Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Authors = Mariana Spetea ORCID = 0000-0002-2379-5358

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1907 KiB  
Article
In Vitro and In Vivo Pharmacological Profiles of LENART01, a Dermorphin–Ranatensin Hybrid Peptide
by Nadine Hochrainer, Pawel Serafin, Sara D’Ingiullo, Adriano Mollica, Sebastian Granica, Marek Brytan, Patrycja Kleczkowska and Mariana Spetea
Int. J. Mol. Sci. 2024, 25(7), 4007; https://doi.org/10.3390/ijms25074007 - 3 Apr 2024
Cited by 4 | Viewed by 1851
Abstract
Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We [...] Read more.
Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We recently reported a bifunctional peptide-based hybrid LENART01 combining dermorphin and ranatensin pharmacophores, which displays activity to the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) in rat brains and spinal cords. In this study, we investigated the in vitro binding and functional activities to the human MOR and the in vivo pharmacology of LENART01 in mice after subcutaneous administration. In vitro binding assays showed LENART01 to bind and be selective to the human MOR over the other opioid receptor subtypes and delta, kappa and nociceptin receptors. In the [35S]GTPγS binding assay, LENART01 acted as a potent and full agonist to the human MOR. In mice, LENART01 produced dose-dependent antinociceptive effects in formalin-induced inflammatory pain, with increased potency than morphine. Antinociceptive effects were reversed by naloxone, indicating MOR activation in vivo. Behavioral studies also demonstrated LENART01’s properties to induce less adverse effects without locomotor dysfunction and withdrawal syndrome compared to conventional opioid analgesics, such as morphine. LENART01 is the first peptide-based MOR-D2R ligand known to date and the first dual MOR-dopamine D2R ligand for which in vivo pharmacology is reported with antinociceptive efficacy and reduced opioid-related side effects. Our current findings may pave the way to new pain therapeutics with limited side effects in acute and chronic use. Full article
Show Figures

Figure 1

26 pages, 2847 KiB  
Review
Peripheralization Strategies Applied to Morphinans and Implications for Improved Treatment of Pain
by Helmut Schmidhammer, Mahmoud Al-Khrasani, Susanna Fürst and Mariana Spetea
Molecules 2023, 28(12), 4761; https://doi.org/10.3390/molecules28124761 - 14 Jun 2023
Cited by 4 | Viewed by 2263
Abstract
Opioids are considered the most effective analgesics for the treatment of moderate to severe acute and chronic pain. However, the inadequate benefit/risk ratio of currently available opioids, together with the current ‘opioid crisis’, warrant consideration on new opioid analgesic discovery strategies. Targeting peripheral [...] Read more.
Opioids are considered the most effective analgesics for the treatment of moderate to severe acute and chronic pain. However, the inadequate benefit/risk ratio of currently available opioids, together with the current ‘opioid crisis’, warrant consideration on new opioid analgesic discovery strategies. Targeting peripheral opioid receptors as effective means of treating pain and avoiding the centrally mediated side effects represents a research area of substantial and continuous attention. Among clinically used analgesics, opioids from the class of morphinans (i.e., morphine and structurally related analogues) are of utmost clinical importance as analgesic drugs activating the mu-opioid receptor. In this review, we focus on peripheralization strategies applied to N-methylmorphinans to limit their ability to cross the blood–brain barrier, thus minimizing central exposure and the associated undesired side effects. Chemical modifications to the morphinan scaffold to increase hydrophilicity of known and new opioids, and nanocarrier-based approaches to selectively deliver opioids, such as morphine, to the peripheral tissue are discussed. The preclinical and clinical research activities have allowed for the characterization of a variety of compounds that show low central nervous system penetration, and therefore an improved side effect profile, yet maintaining the desired opioid-related antinociceptive activity. Such peripheral opioid analgesics may represent alternatives to presently available drugs for an efficient and safer pain therapy. Full article
Show Figures

