Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Authors = Kun Ling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2547 KiB  
Article
Formation and Biological Characteristics Analysis of Artificial Gynogenetic WuLi Carp Induced by Inactivated Sperm of Megalobrama Amblycephala
by Xiaowei Xu, Enkui Hu, Qian Xiao, Xu Huang, Chongqing Wang, Xidan Xu, Kun Zhang, Yue Zhou, Jinhai Bai, Zhengkun Liu, Yuchen Jiang, Yan Tang, Xinyi Deng, Siyang Li, Wanjing Peng, Ling Xiong, Yuhan Yang, Zeyang Li, Ming Ma, Qinbo Qin and Shaojun Liuadd Show full author list remove Hide full author list
Biology 2025, 14(8), 994; https://doi.org/10.3390/biology14080994 - 4 Aug 2025
Viewed by 153
Abstract
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2 [...] Read more.
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2n = 48, BSB). As anticipated, gonadal section examination confirmed that all gynogenetic WuLi carp (2n = 100, GWB) were female. To investigate whether paternal DNA fragments from BSB were integrated into the GWB genome, comparative analyses of morphological traits, DNA content, chromosomal numbers, 5S rDNA sequences, microsatellite DNA markers, fluorescence in situ hybridization (FISH), growth performance and nutritional composition were systematically conducted between GWB and maternal WLC. The results revealed pronounced maternal inheritance patterns across morphological characteristics, DNA quantification, chromosomal configurations, 5S rDNA sequences and FISH signals, while microsatellite detection unequivocally confirmed paternal BSB DNA fragment integration into the GWB genome. Remarkably, GWB demonstrated significantly superior growth performance and elevated unsaturated fatty acid content relative to the maternal line. This approach not only addressed germplasm degradation in WLC but also provided valuable theoretical foundations for breeding programs in this commercially significant species. Full article
Show Figures

Figure 1

29 pages, 5490 KiB  
Review
Extraction of Rubidium and Cesium from a Variety of Resources: A Review
by Heyue Niu, Mingming Yu, Yusufujiang Mubula, Ling Zeng, Kun Xu, Zhehan Zhu and Guichun He
Materials 2025, 18(14), 3378; https://doi.org/10.3390/ma18143378 - 18 Jul 2025
Viewed by 367
Abstract
In recent years, with the development of science and technology and the transformation of economic structures, rubidium and cesium have gradually become indispensable rare metal resources as important materials for high-tech industries. However, the relationship between supply and demand of resources is unbalanced, [...] Read more.
In recent years, with the development of science and technology and the transformation of economic structures, rubidium and cesium have gradually become indispensable rare metal resources as important materials for high-tech industries. However, the relationship between supply and demand of resources is unbalanced, industrial demand is much higher than production, and the rubidium and cesium resources in hard rock minerals such as traditional pegmatite minerals are no longer enough to support global scientific and technological upgrading. There is therefore an urgent need to expand sources of resource extraction and recovery to meet market demand. This paper summarizes the current feasible technologies for extracting rubidium and cesium from pegmatite minerals, silicate minerals, salt lake brines and other potential resources. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

