Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Authors = Michael G. Weller ORCID = 0000-0003-2767-2029

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3696 KiB  
Article
Investigation of Impurities in Peptide Pools
by Gaby Bosc-Bierne and Michael G. Weller
Separations 2025, 12(2), 36; https://doi.org/10.3390/separations12020036 - 2 Feb 2025
Cited by 1 | Viewed by 2382
Abstract
Peptide pools are important research tools in different biomedical fields. They consist of a complex mixture of defined peptides, which places high demands on the production and quality control of these products. Previously it has been shown that the combination of UHPLC with [...] Read more.
Peptide pools are important research tools in different biomedical fields. They consist of a complex mixture of defined peptides, which places high demands on the production and quality control of these products. Previously it has been shown that the combination of UHPLC with high-resolution mass-spectrometry (HRMS) is a fast and powerful method to confirm the relative concentration and the structural identity of all peptides expected to be in the pool. In this work, the additional information contained in the UV chromatograms and mass spectra is used to search for impurities due to synthesis by-products and degradation during storage and transportation and to identify possible analytical artifacts. It was shown that most impurities are only present in trace amounts and can be considered uncritical for most applications. The most frequent and perhaps unexpected impurities were homo- and heterodimers caused by the free cysteines contained in these peptide pools. Furthermore, pyroglutamate and aspartimide formation, deamidation, methionine oxidation, and amino acid deletions could be found. This list is not intended to be comprehensive, but rather a brief guide to quickly identify impurities and, in the long term, to suggest possible changes in the composition of the peptide pools to avoid such impurities by design or by special precautions. Full article
(This article belongs to the Special Issue Peptide Synthesis, Separation and Purification)
Show Figures

Figure 1

26 pages, 1514 KiB  
Review
Challenges and Insights in Absolute Quantification of Recombinant Therapeutic Antibodies by Mass Spectrometry: An Introductory Review
by Sarah Döring, Michael G. Weller, Yvonne Reinders, Zoltán Konthur and Carsten Jaeger
Antibodies 2025, 14(1), 3; https://doi.org/10.3390/antib14010003 - 7 Jan 2025
Cited by 1 | Viewed by 2993
Abstract
This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from [...] Read more.
This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today’s chimeric and fully human mAbs. With increasing commercial relevance, the absolute quantification of mAbs, traceable to an international standard system of units (SI units), has attracted attention from science, industry, and national metrology institutes (NMIs). Quantification of proteotypic peptides after enzymatic digestion using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has emerged as the most viable strategy, though methods targeting intact mAbs are still being explored. We review peptide-based quantification, focusing on critical experimental steps like denaturation, reduction, alkylation, choice of digestion enzyme, and selection of signature peptides. Challenges in amino acid analysis (AAA) for quantifying pure mAbs and peptide calibrators, along with software tools for targeted MS data analysis, are also discussed. Short explanations within each chapter provide newcomers with an overview of the field’s challenges. We conclude that, despite recent progress, further efforts are needed to overcome the many technical hurdles along the quantification workflow and discuss the prospects of developing standardized protocols and certified reference materials (CRMs) for this goal. We also suggest future applications of newer technologies for absolute mAb quantification. Full article
Show Figures

Figure 1

16 pages, 10919 KiB  
Article
Drone-Based Localization of Hazardous Chemicals by Passive Smart Dust
by Tino Nerger, Patrick P. Neumann and Michael G. Weller
Sensors 2024, 24(19), 6195; https://doi.org/10.3390/s24196195 - 25 Sep 2024
Cited by 1 | Viewed by 3239
Abstract
The distribution of tiny sensors over a specific area was first proposed in the late 1990s as a concept known as smart dust. Several efforts focused primarily on computing and networking capabilities, but quickly ran into problems related to power supply, cost, data [...] Read more.
The distribution of tiny sensors over a specific area was first proposed in the late 1990s as a concept known as smart dust. Several efforts focused primarily on computing and networking capabilities, but quickly ran into problems related to power supply, cost, data transmission, and environmental pollution. To overcome these limitations, we propose using paper-based (confetti-like) chemosensors that exploit the inherent selectivity of chemical reagents, such as colorimetric indicators. In this work, cheap and biodegradable passive sensors made from cellulose could successfully indicate the presence of hazardous chemicals, e.g., strong acids, by a significant color change. A conventional color digital camera attached to a drone could easily detect this from a safe distance. The collected data were processed to define the hazardous area. Our work presents a combination of the smart dust concept, chemosensing, paper-based sensor technology, and low-cost drones for flexible, sensitive, economical, and rapid detection of hazardous chemicals in high-risk scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