Figure 1

11 pages, 1151 KiB  
Article
Bifunctional Peptidomimetic G Protein-Biased Mu-Opioid Receptor Agonist and Neuropeptide FF Receptor Antagonist KGFF09 Shows Efficacy in Visceral Pain without Rewarding Effects after Subcutaneous Administration in Mice
by Maria Dumitrascuta, Charlotte Martin, Steven Ballet and Mariana Spetea
Molecules 2022, 27(24), 8785; https://doi.org/10.3390/molecules27248785 - 11 Dec 2022
Cited by 5 | Viewed by 2221
Abstract
There is still an unmet clinical need to develop new pharmaceuticals for effective and safe pain management. Current pharmacotherapy offers unsatisfactory solutions due to serious side effects related to the chronic use of opioid drugs. Prescription opioids produce analgesia through activation of the [...] Read more.
There is still an unmet clinical need to develop new pharmaceuticals for effective and safe pain management. Current pharmacotherapy offers unsatisfactory solutions due to serious side effects related to the chronic use of opioid drugs. Prescription opioids produce analgesia through activation of the mu-opioid receptor (MOR) and are major contributors to the current opioid crisis. Multifunctional ligands possessing activity at more than one receptor represent a prominent therapeutic approach for the treatment of pain with fewer adverse effects. We recently reported on the design of a bifunctional MOR agonist/neuropeptide FF receptor (NPFFR) antagonist peptididomimetic, KGFF09 (H-Dmt-DArg-Aba-βAla-Bpa-Phe-NH2), and its antinociceptive effects after subcutaneous (s.c.) administration in acute and persistent pain in mice with reduced propensity for unwanted side effects. In this study, we further investigated the antinociceptive properties of KGFF09 in a mouse model of visceral pain after s.c. administration and the potential for opioid-related liabilities of rewarding and sedation/locomotor dysfunction following chronic treatment. KGFF09 produced a significant dose-dependent inhibition of the writhing behavior in the acetic acid-induced writhing assay with increased potency when compared to morphine. We also demonstrated the absence of harmful effects caused by typical MOR agonists, i.e., rewarding effects (conditioned-place preference test) and sedation/locomotor impairment (open-field test), at a dose shown to be highly effective in inhibiting pain behavior. Consequently, KGFF09 displayed a favorable benefit/side effect ratio regarding these opioid-related side effects compared to conventional opioid analgesics, such as morphine, underlining the development of dual MOR agonists/NPFFR antagonists as improved treatments for various pain conditions. Full article
(This article belongs to the Special Issue Synthesis and Application of Opioids)
Show Figures

Figure 1

21 pages, 4104 KiB  
Article
In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist
by Kristina Puls, Aina-Leonor Olivé-Marti, Szymon Pach, Birgit Pinter, Filippo Erli, Gerhard Wolber and Mariana Spetea
Pharmaceuticals 2022, 15(6), 680; https://doi.org/10.3390/ph15060680 - 28 May 2022
Cited by 5 | Viewed by 4544
Abstract
Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR [...] Read more.
Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR and delta-opioid receptor (DOR) remain elusive. In this study, we present an in vitro, in vivo and in silico characterization of Compound A by revealing this ligand as a KOR antagonist in vitro and in vivo. In the radioligand competitive binding assay, Compound A bound at the human KOR, albeit with moderate affinity, but with increased affinity than to the human MOR and without specific binding at the human DOR, thus displaying a preferential KOR selectivity profile. Following subcutaneous administration in mice, Compound A effectively reverse the antinociceptive effects of the prototypical KOR agonist, U50,488. In silico investigations were carried out to assess the structural determinants responsible for opioid receptor subtype selectivity of Compound A. Molecular docking, molecular dynamics simulations and dynamic pharmacophore (dynophore) generation revealed differences in the stabilization of the chlorophenyl moiety of Compound A within the opioid receptor binding pockets, rationalizing the experimentally determined binding affinity values. This new chemotype bears the potential for favorable ADMET properties and holds promise for chemical optimization toward the development of potential therapeutics. Full article
(This article belongs to the Special Issue Medicinal Chemistry and Pharmacological Activities of Opioid Drugs)
Show Figures