10 pages, 203 KiB  
Article
A Mean of Three-Year Follow-Up of Transvaginal Mesh Repair Using Calistar System Devices for the Treatment of Pelvic Organ Prolapse
by Chao-Chi Huang, Kun-Ling Lin, I-Chieh Sung, Zixi Loo and Cheng-Yu Long
J. Clin. Med. 2025, 14(13), 4703; https://doi.org/10.3390/jcm14134703 - 3 Jul 2025
Viewed by 375
Abstract
Background/Objectives: Pelvic organ prolapse (POP) and urinary incontinence are prevalent conditions among women, significantly affecting their quality of life. Vaginal mesh surgeries, including the use of the Calistar mesh, have become an essential intervention aimed at alleviating symptoms associated with POP and urinary [...] Read more.
Background/Objectives: Pelvic organ prolapse (POP) and urinary incontinence are prevalent conditions among women, significantly affecting their quality of life. Vaginal mesh surgeries, including the use of the Calistar mesh, have become an essential intervention aimed at alleviating symptoms associated with POP and urinary dysfunction. This study evaluates the clinical outcomes of Calistar vaginal mesh surgeries, focusing on pre- and post-operative changes in urinary parameters and prolapse severity. Methods: Data from 180 patients undergoing Calistar procedures were analyzed, revealing significant improvements in anatomical markers (Aa, Ba, C, Ap, and Bp) and urinary distress metrics (UDI-6 and IIQ-7) postoperatively. Results: The results demonstrate that Calistar mesh procedures are effective in reducing urinary frequency, incontinence, and incomplete bladder emptying. Conclusions: Calistar mesh procedures offer a safe and effective surgical option for managing POP and associated urinary dysfunction. The observed anatomical and functional improvements suggest that Calistar mesh significantly enhances patient outcomes and quality of life. Full article
(This article belongs to the Section Obstetrics & Gynecology)
11 pages, 3678 KiB  
Article
Plug-and-Play Self-Supervised Denoising for Pulmonary Perfusion MRI
by Changyu Sun, Yu Wang, Cody Thornburgh, Ai-Ling Lin, Kun Qing, John P. Mugler and Talissa A. Altes
Bioengineering 2025, 12(7), 724; https://doi.org/10.3390/bioengineering12070724 - 1 Jul 2025
Viewed by 483
Abstract
Pulmonary dynamic contrast-enhanced (DCE) MRI is clinically useful for assessing pulmonary perfusion, but its signal-to-noise ratio (SNR) is limited. A self-supervised learning network-based plug-and-play (PnP) denoising model was developed to improve the image quality of pulmonary perfusion MRI. A dataset of patients with [...] Read more.
Pulmonary dynamic contrast-enhanced (DCE) MRI is clinically useful for assessing pulmonary perfusion, but its signal-to-noise ratio (SNR) is limited. A self-supervised learning network-based plug-and-play (PnP) denoising model was developed to improve the image quality of pulmonary perfusion MRI. A dataset of patients with suspected pulmonary diseases was used. Asymmetric pixel-shuffle downsampling blind-spot network (AP-BSN) training inputs were two-dimensional background-subtracted perfusion images without clean ground truth. The AP-BSN is incorporated into a PnP model (PnP-BSN) for balancing noise control and image fidelity. Model performance was evaluated by SNR, sharpness, and overall image quality from two radiologists. The fractal dimension and k-means segmentation of the pulmonary perfusion images were calculated for comparing denoising performance. The model was trained on 29 patients and tested on 8 patients. The performance of PnP-BSN was compared to denoising convolutional neural network (DnCNN) and a Gaussian filter. PnP-BSN showed the highest reader scores in terms of SNR, sharpness, and overall image quality as scored by two radiologists. The expert scoring results for DnCNN, Gaussian, and PnP-BSN were 2.25 ± 0.65, 2.44 ± 0.73, and 3.56 ± 0.73 for SNR; 2.62 ± 0.52, 2.62 ± 0.52, and 3.38 ± 0.64 for sharpness; and 2.16 ± 0.33, 2.34 ± 0.42, and 3.53 ± 0.51 for overall image quality (p < 0.05 for all). PnP-BSN outperformed DnCNN and a Gaussian filter for denoising pulmonary perfusion MRI, which led to improved quantitative fractal analysis. Full article
Show Figures