11 pages, 772 KiB  
Protocol
Simple Determination of Affinity Constants of Antibodies by Competitive Immunoassays
by Janina Fischer, Jan Ole Kaufmann and Michael G. Weller
Methods Protoc. 2024, 7(3), 49; https://doi.org/10.3390/mps7030049 - 13 Jun 2024
Cited by 1 | Viewed by 5505
Abstract
The affinity constant, also known as the equilibrium constant, binding constant, equilibrium association constant, or the reciprocal value, the equilibrium dissociation constant (Kd), can be considered as one of the most important characteristics for any antibody–antigen pair. Many methods based on [...] Read more.
The affinity constant, also known as the equilibrium constant, binding constant, equilibrium association constant, or the reciprocal value, the equilibrium dissociation constant (Kd), can be considered as one of the most important characteristics for any antibody–antigen pair. Many methods based on different technologies have been proposed and used to determine this value. However, since a very large number of publications and commercial datasheets do not include this information, significant obstacles in performing such measurements seem to exist. In other cases where such data are reported, the results have often proved to be unreliable. This situation may indicate that most of the technologies available today require a high level of expertise and effort that does not seem to be available in many laboratories. In this paper, we present a simple approach based on standard immunoassay technology that is easy and quick to perform. It relies on the effect that the molar IC50 approaches the Kd value in the case of infinitely small concentrations of the reagent concentrations. A two-dimensional dilution of the reagents leads to an asymptotic convergence to Kd. The approach has some similarity to the well-known checkerboard titration used for the optimization of immunoassays. A well-known antibody against the FLAG peptide, clone M2, was used as a model system and the results were compared with other methods. This approach could be used in any case where a competitive assay is available or can be developed. The determination of an affinity constant should belong to the crucial parameters in any quality control of antibody-related products and assays and should be mandatory in papers using immunochemical protocols. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

18 pages, 3129 KiB  
Article
Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection
by Gaby Bosc-Bierne, Shireen Ewald, Oliver J. Kreuzer and Michael G. Weller
Separations 2024, 11(5), 156; https://doi.org/10.3390/separations11050156 - 16 May 2024
Cited by 1 | Viewed by 2335
Abstract
Peptide pools consist of short amino acid sequences and have proven to be versatile tools in various research areas in immunology and clinical applications. They are commercially available in many different compositions and variants. However, unlike other reagents that consist of only one [...] Read more.
Peptide pools consist of short amino acid sequences and have proven to be versatile tools in various research areas in immunology and clinical applications. They are commercially available in many different compositions and variants. However, unlike other reagents that consist of only one or a few compounds, peptide pools are highly complex products which makes their quality control a major challenge. Quantitative peptide analysis usually requires sophisticated methods, in most cases isotope-labeled standards and reference materials. Usually, this would be prohibitively laborious and expensive. Therefore, an approach is needed to provide a practical and feasible method for quality control of peptide pools. With insufficient quality control, the use of such products could lead to incorrect experimental results, worsening the well-known reproducibility crisis in the biomedical sciences. Here we propose the use of ultra-high performance liquid chromatography (UHPLC) with two detectors, a standard UV detector at 214 nm for quantitative analysis and a high-resolution mass spectrometer (HRMS) for identity confirmation. To be cost-efficient and fast, quantification and identification are performed in one chromatographic run. An optimized protocol is shown, and different peak integration methods are compared and discussed. This work was performed using a peptide pool known as CEF advanced, which consists of 32 peptides derived from cytomegalovirus (CMV), Epstein–Barr virus (EBV) and influenza virus, ranging from 8 to 12 amino acids in length. Full article
(This article belongs to the Special Issue Peptide Synthesis, Separation and Purification)
Show Figures