Graphical abstract

6 pages, 204 KiB  
Editorial
Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery II
by Richard M. Van Rijn and Mariana Spetea
Molecules 2022, 27(10), 3140; https://doi.org/10.3390/molecules27103140 - 13 May 2022
Viewed by 2849
Abstract
A few neurotransmitter systems have fascinated the research community, as muchas the opioid system (i.e., opioid ligands and their receptors) [...] Full article
19 pages, 3770 KiB  
Article
Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the µ-, δ-, κ-Opioid and Nociceptin Receptors
by Kristina Puls, Helmut Schmidhammer, Gerhard Wolber and Mariana Spetea
Molecules 2022, 27(3), 919; https://doi.org/10.3390/molecules27030919 - 28 Jan 2022
Cited by 9 | Viewed by 3469
Abstract
Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual μ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, [...] Read more.
Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual μ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, its binding mode at the opioid receptors remains elusive. Here, we present a comprehensive in silico evaluation of HS-731 binding at all opioid receptors. We provide insights into dynamic interaction patterns explaining the different binding and activity of HS-731 on the opioid receptors. For this purpose, we conducted docking, performed molecular dynamics (MD) simulations and generated dynamic pharmacophores (dynophores). Our results highlight two residues important for HS-731 recognition at the classical opioid receptors (MOR, DOR and KOR), particular the conserved residue 5.39 (K) and the non-conserved residue 6.58 (MOR: K, DOR: W and KOR: E). Furthermore, we assume a salt bridge between the transmembrane helices (TM) 5 and 6 via K2275.39 and E2976.58 to be responsible for the partial agonism of HS-731 at the KOR. Additionally, we experimentally demonstrated the absence of affinity of HS-731 to the nociceptin/orphanin FQ peptide (NOP) receptor. We consider the morphinan phenol Y1303.33 responsible for this affinity lack. Y1303.33 points deep into the NOP receptor binding pocket preventing HS-731 binding to the orthosteric binding pocket. These findings provide significant structural insights into HS-731 interaction pattern with the opioid receptors that are important for understanding the pharmacology of this peripheral opioid analgesic. Full article
Show Figures

Graphical abstract

22 pages, 3402 KiB  
Review
Opioid Analgesia and Opioid-Induced Adverse Effects: A Review
by Alok K. Paul, Craig M. Smith, Mohammed Rahmatullah, Veeranoot Nissapatorn, Polrat Wilairatana, Mariana Spetea, Nuri Gueven and Nikolas Dietis
Pharmaceuticals 2021, 14(11), 1091; https://doi.org/10.3390/ph14111091 - 27 Oct 2021
Cited by 149 | Viewed by 34848
Abstract
Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As [...] Read more.
Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As opium and opioids have been traditionally used as painkillers, the exact mechanisms of their adverse reactions over repeated use are multifactorial and not fully understood. Older adults suffer from cancer and non-cancer chronic pain more than younger adults, due to the physiological changes related to ageing and their reduced metabolic capabilities and thus show an increased number of adverse reactions to opioid drugs. All clinically used opioids are μ-opioid receptor agonists, and the major adverse effects are directly or potentially connected to this receptor. Multifunctional opioid ligands or peripherally restricted opioids may elicit fewer adverse effects, as shown in preclinical studies, but these results need reproducibility from further extensive clinical trials. The current review aims to overview various mechanisms involved in the adverse effects induced by opioids, to provide a better understanding of the underlying pathophysiology and, ultimately, to help develop an effective therapeutic strategy to better manage pain. Full article
(This article belongs to the Special Issue Medicinal Chemistry and Pharmacological Activities of Opioid Drugs)
Show Figures

Figure 1

20 pages, 2541 KiB  
Review
Recent Chemical and Pharmacological Developments on 14-Oxygenated-N-methylmorphinan-6-ones
by Mariana Spetea and Helmut Schmidhammer
Molecules 2021, 26(18), 5677; https://doi.org/10.3390/molecules26185677 - 18 Sep 2021
Cited by 10 | Viewed by 9251
Abstract
Adequate pain management, particularly chronic pain, remains a major challenge associated with modern-day medicine. Current pharmacotherapy offers unsatisfactory long-term solutions due to serious side effects related to the chronic administration of analgesic drugs. Morphine and structurally related derivatives (e.g., oxycodone, oxymorphone, buprenorphine) are [...] Read more.
Adequate pain management, particularly chronic pain, remains a major challenge associated with modern-day medicine. Current pharmacotherapy offers unsatisfactory long-term solutions due to serious side effects related to the chronic administration of analgesic drugs. Morphine and structurally related derivatives (e.g., oxycodone, oxymorphone, buprenorphine) are highly effective opioid analgesics, mediating their effects via the activation of opioid receptors, with the mu-opioid receptor subtype as the primary molecular target. However, they also cause addiction and overdose deaths, which has led to a global opioid crisis in the last decades. Therefore, research efforts are needed to overcome the limitations of present pain therapies with the aim to improve treatment efficacy and to reduce complications. This review presents recent chemical and pharmacological advances on 14-oxygenated-N-methylmorphinan-6-ones, in the search of safer pain therapeutics. We focus on drug design strategies and structure–activity relationships on specific modifications in positions 5, 6, 14 and 17 on the morphinan skeleton, with the goal of aiding the discovery of opioid analgesics with more favorable pharmacological properties, potent analgesia and fewer undesirable effects. Targeted molecular modifications on the morphinan scaffold can afford novel opioids as bi- or multifunctional ligands targeting multiple opioid receptors, as attractive alternatives to mu-opioid receptor selective analgesics. Full article
(This article belongs to the Special Issue Molecules Medicinal Chemistry Reviews)
Show Figures