Figure 1

17 pages, 4589 KiB  
Article
Prepared of Titanate as Pb (II) Adsorbent from SCR Waste Catalyst by Sub-Molten Salt Method: A Sustainable Strategy for Hazardous Waste Recycling and Heavy Metal Remediation
by Ling Zeng, Weiquan Yuan, Mingming Yu, Heyue Niu, Yusupujiang Mubula, Kun Xu and Zhehan Zhu
Sustainability 2025, 17(11), 4823; https://doi.org/10.3390/su17114823 - 23 May 2025
Viewed by 467
Abstract
To address the disposal challenges of waste SCR catalysts and the urgent need for sustainable solutions in heavy metal pollution control, this study proposes a green resource utilization strategy based on the sub-molten salt method to convert waste SCR catalysts into highly efficient [...] Read more.
To address the disposal challenges of waste SCR catalysts and the urgent need for sustainable solutions in heavy metal pollution control, this study proposes a green resource utilization strategy based on the sub-molten salt method to convert waste SCR catalysts into highly efficient lead ion adsorbents. Titanate-based adsorbent materials with a loose porous structure were successfully prepared by optimizing the process parameters (reaction temperature of 160 °C, NaOH concentration of 70%, and reaction time of 2 h). The experiments showed that the adsorption efficiency was as high as 99.65% and the maximum adsorption capacity was 76.08 mg/g under ambient conditions (adsorbent dosage of 1.2 g/L, initial Pb(II) concentration of 100 mg/L, contact time of 60 min, and pH = 4). Kinetic analysis showed that the quasi-second-order kinetic model (R2 = 0.9985) could better describe the adsorption process, indicating chemisorption as the dominant mechanism. Characterization analysis confirmed that subsequent to the adsorption process, Pb3(CO3)2(OH)2 formed on the surface of the adsorbent material is the adsorption product of Pb(II) and C-O through ion exchange and surface complexation. This study transforms waste SCR catalysts into sustainable titanate adsorbents through a low-energy green process, providing an eco-efficient solution for heavy metal wastewater treatment while aligning with circular economy principles and sustainable industrial practices. Full article
Show Figures

Figure 1

23 pages, 12327 KiB  
Article
SE-ResUNet Using Feature Combinations: A Deep Learning Framework for Accurate Mountainous Cropland Extraction Using Multi-Source Remote Sensing Data
by Ling Xiao, Jiasheng Wang, Kun Yang, Hui Zhou, Qianwen Meng, Yue He and Siyi Shen
Land 2025, 14(5), 937; https://doi.org/10.3390/land14050937 - 25 Apr 2025
Viewed by 499
Abstract
The accurate extraction of mountainous cropland from remote sensing images remains challenging due to its fragmented plots, irregular shapes, and the terrain-induced shadows. To address this, we propose a deep learning framework, SE-ResUNet, that integrates Squeeze-and-Excitation (SE) modules into ResUNet to enhance feature [...] Read more.
The accurate extraction of mountainous cropland from remote sensing images remains challenging due to its fragmented plots, irregular shapes, and the terrain-induced shadows. To address this, we propose a deep learning framework, SE-ResUNet, that integrates Squeeze-and-Excitation (SE) modules into ResUNet to enhance feature representation. Leveraging Sentinel-1/2 imagery and DEM data, we fuse vegetation indices (NDVI/EVI), terrain features (Slope/TRI), and SAR polarization characteristics into 3-channel inputs, optimizing the network’s discriminative capacity. Comparative experiments on network architectures, feature combinations, and terrain conditions demonstrated the superiority of our approach. The results showed the following: (1) feature fusion (NDVI + TerrainIndex + SAR) had the best performance (OA: 97.11%; F1-score: 96.41%; IoU: 93.06%), significantly reducing shadow/cloud interference. (2) SE-ResUNet outperformed ResUNet by 3.53% for OA and 8.09% for IoU, emphasizing its ability to recalibrate channel-wise features and refine edge details. (3) The model exhibited robustness across diverse slopes/aspects (OA > 93.5%), mitigating terrain-induced misclassifications. This study provides a scalable solution for mountainous cropland mapping, supporting precision agriculture and sustainable land management. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Graphical abstract

