Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Mohammad Aqa Mohammadi ORCID = 0000-0001-8964-4563

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11387 KiB  
Article
Overexpression of AcWRKY31 Increases Sensitivity to Salt and Drought and Improves Tolerance to Mealybugs in Pineapple
by Myat Hnin Wai, Tiantian Luo, S. V. G. N. Priyadarshani, Qiao Zhou, Mohammad Aqa Mohammadi, Han Cheng, Mohammad Aslam, Chang Liu, Gaifeng Chai, Dongping Huang, Yanhui Liu, Hanyang Cai, Xiaomei Wang, Yuan Qin and Lulu Wang
Plants 2024, 13(13), 1850; https://doi.org/10.3390/plants13131850 - 5 Jul 2024
Cited by 2 | Viewed by 1700
Abstract
Pineapple is a globally significant tropical fruit, but its cultivation faces numerous challenges due to abiotic and biotic stresses, affecting its quality and quantity. WRKY transcription factors are known regulators of stress responses, however, their specific functions in pineapple are not fully understood. [...] Read more.
Pineapple is a globally significant tropical fruit, but its cultivation faces numerous challenges due to abiotic and biotic stresses, affecting its quality and quantity. WRKY transcription factors are known regulators of stress responses, however, their specific functions in pineapple are not fully understood. This study investigates the role of AcWRKY31 by overexpressing it in pineapple and Arabidopsis. Transgenic pineapple lines were obtained using Agrobacterium-mediated transformation methods and abiotic and biotic stress treatments. Transgenic AcWRKY31-OE pineapple plants showed an increased sensitivity to salt and drought stress and an increased resistance to biotic stress from pineapple mealybugs compared to that of WT plants. Similar experiments in AcWRKY31-OE, AtWRKY53-OE, and the Arabidopsis Atwrky53 mutant were performed and consistently confirmed these findings. A comparative transcriptomic analysis revealed 5357 upregulated genes in AcWRKY31-OE pineapple, with 30 genes related to disease and pathogen response. Notably, 18 of these genes contained a W-box sequence in their promoter region. A KEGG analysis of RNA-Seq data showed that upregulated DEG genes are mostly involved in translation, protein kinases, peptidases and inhibitors, membrane trafficking, folding, sorting, and degradation, while the downregulated genes are involved in metabolism, protein families, signaling, and cellular processes. RT-qPCR assays of selected genes confirmed the transcriptomic results. In summary, the AcWRKY31 gene is promising for the improvement of stress responses in pineapple, and it could be a valuable tool for plant breeders to develop stress-tolerant crops in the future. Full article
Show Figures

Figure 1

16 pages, 1040 KiB  
Article
The Potential Impact of COVID-19 on the Chinese GDP, Trade, and Economy
by Zohal Habibi, Hamed Habibi and Mohammad Aqa Mohammadi
Economies 2022, 10(4), 73; https://doi.org/10.3390/economies10040073 - 24 Mar 2022
Cited by 30 | Viewed by 29779
Abstract
COVID-19, a novel Coronavirus SARS-CoV-2, has wreaked havoc on global financial markets, economies, and societies. For example, this study looks at the impact of COVID-19 on the Chinese economy and its policy responses (fiscal, monetary, and institutional). This study also examines future issues. [...] Read more.
COVID-19, a novel Coronavirus SARS-CoV-2, has wreaked havoc on global financial markets, economies, and societies. For example, this study looks at the impact of COVID-19 on the Chinese economy and its policy responses (fiscal, monetary, and institutional). This study also examines future issues. This study is timely and essential for policymakers and investors worldwide because of China’s size, contribution to global growth, and growing influence. The research shows that the presence of COVID-19 in China has global implications. Because of the virus threat, foreigners avoid mixing with the Chinese. Global tourists have cancelled their plans to visit China, and Chinese tourists cannot visit foreign countries. The rapid spread of the COVID-19 in China has halted normal life. The intensification of the COVID-19 may have long-term effects on China’s economy. Full article
(This article belongs to the Special Issue The Impact of COVID-19 on Financial Markets and the Real Economy)
Show Figures

