levels were lower than the permissible maximum limit, they were generally higher in the forage crops. Exposure of local inhabitants to the consumption of milk and meat from these cattle showed the serious health risks consequences. This situation can be properly managed by general monitoring of soil and vegetation pollution, avoiding metal contamination in the soil and food chain components, and using treated waste water and other alternate water sources for forage irrigation. Full article
Show Figures

Figure 1

19 pages, 7362 KiB  
Article
Partial Oxidation of Methane over CaO Decorated TiO2 Nanocatalyst for Syngas Production in a Fixed Bed Reactor
by Asif Hussain Khoja, Ahad Hussain Javed, Salman Raza Naqvi, Sehar Shakir, Israf Ud Din, Zafar Arshad, Umer Rashid, Umair Yaqub Qazi and Nida Naeem
Catalysts 2022, 12(10), 1089; https://doi.org/10.3390/catal12101089 - 21 Sep 2022
Cited by 10 | Viewed by 2672
Abstract
Syngas is a valuable entity for downstream liquid fuel production and chemical industries. The efficient production of syngas via catalytic partial oxidation of methane (CPOM) is an important process. In this study, partial oxidation of methane (POM) was carried out using CaO decorated [...] Read more.
Syngas is a valuable entity for downstream liquid fuel production and chemical industries. The efficient production of syngas via catalytic partial oxidation of methane (CPOM) is an important process. In this study, partial oxidation of methane (POM) was carried out using CaO decorated TiO2 catalysts. The catalysts were synthesized employing the sol-gel method, while the decoration of TiO2 with CaO was achieved in an aqueous solution by wetness impregnation method. The prepared catalysts were characterized by employing XRD, Raman, TG-DTG, and SEM-EDX for structural and morphological analysis. On testing for POM, at 750 °C the catalysts demonstrate excellent CH4 conversion of 83.6 and 79.5% for 2% and 3% CaO loaded TiO2, respectively. While the average H2/CO ratio for both 2% and 3% CaO loaded TiO2, 2.25 and 2.28, respectively, remained slightly above the theoretical value (H2/CO = 2.0) of POM. The improved POM performance is attributed to the optimally loaded CaO on the TiO2 surface that promotes the reaction where TiO2 support ensure less agglomerated particles, resulting into a fine distribution of the active catalytic sites. Full article
(This article belongs to the Special Issue Renewable Heterogenous Nano-Catalysts for Alternative Fuel Production)
Show Figures

Graphical abstract

17 pages, 7109 KiB  
Article
Agronomic and Physiological Indices for Reproductive Stage Heat Stress Tolerance in Green Super Rice
by Syed Adeel Zafar, Muhammad Hamza Arif, Muhammad Uzair, Umer Rashid, Muhammad Kashif Naeem, Obaid Ur Rehman, Nazia Rehman, Imdad Ullah Zaid, Muhammad Shahbaz Farooq, Nageen Zahra, Bilal Saleem, Jianlong Xu, Zhikang Li, Jauhar Ali, Ghulam Muhammad Ali, Seung Hwan Yang and Muhammad Ramzan Khan
Agronomy 2022, 12(8), 1907; https://doi.org/10.3390/agronomy12081907 - 14 Aug 2022
Cited by 6 | Viewed by 3630
Abstract
Optimum growing temperature is necessary for maximum yield-potential in any crop. The global atmospheric temperature is changing more rapidly and irregularly every year. High temperature at the flowering/reproductive stage in rice causes partial to complete pollen sterility, resulting in significant reduction in grain [...] Read more.
Optimum growing temperature is necessary for maximum yield-potential in any crop. The global atmospheric temperature is changing more rapidly and irregularly every year. High temperature at the flowering/reproductive stage in rice causes partial to complete pollen sterility, resulting in significant reduction in grain yield. Green Super Rice (GSR) is an effort to develop an elite rice type that can withstand multiple environmental stresses and maintain yield in different agro-ecological zones. The current study was performed to assess the effect of heat stress on agronomic and physiological attributes of GSR at flowering stage. Twenty-two GSR lines and four local checks were evaluated under normal and heat-stress conditions for different agro-physiological parameters, including plant height (PH), tillers per plant (TPP), grain yield per plant (GY), straw yield per plant (SY), harvest index (HI), 1000-grain weight (GW), grain length (GL), cell membrane stability (CMS), normalized difference vegetative index (NDVI), and pollen fertility percentage (PFP). Genotypes showed high significant variations for all the studied parameters except NDVI. Association and principal component analysis (PCA) explained the genetic diversity of the genotypes, and relationship between the particular parameters and grain yield. We found that GY, along with other agronomic traits, such as TPP, SY, HI, and CMS, were greatly affected by heat stress in most of the genotypes, while PH, GW, GL, PFP, and NDVI were affected only in a few genotypes. Outperforming NGSR-16 and NGSR-18 in heat stress could be utilized as a parent for the development of heat-tolerant rice. Moreover, these findings will be helpful in the prevention and management of heat stress in rice. Full article
Show Figures