20 pages, 2771 KiB  
Article
Analysis of Heavy Metal Sources and Sustainability: Human Health Risk Assessment of Typical Agricultural Soils in Tianjin, North China Plain
by Ling Zhu, Kun Liu, Jiong Zhou and Lanlan Li
Sustainability 2025, 17(8), 3738; https://doi.org/10.3390/su17083738 - 21 Apr 2025
Cited by 1 | Viewed by 727
Abstract
Tianjin is a typical industrialized city of 13.64 million people, and the urbanization rate is 85.49%. The risk of heavy metals in the soils of the typical agricultural land around Tianjin poses a significant challenge to the sustainability of the ecosystem’s health and [...] Read more.
Tianjin is a typical industrialized city of 13.64 million people, and the urbanization rate is 85.49%. The risk of heavy metals in the soils of the typical agricultural land around Tianjin poses a significant challenge to the sustainability of the ecosystem’s health and human health. Different heavy metals in different land-use types in Tianjin have all accumulated in the soils, and the vegetable base had the highest total of accumulated heavy metals. This study took the surface soil of farmland Xiqing District—the main vegetable and crop area in Tianjin—as the research object, and the concentrations of eight heavy metals were analyzed. The geo-accumulation index (Igeo), principal component analysis (PCA), absolute principal component score-multiple linear regression (APCS–MLR), positive definite matrix factorization (PMF), and health risk assessment model were used to evaluate the degree, sources, and health risks (to adults and children) of heavy metal pollution. This study compares the APCS–MLR model with the PMF model. The results showed that Cd and Hg pollution were the most severe among the eight heavy metals in agricultural soil, with the average values exceeding the background by 151.9% and 324.1%, respectively. About 15% of the sites were at moderate to severe pollution levels. The PMF model can better analyze the sources of heavy metals in the study area, showing that the main sources of heavy metal pollution include natural source, mixed source of agriculture and transportation, coal combustion source, and pesticide source. The total carcinogenic risk index (TCR) of natural source is the highest, with Cr being the main contributor to maximum total non-carcinogenic risk indices (HI) and TCR for children; Hg contributes the most to HI in the coal combustion source, while Cu and Zn contributes most in the mixed source of agriculture and transportation. Full article
(This article belongs to the Special Issue Farmland Soil Pollution Control and Ecological Restoration)
Show Figures

Figure 1

17 pages, 3786 KiB  
Article
Multi-Omic Analysis Reveals the Potential Anti-Disease Mechanism of Disease-Resistant Grass Carp
by Chongqing Wang, Zeyang Li, Xu Huang, Xidan Xu, Xiaowei Xu, Kun Zhang, Yue Zhou, Jinhai Bai, Zhengkun Liu, Yuchen Jiang, Yan Tang, Xinyi Deng, Siyang Li, Enkui Hu, Wanjing Peng, Ling Xiong, Qian Xiao, Yuhan Yang, Qinbo Qin and Shaojun Liu
Int. J. Mol. Sci. 2025, 26(8), 3619; https://doi.org/10.3390/ijms26083619 - 11 Apr 2025
Viewed by 587
Abstract
The gut–liver axis is essential in animal disease and health. However, the role of the gut–liver axis in the anti-disease mechanism of disease-resistant grass carp (DRGC) derived from the backcross of female gynogenetic grass carp (GGC) and male grass carp (GC) remains unclear. [...] Read more.
The gut–liver axis is essential in animal disease and health. However, the role of the gut–liver axis in the anti-disease mechanism of disease-resistant grass carp (DRGC) derived from the backcross of female gynogenetic grass carp (GGC) and male grass carp (GC) remains unclear. This study analyzed the changes in gut histopathology, fecal intestinal microflora and metabolites, and liver transcriptome between GC and DRGC. Histological analysis revealed significant differences in the gut between DRGC and GC. In addition, microbial community analyses indicated that hybridization induced gut microbiome variation by significantly increasing the proportion of Firmicutes and Bacteroidota in DRGC. Metabolomic data revealed that the hybridization-induced metabolic change was probably characterized by being related to taurocholate and sphinganine in DRGC. Transcriptome analysis suggested that the enhanced disease resistance of DRGC was primarily attributed to immune-related genes (SHMT2, GOT1, ACACA, DLAT, GPIA, TALDO1, G6PD, and FASN). Spearman’s correlation analysis revealed a significant association between the gut microbiota, immune-related genes, and metabolites. Collectively, the gut–liver axis, through the interconnected microbiome–metabolite–gene pathway, may play a crucial role in the mechanism of greater disease resistance in DRGC, offering valuable insights for advancing the grass carp cultivation industry. Full article
Show Figures