Figure 1

12 pages, 1997 KiB  
Review
The Mystery of Homochirality on Earth
by Michael G. Weller
Life 2024, 14(3), 341; https://doi.org/10.3390/life14030341 - 6 Mar 2024
Cited by 11 | Viewed by 5189
Abstract
Homochirality is an obvious feature of life on Earth. On the other hand, extraterrestrial samples contain largely racemic compounds. The same is true for any common organic synthesis. Therefore, it has been a perplexing puzzle for decades how these racemates could have formed [...] Read more.
Homochirality is an obvious feature of life on Earth. On the other hand, extraterrestrial samples contain largely racemic compounds. The same is true for any common organic synthesis. Therefore, it has been a perplexing puzzle for decades how these racemates could have formed enantiomerically enriched fractions as a basis for the origin of homochiral life forms. Numerous hypotheses have been put forward as to how preferentially homochiral molecules could have formed and accumulated on Earth. In this article, it is shown that homochirality of the abiotic organic pool at the time of formation of the first self-replicating molecules is not necessary and not even probable. It is proposed to abandon the notion of a molecular ensemble and to focus on the level of individual molecules. Although the formation of the first self-replicating, most likely homochiral molecule, is a seemingly improbable event, on a closer look, it is almost inevitable that some homochiral molecules have formed simply on a statistical basis. In this case, the non-selective leap to homochirality would be one of the first steps in chemical evolution directly out of a racemic “ocean”. Moreover, most studies focus on the chirality of the primordial monomers with respect to an asymmetric carbon atom. However, any polymer with a minimal size that allows folding to a secondary structure would spontaneously lead to asymmetric higher structures (conformations). Most of the functions of these polymers would be influenced by this inherently asymmetric folding. Furthermore, a concept of physical compartmentalization based on rock nanopores in analogy to nanocavities of digital immunoassays is introduced to suggest that complex cell walls or membranes were also not required for the first steps of chemical evolution. To summarize, simple and universal mechanisms may have led to homochiral self-replicating systems in the context of chemical evolution. A homochiral monomer pool is deemed unnecessary and probably never existed on primordial Earth. Full article
(This article belongs to the Special Issue Feature Papers in Origins of Life)
Show Figures