Figure 1

19 pages, 1556 KiB  
Article
Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking
by Maria Dumitrascuta, Marcel Bermudez, Olga Trovato, Jolien De Neve, Steven Ballet, Gerhard Wolber and Mariana Spetea
Molecules 2021, 26(11), 3267; https://doi.org/10.3390/molecules26113267 - 28 May 2021
Cited by 12 | Viewed by 3710
Abstract
Opioids are the most effective analgesics, with most clinically available opioids being agonists to the µ-opioid receptor (MOR). The MOR is also responsible for their unwanted effects, including reward and opioid misuse leading to the current public health crisis. The imperative need for [...] Read more.
Opioids are the most effective analgesics, with most clinically available opioids being agonists to the µ-opioid receptor (MOR). The MOR is also responsible for their unwanted effects, including reward and opioid misuse leading to the current public health crisis. The imperative need for safer, non-addictive pain therapies drives the search for novel leads and new treatment strategies. In this study, the recently discovered MOR/nociceptin (NOP) receptor peptide hybrid KGNOP1 (H-Dmt-D-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) was evaluated following subcutaneous administration in mouse models of acute (formalin test) and chronic inflammatory pain (Complete Freund’s adjuvant-induced paw hyperalgesia), liabilities of spontaneous locomotion, conditioned place preference, and the withdrawal syndrome. KGNOP1 demonstrated dose-dependent antinociceptive effects in the formalin test, and efficacy in attenuating thermal hyperalgesia with prolonged duration of action. Antinociceptive effects of KGNOP1 were reversed by naltrexone and SB-612111, indicating the involvement of both MOR and NOP receptor agonism. In comparison with morphine, KGNOP1 was more potent and effective in mouse models of inflammatory pain. Unlike morphine, KGNOP1 displayed reduced detrimental liabilities, as no locomotor impairment nor rewarding and withdrawal effects were observed. Docking of KGNOP1 to the MOR and NOP receptors and subsequent 3D interaction pattern analyses provided valuable insights into its binding mode. The mixed MOR/NOP receptor peptide KGNOP1 holds promise in the effort to develop new analgesics for the treatment of various pain states with fewer MOR-mediated side effects, particularly abuse and dependence liabilities. Full article
Show Figures

Figure 1

5 pages, 187 KiB  
Editorial
Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery
by Mariana Spetea and Helmut Schmidhammer
Molecules 2020, 25(23), 5658; https://doi.org/10.3390/molecules25235658 - 1 Dec 2020
Cited by 7 | Viewed by 3328
Abstract
The interest in opioids such as morphine, the prototypical opioid ligand, has been maintained throughout the years [...] Full article
24 pages, 3938 KiB  
Review
Development of Diphenethylamines as Selective Kappa Opioid Receptor Ligands and Their Pharmacological Activities
by Helmut Schmidhammer, Filippo Erli, Elena Guerrieri and Mariana Spetea
Molecules 2020, 25(21), 5092; https://doi.org/10.3390/molecules25215092 - 2 Nov 2020
Cited by 11 | Viewed by 4953
Abstract
Among the opioid receptors, the kappa opioid receptor (KOR) has been gaining substantial attention as a promising molecular target for the treatment of numerous human disorders, including pain, pruritus, affective disorders (i.e., depression and anxiety), drug addiction, and neurological diseases (i.e., epilepsy). Particularly, [...] Read more.
Among the opioid receptors, the kappa opioid receptor (KOR) has been gaining substantial attention as a promising molecular target for the treatment of numerous human disorders, including pain, pruritus, affective disorders (i.e., depression and anxiety), drug addiction, and neurological diseases (i.e., epilepsy). Particularly, the knowledge that activation of the KOR, opposite to the mu opioid receptor (MOR), does not produce euphoria or leads to respiratory depression or overdose, has stimulated the interest in discovering ligands targeting the KOR as novel pharmacotherapeutics. However, the KOR mediates the negative side effects of dysphoria/aversion, sedation, and psychotomimesis, with the therapeutic promise of biased agonism (i.e., selective activation of beneficial over deleterious signaling pathways) for designing safer KOR therapeutics without the liabilities of conventional KOR agonists. In this review, the development of new KOR ligands from the class of diphenethylamines is presented. Specifically, we describe the design strategies, synthesis, and pharmacological activities of differently substituted diphenethylamines, where structure–activity relationships have been extensively studied. Ligands with distinct profiles as potent and selective agonists, G protein-biased agonists, and selective antagonists, and their potential use as therapeutic agents (i.e., pain treatment) and research tools are described. Full article
Show Figures