Figure 1

16 pages, 4121 KiB  
Article
Preparation, Characterization and Bioactivities of Strawberry Polysaccharides
by Libo Wang, Yumeng Zhao, Junwen Liu, Ling Zhu, Yanhui Wei, Kun Cheng and Yaqin Xu
Foods 2025, 14(7), 1117; https://doi.org/10.3390/foods14071117 - 24 Mar 2025
Viewed by 523
Abstract
The aim of this research was to characterize the structure, physicochemical properties and anti-complement activities of two strawberry fruit polysaccharides (DSFP-500 and DSFP-700) obtained by ultrasonic degradation. The molecular weight (Mw) of DSFP-500 was 809 kDa and the Mw [...] Read more.
The aim of this research was to characterize the structure, physicochemical properties and anti-complement activities of two strawberry fruit polysaccharides (DSFP-500 and DSFP-700) obtained by ultrasonic degradation. The molecular weight (Mw) of DSFP-500 was 809 kDa and the Mw of DSFP-700 was 791 kDa, obviously lower than the 9479 kDa weight of the native polysaccharide (PSP). DSFP-500 and DSFP-700 were both composed of the same monosaccharides (Man, Rha, Gal, Glc, Gal and Ara) but the molar ratios were different. The two degraded polysaccharides had good thermal stabilities, as well as good water holding capacity (WHC) and oil holding capacity (OHC). The WHCs of DSFP-500 and DSFP-700 were 5.53 ± 0.08 and 5.70 ± 0.03 g water/g, and the OHCs of DSFP-500 and DSFP-700 were 9.34 ± 0.15 and 9.28 ± 0.29 g oil/g. DSFP-500 and DSFP-700 showed strong free radical scavenging activities in vitro; the ABTS+• scavenging rates of DSFP-700 and DSFP-500 were 55.97 ± 0.68% and 52.06 ± 0.85% at 4.0 mg/mL, respectively. Moreover, DSFP-500 and DSFP-700 both had anti-complement activities through the classical pathway and the alternative pathway, though DSFP-700 was more effective than DSFP-500. These findings indicated the potentiality of the degraded polysaccharides from strawberry fruits in functional food and medicine development. Full article
Show Figures

Figure 1

25 pages, 4046 KiB  
Review
A Review of Nanofiber Electrodes and the In Situ Exsolution of Nanoparticles for Solid Oxide Cells
by Jakub Lach, Michał Gogacz, Piotr Winiarz, Yihan Ling, Mingjiong Zhou and Kun Zheng
Materials 2025, 18(6), 1272; https://doi.org/10.3390/ma18061272 - 13 Mar 2025
Cited by 2 | Viewed by 1147
Abstract
Solid oxide cells (SOCs) can operate efficiently in solid oxide fuel cell (SOFC) and/or solid oxide electrolysis cell (SOEC) modes, and are one of the most promising electrochemical devices for energy conversion and storage, facilitating the integration of renewable energies with the electric [...] Read more.
Solid oxide cells (SOCs) can operate efficiently in solid oxide fuel cell (SOFC) and/or solid oxide electrolysis cell (SOEC) modes, and are one of the most promising electrochemical devices for energy conversion and storage, facilitating the integration of renewable energies with the electric grid. However, the SOC electrodes suffer performance and stability issues, especially in the case of fuel electrodes when SOCs are fueled by cheaper and more available fuels such as methane and natural gas. Typical Ni-YSZ cermet fuel electrodes suffer problems of coarsening, carbon deposition, and sulfur poisoning. Therefore, developing new electrodes using novel design strategies for SOCs is crucial. In this review work, the fuel electrode development strategies including the in situ exsolution of nanoparticles, multi-elemental nanocatalysts, and nanofiber materials have been reviewed and summarized for the design of new electrodes for SOCs. Nanofiber electrodes with in situ exsolved nanoparticles, which combine the advantages of a unique nanofiber microstructure and stable and active exsolved nanoparticles, are of great interest and significantly contribute to the development of high-performance fuel electrodes for SOCs. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanocomposites for Energy Conversion)
Show Figures