Figure 1

24 pages, 3179 KiB  
Project Report
The Swiss Brain Health Plan 2023–2033
by Claudio L. A. Bassetti, Mirjam R. Heldner, Kristina Adorjan, Emiliano Albanese, Gilles Allali, Marcel Arnold, Indrit Bègue, Murielle Bochud, Andrew Chan, Kim Q. do Cuénod, Renaud Du Pasquier, Bogdan Draganski, Mohamed Eshmawey, Ansgar Felbecker, Urs Fischer, Annika Frahsa, Giovanni B. Frisoni, Harald Grossmann, Raphael Guzman, Annette Hackenberg, Martin Hatzinger, Marcus Herdener, Albert Hofman, Andrea M. Humm, Simon Jung, Michael Kaess, Christian Kätterer, Jürg Kesselring, Andrea Klein, Andreas Kleinschmidt, Stefan Klöppel, Nora Kronig, Karl-Olof Lövblad, Anita Lüthi, Philippe Lyrer, Iris-Katharina Penner, Caroline Pot, Quinn Rafferty, Peter S. Sandor, Hakan Sarikaya, Erich Seifritz, Shayla Smith, Lukas Sveikata, Thomas C. Südhof, Barbara Tettenborn, Paul G. Unschuld, Anna M. Vicedo Cabrera, Susanne Walitza, Sebastian Walther, Isabel Wancke, Michael Weller, Susanne Wegener, Petra Zalud, Thomas Zeltner, Daniel Zutter and Luca Remondaadd Show full author list remove Hide full author list
Clin. Transl. Neurosci. 2023, 7(4), 38; https://doi.org/10.3390/ctn7040038 - 13 Nov 2023
Cited by 19 | Viewed by 9310
Abstract
The brain and its health are essential for our (physical mental, social, and spiritual) wellbeing, for being able to realize our potential as individuals, and also for a fair, well-functioning, and productive society. However, today the world is facing a healthcare crisis related [...] Read more.
The brain and its health are essential for our (physical mental, social, and spiritual) wellbeing, for being able to realize our potential as individuals, and also for a fair, well-functioning, and productive society. However, today the world is facing a healthcare crisis related to the very high (and increasing) burden of brain disorders. As a response to this crisis, the “Swiss Brain Health Plan” (SBHP) was conceptualized in the context of other initiatives launched to value, promote, and protect brain health over the entire life course. In the first section of this position paper, the following fundamental considerations of the SBHP are discussed: (1) the high (and increasing) burden of brain disorders in terms of prevalence (>50% of the population suffers from a brain disorder), disability, mortality, and costs; (2) the prevention of brain disorders; (3) the operational definition of brain health; (4) determinants of brain health; (5) international initiatives to promote brain (including mental) health including the World Health Organization (WHO) intersectorial global action plan on epilepsy and other neurological disorders (NDs) (IGAP) and the WHO comprehensive mental health action plan. In the second section of the paper, the five strategic objectives of the SBHP, which has the vision of promoting brain health for all across the entire life course, are presented: (1) to raise awareness; (2) strengthen cross-disciplinary and interprofessional training/educational programs for healthcare professionals; (3) foster research on brain health determinants and individualized prevention of brain disorders; (4) prioritize a holistic (non-disease-specific), integrated, person-centered public health approach to promote brain health and prevent brain disorders through collaborations across scientific, health care, commercial, societal and governmental stakeholders and insurance providers; (5) support, empower, and engage patients, caregivers, and patient organizations, and reduce the stigma and discrimination related to brain disorders. In the third section of the paper, the first (2024) steps in the implementation of the SHBP, which will be officially launched in Zurich on 22 November 2023, are presented: (1) a definition of the overall organization, governance, specific targets, and action areas of the SBHP; (2) the patronage and/or co-organization of events on such specific topics as brain research (Lausanne), dementia (Geneva), stroke (Basel), neurohumanities (Bellinzona), sleep (Lugano), and psychiatry (Zurich); (3) the conduction of a new study on the global burden of brain disorders in Switzerland; (4) the launching of an international Certificate of Advanced Studies (CAS) on Brain Health at the University of Bern. In the fourth section of the paper, there is a concise executive summary of the SBHP. Full article
Show Figures