Figure 1

15 pages, 3290 KiB  
Article
Towards Understanding the Involvement of H+-ATPase in Programmed Cell Death of Psammosilene tunicoides after Oxalic Acid Application
by Xinyu Jiang, Mohammad Aqa Mohammadi, Yuan Qin and Zongshen Zhang
Molecules 2021, 26(22), 6957; https://doi.org/10.3390/molecules26226957 - 18 Nov 2021
Cited by 1 | Viewed by 2809
Abstract
Psammosilene tunicoides is a unique perennial medicinal plant species native to the Southwestern regions of China. Its wild population is rare and endangered due to over-excessive collection and extended growth (4–5 years). This research shows that H+-ATPase activity was a key [...] Read more.
Psammosilene tunicoides is a unique perennial medicinal plant species native to the Southwestern regions of China. Its wild population is rare and endangered due to over-excessive collection and extended growth (4–5 years). This research shows that H+-ATPase activity was a key factor for oxalate-inducing programmed cell death (PCD) of P. tunicoides suspension cells. Oxalic acid (OA) is an effective abiotic elicitor that enhances a plant cell’s resistance to environmental stress. However, the role of OA in this process remains to be mechanistically unveiled. The present study evaluated the role of OA-induced cell death using an inverted fluorescence microscope after staining with Evans blue, FDA, PI, and Rd123. OA-stimulated changes in K+ and Ca2+ trans-membrane flows using a patch-clamp method, together with OA modulation of H+-ATPase activity, were further examined. OA treatment increased cell death rate in a dosage-and duration-dependent manner. OA significantly decreased the mitochondria activity and damaged its electron transport chain. The OA treatment also decreased intracellular pH, while the FC increased the pH value. Simultaneously, NH4Cl caused intracellular acidification. The OA treatment independently resulted in 90% and the FC led to 25% cell death rates. Consistently, the combined treatments caused a 31% cell death rate. Furthermore, treatment with EGTA caused a similar change in intracellular pH value to the La3+ and OA application. Combined results suggest that OA-caused cell death could be attributed to intracellular acidification and the involvement of OA in the influx of extracellular Ca2+, thereby leading to membrane depolarization. Here we explore the resistance mechanism of P. tunicoides cells against various stresses endowed by OA treatment. Full article
Show Figures

Figure 1

11 pages, 5258 KiB  
Article
Somatic Embryogenesis and Indirect In Vitro Plant Regeneration in Amorphophallus konjac K. Koch by One-Step Seedling Formation
by Dandan Li, Mohammad Aqa Mohammadi, Yuan Qin and Zongshen Zhang
Horticulturae 2021, 7(11), 497; https://doi.org/10.3390/horticulturae7110497 - 15 Nov 2021
Cited by 5 | Viewed by 5014
Abstract
Konjac (Amorphophallus konjac K. Koch) is a well-known tuberous vegetable belonging to the important medicinal family Araceae, and the plant grows from an underground tuber. Here, we used a “one-step seedling regeneration” tissue culture system to improve the plantlet regeneration efficiency [...] Read more.
Konjac (Amorphophallus konjac K. Koch) is a well-known tuberous vegetable belonging to the important medicinal family Araceae, and the plant grows from an underground tuber. Here, we used a “one-step seedling regeneration” tissue culture system to improve the plantlet regeneration efficiency of konjac using young leaves as an explant source. In the current study, we used several sterilization methods for tuber sterilization. Moreover, various plant growth regulator combinations were applied to achieve efficient somatic embryogenesis and plantlet regeneration. Our results showed that the optimal tuber sterilization was method C (75% alcohol for 15 s + 0.1% HgCl2 for 15 min + washing by double-sterilized water three times). Three types of embryogenic calli were induced on full-strength Murashige and Skoog (MS) basal medium supplemented with 0.5 mg/L of 6-benzylaminopurine (6-BA), 0.5 mg/L of naphthaleneacetic acid (NAA), 1.0 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/L of sucrose. Of the three types of embryogenic calli, only type Ⅲ further regenerated plantlets, with a callus induction rate of 55.73% and a seedling induction rate of 92.73%. This suggests that the addition of the above hormones gives the optimal callus induction. The proliferation rate achieved was 38% on the MS basal medium containing 1.0 mg/L of 6-BA, 1.0 mg/L of indolebutyric acid (IBA), 0.2 mg/L of kinetin (KT), and 50 g/L of sucrose. The one-step seedling formation achieved in MS medium contained 2.0 mg/L of 6-BA, 0.5 mg/L of NAA, 0.1 mg/L of gibberellic acid (GA3), and 30 g/L of sucrose, and the number of regenerated shoots per explants was 6 ± 2. Therefore, we establish a one-step seedling regeneration system through indirect plant regeneration, which shortens the time for konjac in vitro regeneration, significantly increased the micropropagation efficiency, and decreased the cost of the konjac tissue culture. Full article
Show Figures