Figure 1

20 pages, 3034 KiB  
Article
Morphological, Biochemical, and Physiological Response of Butterhead Lettuce to Photo-Thermal Environments
by Zafar Iqbal, Muhammad Munir and Muhammad Naeem Sattar
Horticulturae 2022, 8(6), 515; https://doi.org/10.3390/horticulturae8060515 - 13 Jun 2022
Cited by 13 | Viewed by 3853
Abstract
Plants actively respond to changes in photoperiods, light intensities, and temperatures; an interplay of these three factors can result in increased biomass, growth, and improved plant morphology. This study aimed to investigate the effects of different photoperiods, light intensities, and day/night temperatures on [...] Read more.
Plants actively respond to changes in photoperiods, light intensities, and temperatures; an interplay of these three factors can result in increased biomass, growth, and improved plant morphology. This study aimed to investigate the effects of different photoperiods, light intensities, and day/night temperatures on the growth and quality of glasshouse-grown lettuce, as well as to determine the optimal photo-thermal conditions. Two separate experiments were conducted; in the first experiment, the effects of photoperiods (11, 14, and 17 h d−1) and light intensities (150, 200, 250, and 300 μmol m−2 s−1 PPFD) were investigated. In the second experiment, the effects of day/night temperature combinations (15/20, 20/20, 25/20, and 30/20 °C) were assessed. The highest growth, biochemical, and physiological attributes of lettuce were obtained either at 14 or 17 h d−1 + 200 and 250 μmol m−2 s−1 PPFD. Lettuce plants grown at a 20/20 °C day/night temperature also showed promising results compared to other temperature combinations. Based on a principal component analysis and factor analysis of mixed data analyses, most of the lettuce attributes showed a negative correlation with an 11 h d−1 photoperiod and a positive correlation with 14 and 17 h d−1 photoperiods. The most positive responsive attributes to higher light intensity were leaf fresh weight:root fresh weight ratio, root dry, and water use efficiency. An increase in the day/night temperature significantly affected the N, P, K, root fresh weight:leaf fresh weight ratio, E, Pn, and root dry weight. Our findings suggest that the growth, biochemical, and physiological attributes of lettuce significantly increased to a certain level of light intensity (200 and 250 μmol m−2 s−1 PPFD), photoperiod (14 and 17 h d−1), and day/night temperature (20/20 °C), referred to as an effective combination. Full article
Show Figures