Figure 1

17 pages, 6304 KiB  
Article
Research on the Mechanical Activation Mechanism of Coal Gangue and Its CO2 Mineralization Effect
by Lei Zhu, Chengyong Liu, Gang Duan, Zhicheng Liu, Ling Jin, Yuejin Zhou and Kun Fang
Sustainability 2025, 17(6), 2364; https://doi.org/10.3390/su17062364 - 7 Mar 2025
Cited by 1 | Viewed by 1053
Abstract
During the extraction and utilization of coal resources, a large amount of CO2 and coal-based solid wastes (CBSW), such as coal gangue, are generated. To reduce the carbon and waste emissions, an effective approach is to mineralize the CO2 with the [...] Read more.
During the extraction and utilization of coal resources, a large amount of CO2 and coal-based solid wastes (CBSW), such as coal gangue, are generated. To reduce the carbon and waste emissions, an effective approach is to mineralize the CO2 with the CBSW and then backfill the mineralized materials into the goaf area. However, efficient CO2 mineralization is challenging due to the low reactivity of coal gangue. To this end, mechanical activation was used for the modification of coal gangue, and the mechanical activation mechanism of coal gangue was revealed from a microcosmic perspective by dry powder laser particle size testing (DPLPST), X-ray diffractometer (XRD) analysis, Fourier-transform infrared spectrometer (FTIR) analysis, and scanning electron microscopy (SEM). The results showed that compared with the unground coal gangue, the average particle size of coal gangue after 0.5 h, 1 h, and 1.5 h milling decreases by 94.3%, 95%, and 95.3%, respectively; additionally, the amorphous structures of the coal gangue after milling increase, and their edges and corners gradually diminish. After the pressure mineralization of coal gangues with different activation times, thermogravimetric (TG) analysis was performed, and the CO2 mineralization effect of the mechanically activated coal gangue was explored. It is found that the carbon fixation capacity of the coal gangue after 0.5 h, 1.0 h, and 1.5 h mechanical activation is increased by 1.18%, 3.20%, and 7.57%, respectively. Through the XRD and SEM, the mechanism of CO2 mineralization in coal gangue was revealed from a microcosmic perspective as follows: during the mineralization process, alkali metal ions of calcium and magnesium in anorthite and muscovite are leached and participate in the mineralization reaction, resulting in the formation of stable carbonates such as calcium carbonate. Full article
Show Figures