Figure 1

1 pages, 205 KiB  
Editorial
Statement of Peer Review
by Giovanna Marrazza, Sara Tombelli, Benoît Piro, Eden Morales-Narváez, Danila Moscone, Michael G. Weller and Shaopeng Wang
Eng. Proc. 2023, 35(1), 40; https://doi.org/10.3390/engproc2023035040 - 5 Sep 2023
Viewed by 571
Abstract
In submitting conference proceedings to Engineering Proceedings, the volume editors of the proceedings certify to the publisher that all papers published in this volume have been subjected to peer review administered by the volume editors [...] Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
18 pages, 8321 KiB  
Article
Efficient Purification of Polyhistidine-Tagged Recombinant Proteins Using Functionalized Corundum Particles
by Jule L. Völzke, Sarah Smatty, Sarah Döring, Shireen Ewald, Marcus Oelze, Franziska Fratzke, Sabine Flemig, Zoltán Konthur and Michael G. Weller
BioTech 2023, 12(2), 31; https://doi.org/10.3390/biotech12020031 - 3 May 2023
Cited by 2 | Viewed by 5283
Abstract
Immobilized metal affinity chromatography (IMAC) is a popular and valuable method for the affinity purification of polyhistidine-tagged recombinant proteins. However, it often shows practical limitations, which might require cumbersome optimizations, additional polishing, and enrichment steps. Here, we present functionalized corundum particles for the [...] Read more.
Immobilized metal affinity chromatography (IMAC) is a popular and valuable method for the affinity purification of polyhistidine-tagged recombinant proteins. However, it often shows practical limitations, which might require cumbersome optimizations, additional polishing, and enrichment steps. Here, we present functionalized corundum particles for the efficient, economical, and fast purification of recombinant proteins in a column-free format. The corundum surface is first derivatized with the amino silane APTES, then EDTA dianhydride, and subsequently loaded with nickel ions. The Kaiser test, well known in solid-phase peptide synthesis, was used to monitor amino silanization and the reaction with EDTA dianhydride. In addition, ICP-MS was performed to quantify the metal-binding capacity. His-tagged protein A/G (PAG), mixed with bovine serum albumin (BSA), was used as a test system. The PAG binding capacity was around 3 mg protein per gram of corundum or 2.4 mg per 1 mL of corundum suspension. Cytoplasm obtained from different E. coli strains was examined as examples of a complex matrix. The imidazole concentration was varied in the loading and washing buffers. As expected, higher imidazole concentrations during loading are usually beneficial when higher purities are desired. Even when higher sample volumes, such as one liter, were used, recombinant protein down to a concentration of 1 µg/mL could be isolated selectively. Comparing the corundum material with standard Ni–NTA agarose beads indicated higher purities of proteins isolated using corundum. His6-MBP-mSA2, a fusion protein consisting of monomeric streptavidin and maltose-binding protein in the cytoplasm of E. coli, was purified successfully. To show that this method is also suitable for mammalian cell culture supernatants, purification of the SARS-CoV-2-S-RBD-His8 expressed in human Expi293F cells was performed. The material cost of the nickel-loaded corundum material (without regeneration) is estimated to be less than 30 cents for 1 g of functionalized support or 10 cents per milligram of isolated protein. Another advantage of the novel system is the corundum particles’ extremely high physical and chemical stability. The new material should be applicable in small laboratories and large-scale industrial applications. In summary, we could show that this new material is an efficient, robust, and cost-effective purification platform for the purification of His-tagged proteins, even in challenging, complex matrices and large sample volumes of low product concentration. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

20 pages, 5090 KiB  
Article
Chemiluminescence Biosensor for the Determination of Cardiac Troponin I (cTnI)
by Robert Tannenberg, Martin Paul, Bettina Röder, Santosh L. Gande, Sridhar Sreeramulu, Krishna Saxena, Christian Richter, Harald Schwalbe, Claudia Swart and Michael G. Weller
Biosensors 2023, 13(4), 455; https://doi.org/10.3390/bios13040455 - 3 Apr 2023
Cited by 26 | Viewed by 5393
Abstract
Cardiac vascular diseases, especially acute myocardial infarction (AMI), are one of the leading causes of death worldwide. Therefore cardio-specific biomarkers such as cardiac troponin I (cTnI) play an essential role in the field of diagnostics. In order to enable rapid and accurate measurement [...] Read more.
Cardiac vascular diseases, especially acute myocardial infarction (AMI), are one of the leading causes of death worldwide. Therefore cardio-specific biomarkers such as cardiac troponin I (cTnI) play an essential role in the field of diagnostics. In order to enable rapid and accurate measurement of cTnI with the potential of online measurements, a chemiluminescence-based immunosensor is presented as a proof of concept. A flow cell was designed and combined with a sensitive CMOS camera allowing sensitive optical readout. In addition, a microfluidic setup was established, which achieved selective and quasi-online cTnI determination within ten minutes. The sensor was tested with recombinant cTnI in phosphate buffer and demonstrated cTnI measurements in the concentration range of 2–25 µg/L. With the optimized system, a limit of detection (LoD) of 0.6 µg/L (23 pmol/L) was achieved. Furthermore, the selectivity of the immunosensor was investigated with other recombinant proteins, such as cTnT, and cTnC, at a level of 16 µg/L. No cross-reactivity could be observed. Measurements with diluted blood plasma and serum resulted in an LoD of 60 µg/L (2.4 nmol/L) and 70 µg/L (2.9 nmol/L), respectively. Full article
Show Figures