Figure 1

19 pages, 4709 KiB  
Article
Evaluation of Green Super Rice Lines for Agronomic and Physiological Traits under Salinity Stress
by Muhammad Ammar Amanat, Muhammad Kashif Naeem, Hussah I. M. Algwaiz, Muhammad Uzair, Kotb A. Attia, Muneera D. F. AlKathani, Imdad Ulah Zaid, Syed Adeel Zafar, Safeena Inam, Sajid Fiaz, Muhammad Hamza Arif, Daniyal Ahmad, Nageen Zahra, Bilal Saleem and Muhammad Ramzan Khan
Plants 2022, 11(11), 1461; https://doi.org/10.3390/plants11111461 - 30 May 2022
Cited by 7 | Viewed by 3399
Abstract
Rice (Oryza sativa) is an important staple food crop worldwide, especially in east and southeast Asia. About one-third of rice cultivated area is under saline soil, either natural saline soils or irrigation with brackish water. Salinity stress is among the devastating [...] Read more.
Rice (Oryza sativa) is an important staple food crop worldwide, especially in east and southeast Asia. About one-third of rice cultivated area is under saline soil, either natural saline soils or irrigation with brackish water. Salinity stress is among the devastating abiotic stresses that not only affect rice growth and crop productivity but also limit its cultivation area globally. Plants adopt multiple tolerance mechanisms at the morphological, physiological, and biochemical levels to tackle salinity stress. To identify these tolerance mechanisms, this study was carried out under both a controlled glass house as well as natural saline field conditions using 22 green super rice (GSR) lines along with two local varieties (“IRRI 6 and Kissan Basmati”). Several morpho-physiological and biochemical parameters along with stress-responsive genes were used as evaluation criteria under normal and salinity stress conditions. Correlation and Principal Component Analysis (PCA) suggested that shoot-related parameters and the salt susceptible index (SSI) can be used for the identification of salt-tolerant genotypes. Based on Agglomerative Hierarchical Cluster (AHC) analysis, two saline-tolerant (“S19 and S20”) and saline-susceptible (“S3 and S24”) lines were selected for further molecular evaluation. Quantitative RT-PCR was performed, and results showed that expression of 1-5-phosphoribosyl -5-5-phosphoribosyl amino methylidene amino imidazole-4-carboxamide isomerase, DNA repair protein recA, and peptide transporter PTR2 related genes were upregulated in salt-tolerant genotypes, suggesting their potential role in salinity tolerance. However, additional validation using reverse genetics approaches will further confirm their specific role in salt tolerance. Identified saline-tolerant lines in this study will be useful genetic resources for future salinity breeding programs. Full article
(This article belongs to the Special Issue Novel Plant Breeding Approaches for Achieving Zero Hunger)
Show Figures

Figure 1

18 pages, 4349 KiB  
Article
Genotypic and Phenotypic Structure of the Population of Phytophthora infestans in Egypt Revealed the Presence of European Genotypes
by Sherif Mohamed El-Ganainy, Zafar Iqbal, Hossam Mohamed Awad, Muhammad Naeem Sattar, Abdel Mohsen Tohamy, Ahmed O. Abbas, Julie Squires and David E. L. Cooke
J. Fungi 2022, 8(5), 468; https://doi.org/10.3390/jof8050468 - 30 Apr 2022
Cited by 9 | Viewed by 3377
Abstract
Late blight disease of potato and tomato, caused by Phytophthora infestans, results in serious losses to Egyptian and global potato and tomato production. To understand the structure and dynamics of the Egyptian population of P. infestans, 205 isolates were collected from [...] Read more.
Late blight disease of potato and tomato, caused by Phytophthora infestans, results in serious losses to Egyptian and global potato and tomato production. To understand the structure and dynamics of the Egyptian population of P. infestans, 205 isolates were collected from potato and tomato plants during three growing seasons in 2010–2012. The characterization was achieved by mating-type assay, metalaxyl sensitivity assay, and virulence pattern. Additionally, genotyping of 85 Egyptian isolates and 15 reference UK isolates was performed using 12 highly informative microsatellite (SSR) markers and five effector (RxLR) genes. Mating-type testing showed that 58% (118 of 205) of the isolates belonged to mating type A1, 35% (71 isolates) to mating type A2, and the rest 8% (16 isolates) were self-fertile. The phenotype of metalaxyl response was represented as 45% resistant, 43% sensitive, and 12% as intermediate. Structure analysis grouped the 85 identified genotypes into two main clonal lineages. The first clonal lineage comprised 21 isolates belonging to A2 mating type and 8 self-fertile isolates. This clonal lineage was identified as Blue_13 or EU_13_A2. The second main clonal lineage comprised 55 isolates and was identified as EU_23_A1. A single isolate with a novel SSR genotype that formed a distinct genetic grouping was also identified. The effector sequencing showed good correspondence with the virulence data and highlighted differences in the presence and absence of loci as well as nucleotide polymorphism that affect gene function. This study indicated a changing population of P. infestans in Egypt and discusses the findings in the context of late blight management. Full article
Show Figures