Figure 1

11 pages, 482 KiB  
Article
Adaptation Characteristics in the Range of Motion of the Shoulder Among Young Male Volleyball Players
by Kun-Yu Chou, Wan-Ling Wu, Chun-Wen Chiu, Shih-Chung Cheng and Hsiao-Yun Chang
J. Funct. Morphol. Kinesiol. 2025, 10(1), 67; https://doi.org/10.3390/jfmk10010067 - 15 Feb 2025
Viewed by 1299
Abstract
Background/Objectives: Repeated spiking and serving movements in volleyball can lead to alterations in shoulder range of motion among athletes, potentially increasing the risk of shoulder instability and injury. Hence, assessing and understanding the shoulder range of motion of volleyball players is a [...] Read more.
Background/Objectives: Repeated spiking and serving movements in volleyball can lead to alterations in shoulder range of motion among athletes, potentially increasing the risk of shoulder instability and injury. Hence, assessing and understanding the shoulder range of motion of volleyball players is a critical concern. Therefore, this study aimed to understand and evaluate the bilateral shoulder joint range of motion (ROM) in high-school male volleyball athletes and to discover the adaptation characteristics. Methods: Forty high-school male volleyball athletes participated in this study. Shoulder ROM measurements were taken via video with an iPhone 12 Pro Max, and we analyzed the ROM data using Kinovea software (Version 0.9.5) for both the dominant and non-dominant side. The shoulder ROM measurements included shoulder hyper-extension (SE), flexion (SF), internal rotation (IR), external rotation (ER), horizontal adduction (Sadd), and horizontal abduction (Sabd). After taking shoulder ROM measurements, the total rotational range of motion (TROM) was calculated based on the participants’ shoulder internal rotation and external rotation data, and we calculated the incidence of glenohumeral internal rotation deficiency (GIRD) among participants. Paired samples t-tests were used to analyze shoulder ROM differences between the dominant and non-dominant side. Results: The dominant side of the shoulder showed significantly lower internal rotation (dominant side: 42.17 ± 11.23°; non-dominant side: 52.14 ± 10.46°; p = 0.000) and total rotational ROM (dominant side: 137.11 ± 13.09°; non-dominant side: 141.96 ± 13.22°; p = 0.021) compared to the non-dominant side. Conversely, the dominant side of the shoulder exhibited significantly greater external rotation (dominant side: 94.96 ± 10.02°; non-dominant side: 89.83 ± 7.84°; p = 0.001) and shoulder horizontal adduction (dominant side: 44.87 ± 8.10°; non-dominant side: 39.60 ± 7.24°; p = 0.000) than the non-dominant side. No significant differences were found in other measured parameters. The incidence of glenohumeral internal rotation deficiency (GIRD) among all subjects was 37.5%. Conclusions: High-school male volleyball athletes in this study exhibited tightness in the posterior shoulder of their dominant side, indicating specific adaptations in shoulder ROM and a considerable prevalence of GIRD, observed in approximately one-quarter of the athletes. In conclusion, these data suggest that stretching and eccentric muscle training focusing on the posterior shoulder have potential value in mitigating these adaptations and reducing the risk of shoulder injuries. Full article
Show Figures

Figure 1

14 pages, 5016 KiB  
Article
CYP9Q1 Modulates Dopamine to Increase Sugar Responsiveness in Honeybees (Apis mellifera)
by Xue-Ling Xu, Long Geng, Zhao-Yang Zeng, Zun Wu, Lin-Feng Li, Shao-Han Tang, Zi-Jing Wang, Han-Hui Shi, Zhi-Guo Li, Hong-Yi Nie and Song-Kun Su
Int. J. Mol. Sci. 2024, 25(24), 13550; https://doi.org/10.3390/ijms252413550 - 18 Dec 2024
Viewed by 971
Abstract
The appetite of honeybees for food is crucial to their survival and reproduction, as they sustain their entire colony by collecting pollen and nectar for nutrients. Dopamine, an important neurotransmitter, regulates appetite and satiety. However, how dopamine regulates honeybee foraging behavior remains unexplored. [...] Read more.
The appetite of honeybees for food is crucial to their survival and reproduction, as they sustain their entire colony by collecting pollen and nectar for nutrients. Dopamine, an important neurotransmitter, regulates appetite and satiety. However, how dopamine regulates honeybee foraging behavior remains unexplored. In this study, we investigated dopamine expression in 23-day-old Apis mellifera under different food-wanting conditions and identified differentially expressed genes (DEGs) in the brains of honeybees using RNA sequencing technology. We showed that dopamine levels in honeybees starved for 2 h were higher than those sated after 2 h of starvation. RNA-seq results revealed there were differences in the expression of cytochrome P450-dependent monooxygenase (CYP9Q1) in honeybees, which regulated the sucrose sensitivity of honeybees under different intake states. Furthermore, CYP9Q1 targeted the expression of the insulin receptor substrate (IRS) to promote dopamine synthesis. Our findings emphasize the relationship between dopamine and honeybees’ desire for food at the molecular level, providing a reference for further exploring the mechanism of food wanting. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 1713 KiB  
Article
Effect of High-Intensity Focused Electromagnetic Technology in the Treatment of Female Stress Urinary Incontinence
by Cheng-Yu Long, Kun-Ling Lin, Jian-Lin Yeh, Chien-Wei Feng and Zi-Xi Loo
Biomedicines 2024, 12(12), 2883; https://doi.org/10.3390/biomedicines12122883 - 18 Dec 2024
Cited by 1 | Viewed by 2736
Abstract
Background: The aim of the study was to assess the effect of high-intensity focused electromagnetic (HIFEM) technology in the treatment of female stress urinary incontinence (SUI). Materials and Methods: 20 women with SUI were delivered a treatment course with HIFEM technology. [...] Read more.
Background: The aim of the study was to assess the effect of high-intensity focused electromagnetic (HIFEM) technology in the treatment of female stress urinary incontinence (SUI). Materials and Methods: 20 women with SUI were delivered a treatment course with HIFEM technology. Patients attended 6 therapies scheduled twice a week. Validated questionnaires were assessed, including the overactive bladder symptoms score (OABSS), urogenital distress inventory-6 (UDI-6), incontinence impact questionnaire-7 (IIQ-7), international consultation on incontinence questionnaire (ICIQ), and valued living questionnaire (VLQ). Some urodynamic parameters, such as maximum flow rate (Qmax), residual urine (RU), and bladder volume at first sensation to void (Vfst). Bladder neck mobility in ultrasound topography was also collected pre- and post-treatment at 1- and 6-month follow-up visits. Results: HIFEM treatment significantly improved SUI symptoms on pad tests from 4.2 ± 5.5 to 0.6 ± 1.3 and patients’ self-assessment in the 6-month follow-up. Additionally, the data from urinary-related questionnaires, including OABSS (5.3 ± 3.9 to 3.9 ± 3.6), UDI-6 (35.7 ± 22.3 to 15.2 ± 10.6), IIQ-7 (33.1 ± 28.7 to 14.3 ± 17.2), and ICIQ (9.4 ± 5.0 to 5.4 ± 3.6), all showed a significant reduction. Then, the analysis of the urodynamic study revealed that only maximum urethral closure pressure (MUCP) (46.4 ± 25.2 to 58.1 ± 21.2) and urethral closure angle (UCA) (705.3 ± 302.3 to 990.0 ± 439.6) significantly increased after the six sessions of HIFEM treatment. The urethral and vaginal topography were performed and found that HIFEM mainly worked on pelvic floor muscles (PFM) and enhanced their function and integrity. Conclusions: The results suggest that HIFEM technology is an efficacious therapy for the treatment of SUI. Full article
Show Figures