Figure 1

24 pages, 5357 KiB  
Article
Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer
by Georg Tscheuschner, Marco Ponader, Christopher Raab, Prisca S. Weider, Reni Hartfiel, Jan Ole Kaufmann, Jule L. Völzke, Gaby Bosc-Bierne, Carsten Prinz, Timm Schwaar, Paul Andrle, Henriette Bäßler, Khoa Nguyen, Yanchen Zhu, Antonia S. J. S. Mey, Amr Mostafa, Ilko Bald and Michael G. Weller
Viruses 2023, 15(3), 697; https://doi.org/10.3390/v15030697 - 7 Mar 2023
Cited by 4 | Viewed by 4454
Abstract
The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display [...] Read more.
The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications. Full article
(This article belongs to the Special Issue Applications of Plant Virus in Biotechnology)
Show Figures

Figure 1

13 pages, 34735 KiB  
Article
Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification
by Teodor Tchipilov, Klas Meyer and Michael G. Weller
Methods Protoc. 2023, 6(1), 11; https://doi.org/10.3390/mps6010011 - 23 Jan 2023
Cited by 5 | Viewed by 5044
Abstract
Hydrolysis of protein samples into amino acids facilitates the use of NMR spectroscopy for protein and peptide quantification. Different conditions have been tested for quantifying aromatic amino acids and proteins. The pH-dependent signal shifts in the aromatic region of amino acid samples were [...] Read more.
Hydrolysis of protein samples into amino acids facilitates the use of NMR spectroscopy for protein and peptide quantification. Different conditions have been tested for quantifying aromatic amino acids and proteins. The pH-dependent signal shifts in the aromatic region of amino acid samples were examined. A pH of 12 was found to minimize signal overlap of the four aromatic amino acids. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, were applied as internal standards. The quantification of amino acids from an amino acid standard was performed. Using the first two suggested internal standards, recovery was ~97% for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98% ± 2% and 88% ± 4%, respectively, at a protein concentration of 16 g/L or 250 µM. Full article
(This article belongs to the Special Issue Methods and Protocols 2022)
Show Figures

Figure 1

13 pages, 1793 KiB  
Article
High-Purity Corundum as Support for Affinity Extractions from Complex Samples
by Jule L. Völzke, Parya Hodjat Shamami, Kornelia Gawlitza, Ines Feldmann, Annett Zimathies, Klas Meyer and Michael G. Weller
Separations 2022, 9(9), 252; https://doi.org/10.3390/separations9090252 - 7 Sep 2022
Cited by 1 | Viewed by 2862
Abstract
Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, EDS, and zeta potential measurements. [...] Read more.
Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, EDS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids were used to introduce functional groups for further conjugations. The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower non-specific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A binding capacity of 1.8 mg IgG per gram of corundum powder was achieved. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. Full article
(This article belongs to the Special Issue Advances in Separation Engineering)
Show Figures

Graphical abstract

22 pages, 4701 KiB  
Article
MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour
by Georg Tscheuschner, Melanie N. Kaiser, Jan Lisec, Denis Beslic, Thilo Muth, Maren Krüger, Hans Werner Mages, Brigitte G. Dorner, Julia Knospe, Jörg A. Schenk, Frank Sellrie and Michael G. Weller
Antibodies 2022, 11(2), 27; https://doi.org/10.3390/antib11020027 - 14 Apr 2022
Cited by 3 | Viewed by 6196
Abstract
During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. [...] Read more.
During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 °C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. Full article
Show Figures

Figure 1

15 pages, 2456 KiB  
Article
Cocaine Detection by a Laser-Induced Immunofluorometric Biosensor
by Martin Paul, Robert Tannenberg, Georg Tscheuschner, Marco Ponader and Michael G. Weller
Biosensors 2021, 11(9), 313; https://doi.org/10.3390/bios11090313 - 3 Sep 2021
Cited by 11 | Viewed by 4543
Abstract
The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue for public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical [...] Read more.
The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue for public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 7 ppt (23 pM) of cocaine with a response time of 90 s and a total assay time below 3 min. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement. Full article
(This article belongs to the Special Issue New Developments for Efficient Rapid Bioassays)
Show Figures

Figure 1

Back to TopTop