Figure 1

21 pages, 2907 KiB  
Editorial
Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–7
by Michael Gütschow, Jean Jacques Vanden Eynde, Josef Jampilek, CongBao Kang, Arduino A. Mangoni, Paola Fossa, Rafik Karaman, Andrea Trabocchi, Peter J. H. Scott, Jóhannes Reynisson, Simona Rapposelli, Stefania Galdiero, Jean-Yves Winum, Chiara Brullo, Katalin Prokai-Tatrai, Arun K. Sharma, Matthieu Schapira, Yasu-Taka Azuma, Laura Cerchia, Mariana Spetea, Giangiacomo Torri, Simona Collina, Athina Geronikaki, Alfonso T. García-Sosa, M. Helena Vasconcelos, Maria Emília Sousa, Ivan Kosalec, Tiziano Tuccinardi, Iola F. Duarte, Jorge A. R. Salvador, Massimo Bertinaria, Maurizio Pellecchia, Jussara Amato, Giulio Rastelli, Paula A. C. Gomes, Rita C. Guedes, Jean-Marc Sabatier, Ana Estévez-Braun, Bruno Pagano, Stefano Mangani, Rino Ragno, George Kokotos, Margherita Brindisi, Florenci V. González, Fernanda Borges, Mariarosaria Miloso, Jarkko Rautio and Diego Muñoz-Torreroadd Show full author list remove Hide full author list
Molecules 2020, 25(13), 2968; https://doi.org/10.3390/molecules25132968 - 28 Jun 2020
Cited by 5 | Viewed by 9295
Abstract
Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes is a series of editorials which is published on a biannual basis by the Editorial Board of the Medicinal Chemistry section of the journal Molecules [...] Full article
Show Figures

Figure 1

22 pages, 1311 KiB  
Review
On the Role of Peripheral Sensory and Gut Mu Opioid Receptors: Peripheral Analgesia and Tolerance
by Susanna Fürst, Zoltán S. Zádori, Ferenc Zádor, Kornél Király, Mihály Balogh, Szilvia B. László, Barbara Hutka, Amir Mohammadzadeh, Chiara Calabrese, Anna Rita Galambos, Pál Riba, Patrizia Romualdi, Sándor Benyhe, Júlia Timár, Helmut Schmidhammer, Mariana Spetea and Mahmoud Al-Khrasani
Molecules 2020, 25(11), 2473; https://doi.org/10.3390/molecules25112473 - 26 May 2020
Cited by 20 | Viewed by 6827
Abstract
There is growing evidence on the role of peripheral µ-opioid receptors (MORs) in analgesia and analgesic tolerance. Opioid analgesics are the mainstay in the management of moderate to severe pain, and their efficacy in the alleviation of pain is well recognized. Unfortunately, chronic [...] Read more.
There is growing evidence on the role of peripheral µ-opioid receptors (MORs) in analgesia and analgesic tolerance. Opioid analgesics are the mainstay in the management of moderate to severe pain, and their efficacy in the alleviation of pain is well recognized. Unfortunately, chronic treatment with opioid analgesics induces central analgesic tolerance, thus limiting their clinical usefulness. Numerous molecular mechanisms, including receptor desensitization, G-protein decoupling, β-arrestin recruitment, and alterations in the expression of peripheral MORs and microbiota have been postulated to contribute to the development of opioid analgesic tolerance. However, these studies are largely focused on central opioid analgesia and tolerance. Accumulated literature supports that peripheral MORs mediate analgesia, but controversial results on the development of peripheral opioid receptors-mediated analgesic tolerance are reported. In this review, we offer evidence on the consequence of the activation of peripheral MORs in analgesia and analgesic tolerance, as well as approaches that enhance analgesic efficacy and decrease the development of tolerance to opioids at the peripheral sites. We have also addressed the advantages and drawbacks of the activation of peripheral MORs on the sensory neurons and gut (leading to dysbiosis) on the development of central and peripheral analgesic tolerance. Full article
Show Figures