Figure 1

20 pages, 9842 KiB  
Article
A Study of the Effect of Roughness on the Three-Body Wear Mechanism from a Microscopic Point of View: Asperity Peak Removal
by Tangshengjie Wei, Ziyi Zhou, Xue Ling, Minghao Lv, Yunfei Di, Kun Qin and Qin Zhou
Metals 2024, 14(12), 1385; https://doi.org/10.3390/met14121385 - 2 Dec 2024
Cited by 3 | Viewed by 1600
Abstract
The presence of particles leads to varying degrees of mass loss on a metal sealing surface, which severely affects the seal’s lifespan. Understanding the complex wear mechanism and optimizing the surface roughness morphology are particularly important in engineering. By characterizing the surface of [...] Read more.
The presence of particles leads to varying degrees of mass loss on a metal sealing surface, which severely affects the seal’s lifespan. Understanding the complex wear mechanism and optimizing the surface roughness morphology are particularly important in engineering. By characterizing the surface of the metal (SS 304) with different roughness parameters Ra, Rp, Rpk, Rpc and Rku, the variation mode of mass loss under abrasive wear conditions was revealed. Unlike traditional two-body wear, the involvement of abrasive particles significantly impacts surface Ra and other surface morphologies (asperity peak features). A contact model for metal rough surfaces, distinct from two-body contact, was established to clarify the changes in removal mechanisms. It was found that the change in the contact between the particle and the asperity peak led to a change in the mass loss and guided the appropriate metal roughness range: Ra 0.05 μm and Ra 0.6–0.8 μm. In addition, it was found that the removal of asperity peaks is holistic under low roughness, and only parts of asperity peaks are removed under high roughness. Notably, the metrological methods used in this study supplement existing roughness measurements. By exploring the complex removal mechanism of asperity peaks, micro-scale guidance for surface (texture) design, machining, and optimization is provided. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

Back to TopTop