Graphical abstract

18 pages, 3619 KiB  
Article
Phosphite Application Alleviates Pythophthora infestans by Modulation of Photosynthetic and Physio-Biochemical Metabolites in Potato Leaves
by Mohammad Aqa Mohammadi, Xiaoyun Han, Zhizhong Zhang, Yupei Xi, Mohammadreza Boorboori and Gefu Wang-Pruski
Pathogens 2020, 9(3), 170; https://doi.org/10.3390/pathogens9030170 - 28 Feb 2020
Cited by 26 | Viewed by 5252
Abstract
Potato late blight (Phytophtora infestans) is among the most severely damaging diseases of potato (Solanum tuberusom L.) worldwide, causing serious damages in potato leaves and tubers. In the present study, the effects of potassium phosphite (KPhi) applications on photosynthetic parameters, [...] Read more.
Potato late blight (Phytophtora infestans) is among the most severely damaging diseases of potato (Solanum tuberusom L.) worldwide, causing serious damages in potato leaves and tubers. In the present study, the effects of potassium phosphite (KPhi) applications on photosynthetic parameters, enzymatic and non-enzymatic antioxidant properties, hydrogen peroxide (H2O2) and malondialdehyde (MDA), total protein and total carbohydrate of potato leaves challenged with P. infestans pathogen were investigated. Potato leaves were sprayed five times with KPhi (0.5%) during the growing season prior to inoculation with P. infestans. The potato leaves were artificially infected by the LC06-44 pathogen isolate. The leaves were sampled at 0, 24, 48, 72 and 96 h after the infection for evaluations. P. infestans infection reduced chlorophyll (Chl) pigments contents, chlorophyll fluorescence, carotenoid (Car) and anthocyanin contents and increased the accumulation of H2O2 and MDA. Meanwhile, our result showed that KPhi treatment alleviated adverse effect of late blight in potato leaves. KPhi application also increased plant tolerance to the pathogen with improved photosynthetic parameters Chl a, b, total Chl, Car, and anthocyanin compare to controls. Moreover, the increased oxidative enzymes activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APx), and non-enzymatic substances such as phenolics, flavonoids and proline were found in KPhi treated plants, compared to untreated plants after inoculation. In addition, KPhi application followed by P. infestans infection also decreased the content of H2O2 and MDA, but increased the total protein and total carbohydrate contents in potato leaves. The consequence of current research indicated that KPhi played a vital role in pathogen tolerance, protecting the functions of photosynthetic apparatus by improved oxidative levels and physio-biochemical compounds in potato leaves. Full article
(This article belongs to the Special Issue Biology and Pathology of Phytophthora infestans)
Show Figures

Figure 1

Back to TopTop