Figure 1

12 pages, 4495 KiB  
Article
Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt1]DALDA, and KGOP01, Binding to the Mu Opioid Receptor
by Maria Dumitrascuta, Marcel Bermudez, Steven Ballet, Gerhard Wolber and Mariana Spetea
Molecules 2020, 25(9), 2087; https://doi.org/10.3390/molecules25092087 - 29 Apr 2020
Cited by 16 | Viewed by 5007
Abstract
The mu opioid receptor (MOR) is the primary target for analgesia of endogenous opioid peptides, alkaloids, synthetic small molecules with diverse scaffolds, and peptidomimetics. Peptide-based opioids are viewed as potential analgesics with reduced side effects and have received constant scientific interest over the [...] Read more.
The mu opioid receptor (MOR) is the primary target for analgesia of endogenous opioid peptides, alkaloids, synthetic small molecules with diverse scaffolds, and peptidomimetics. Peptide-based opioids are viewed as potential analgesics with reduced side effects and have received constant scientific interest over the years. This study focuses on three potent peptide and peptidomimetic MOR agonists, DALDA, [Dmt1]DALDA, and KGOP01, and the prototypical peptide MOR agonist DAMGO. We present the first molecular modeling study and structure–activity relationships aided by in vitro assays and molecular docking of the opioid peptide analogues, in order to gain insight into their mode of binding to the MOR. In vitro binding and functional assays revealed the same rank order with KGOP01 > [Dmt1]DALDA > DAMGO > DALDA for both binding and MOR activation. Using molecular docking at the MOR and three-dimensional interaction pattern analysis, we have rationalized the experimental outcomes and highlighted key amino acid residues responsible for agonist binding to the MOR. The Dmt (2′,6′-dimethyl-L-Tyr) moiety of [Dmt1]DALDA and KGOP01 was found to represent the driving force for their high potency and agonist activity at the MOR. These findings contribute to a deeper understanding of MOR function and flexible peptide ligand–MOR interactions, that are of significant relevance for the future design of opioid peptide-based analgesics. Full article
Show Figures

Figure 1

24 pages, 4206 KiB  
Editorial
Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–6
by Jean Jacques Vanden Eynde, Arduino A. Mangoni, Jarkko Rautio, Jérôme Leprince, Yasu-Taka Azuma, Alfonso T. García-Sosa, Christopher Hulme, Josef Jampilek, Rafik Karaman, Wei Li, Paula A. C. Gomes, Dimitra Hadjipavlou-Litina, Raffaele Capasso, Athina Geronikaki, Laura Cerchia, Jean-Marc Sabatier, Rino Ragno, Tiziano Tuccinardi, Andrea Trabocchi, Jean-Yves Winum, F. Javier Luque, Katalin Prokai-Tatrai, Mariana Spetea, Michael Gütschow, Ivan Kosalec, Catherine Guillou, M. Helena Vasconcelos, George Kokotos, Giulio Rastelli, Maria Emília de Sousa, Clementina Manera, Sandra Gemma, Stefano Mangani, Carlo Siciliano, Stefania Galdiero, Hong Liu, Peter J. H. Scott, Cristóbal de los Ríos, Luigi A. Agrofoglio, Simona Collina, Rita C. Guedes and Diego Muñoz-Torreroadd Show full author list remove Hide full author list
Molecules 2020, 25(1), 119; https://doi.org/10.3390/molecules25010119 - 28 Dec 2019
Cited by 5 | Viewed by 10040
Abstract
Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes is a series of Editorials that is published on a biannual basis by the Editorial Board of the Medicinal Chemistry section of the journal Molecules [...] Full article
Show Figures

Figure 1

Back to TopTop