Figure 1

18 pages, 3524 KiB  
Article
Silicon Nanoparticles Mitigate Hypoxia-Induced Oxidative Damage by Improving Antioxidants Activities and Concentration of Osmolytes in Southern Highbush Blueberry Plants
by Zafar Iqbal, Ali Sarkhosh, Rashad Mukhtar Balal, Saeed Rauf, Naeem Khan, Muhammad Ahsan Altaf, Jose M. Camara-Zapata, Francisco Garcia-Sanchez and Muhammad Adnan Shahid
Agronomy 2021, 11(11), 2143; https://doi.org/10.3390/agronomy11112143 - 26 Oct 2021
Cited by 23 | Viewed by 3255
Abstract
Climate change exacerbates flooding problems due to hurricanes followed by heavy rains, particularly in sub-tropical regions. Consequently, submerged plants experience hypoxia stress which limits agronomic and horticultural crop growth and production. Hypoxia causes oxidative damage by accelerating the lipid peroxidation associated with O [...] Read more.
Climate change exacerbates flooding problems due to hurricanes followed by heavy rains, particularly in sub-tropical regions. Consequently, submerged plants experience hypoxia stress which limits agronomic and horticultural crop growth and production. Hypoxia causes oxidative damage by accelerating the lipid peroxidation associated with O2- and H2O2 levels. Additionally, hypoxia increases the accumulation of organic osmoprotectants and antioxidant activity, whereas it decreases the macronutrient (N, P, K, and Zn) uptake. This study aimed at investigating the effects of flooding-induced hypoxia stress on the growth and the physiological, biochemical, and nutritional characteristics of the hydroponically grown southern highbush blueberry (cv. Jewel) plants. In addition, the hypoxia-mitigating effects of conventional silicon (Si-C) and silicon nanoparticles (SiNPs) and their application methods (foliar vs. foliar and rootzone application) were also appraised. Both the Si-C and the SiNPs efficiently alleviated hypoxia-induced oxidative and osmotic damage to cells by enhancing the activities of the enzymatic antioxidants (ascorbate peroxidase, catalase, dehydroascorbate reductase, superoxide dismutase, peroxidase, guaiacol peroxidase, monodehydroascorbate, reductase); the non-enzymatic antioxidants (ascorbic acid and glutathione contents); and the accumulation of compatible solutes (proline and glycinebetaine) in leaves and roots. However, the SiNPs were more effective than Si-C at improving antioxidant activities and osmolytes formation. A strong negative correlation between the antioxidant activities and the lipid peroxidation rate was observed in the SiNP-treated plants under hypoxia stress. The SiNPs also regulated nutrient uptake by increasing the K, N, P, and Zn concentrations while decreasing Fe and Mn concentrations to a less toxic level. Blueberry plants treated with SiNPs responded more effectively to hypoxia stress by maintaining higher antioxidant and osmoprotectant concentrations than blueberry plants treated with Si-C. Additionally, the foliar and rootzone applications yielded better results than the foliar applications only. Full article
Show Figures

Graphical abstract

Back to TopTop