Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Juan Manzano Juárez

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3574 KiB  
Article
Optimization of Collective Irrigation Network Layout through the Application of the Analytic Hierarchy Process (AHP) Multicriteria Analysis Method
by César González-Pavón, Carmen Virginia Palau, Juan Manzano Juárez, Vicente Estruch-Guitart, Santiago Guillem-Picó and Ibán Balbastre-Peralta
Water 2024, 16(3), 370; https://doi.org/10.3390/w16030370 - 23 Jan 2024
Cited by 5 | Viewed by 2128
Abstract
On numerous occasions, we often have very little information or must make a decision considering qualitative aspects that are difficult to evaluate. This study focuses on obtaining objective criteria to assist in decision-making in the design phase of pressurized water pipes in collective [...] Read more.
On numerous occasions, we often have very little information or must make a decision considering qualitative aspects that are difficult to evaluate. This study focuses on obtaining objective criteria to assist in decision-making in the design phase of pressurized water pipes in collective irrigation networks. In the layout of these networks, various types of paths and roads for laying pipes can be encountered, and it is not always a simple task to obtain the least costly layout or the one with the fewest issues during construction. In order to obtain objective results, different layout alternatives are evaluated using the Analytic Hierarchy Process (AHP) Multicriteria Analysis Methodology and the Dijkstra algorithm to obtain optimal solutions. This is applied to twelve case studies where the types of available layout paths are identified as alternatives, and four criteria are established for their evaluation. Recognized experts in irrigation modernization conduct the evaluation to derive weighting coefficients for selecting the optimal layout. The coefficients or resistances obtained weigh the lengths of the pipes, allowing the selection of the most suitable alternative based on the defined criteria. The results are compared with a network designed by an expert using classical methodologies, revealing cost improvements in the design phase and a reduction in conflict points, thus leading to faster execution of the works. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research)
Show Figures

Figure 1

16 pages, 3515 KiB  
Article
Deodorized Garlic Decreases Oxidative Stress Caused by Lipopolysaccharide in Rat Heart through Hydrogen Sulfide: Preliminary Findings
by Israel Pérez-Torres, Linaloe Manzano-Pech, Verónica Guarner-Lans, María Elena Soto, Vicente Castrejón-Téllez, Ricardo Márquez-Velasco, Álvaro Vargas-González, Raúl Martínez-Memije, Leonardo Del Valle-Mondragón, Julieta Anabell Díaz-Juárez, María Sánchez-Aguilar and Juan Carlos Torres-Narváez
Int. J. Mol. Sci. 2022, 23(20), 12529; https://doi.org/10.3390/ijms232012529 - 19 Oct 2022
Cited by 6 | Viewed by 2124
Abstract
Deodorized garlic (DG) may favor the activity of the antioxidant enzymes and promote the synthesis of hydrogen sulfide (H2S). The objective was to test if DG favors an increase in H2S and if it decreases the oxidative stress caused [...] Read more.
Deodorized garlic (DG) may favor the activity of the antioxidant enzymes and promote the synthesis of hydrogen sulfide (H2S). The objective was to test if DG favors an increase in H2S and if it decreases the oxidative stress caused by lipopolysaccharide (LPS) in rat hearts. A total of 24 rats were divided into 4 groups: Group 1 control (C), Group 2 LPS, Group 3 DG, and Group 4 LPS plus DG. The cardiac mechanical performance (CMP), coronary vascular resistance (CVR), and oxidative stress markers, such as total antioxidant capacity (TAC), glutathione (GSH), selenium (Se), lipid peroxidation (LPO), thiols, hydrogen sulfide (H2S), and the activities and expressions of thioredoxin reductase (TrxR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST), cystathionine synthetase (CBS), cystathionine γ-lyase (CTH), iNOS, and eNOS-p, were analyzed in the heart. Infarct zones in the cardiac tissue were present (p = 0.01). The CMP and CVR decreased and increased (p ≤ 0.05), TAC, GSH, H2S, NO, thiols, and GST activity (p ≤ 0.01) decreased, and LPO and iNOS increased (p ≤ 0.05). The activities and expressions of TrxR, GPx, eNOS-p, CTH, and CBS (p ≤ 0.05) decreased with the LPS treatment; however, DG normalized this effect. DG treatment decreases heart damage caused by LPS through the cross-talk between the H2S and NO systems. Full article
(This article belongs to the Special Issue Biological Properties of Plant Bioactive Compounds)
Show Figures

Figure 1

32 pages, 11598 KiB  
Article
Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover
by Victor Apestigue, Alejandro Gonzalo, Juan J. Jiménez, Justin Boland, Mark Lemmon, Jose R. de Mingo, Elisa García-Menendez, Joaquín Rivas, Joaquín Azcue, Laurent Bastide, Nuria Andrés-Santiuste, Javier Martínez-Oter, Miguel González-Guerrero, Alberto Martin-Ortega, Daniel Toledo, Francisco Javier Alvarez-Rios, Felipe Serrano, Boris Martín-Vodopivec, Javier Manzano, Raquel López Heredero, Isaías Carrasco, Sergio Aparicio, Ángel Carretero, Daniel R. MacDonald, Lori B. Moore, María Ángeles Alcacera, Jose A. Fernández-Viguri, Israel Martín, Margarita Yela, Maite Álvarez, Paula Manzano, Jose A. Martín, Juan C. del Hoyo, Manuel Reina, Roser Urqui, Jose A. Rodriguez-Manfredi, Manuel de la Torre Juárez, Christina Hernandez, Elizabeth Cordoba, Robin Leiter, Art Thompson, Soren Madsen, Michael D. Smith, Daniel Viúdez-Moreiras, Alfonso Saiz-Lopez, Agustín Sánchez-Lavega, Laura Gomez-Martín, Germán M. Martínez, Francisco J. Gómez-Elvira and Ignacio Arruegoadd Show full author list remove Hide full author list
Sensors 2022, 22(8), 2907; https://doi.org/10.3390/s22082907 - 10 Apr 2022
Cited by 26 | Viewed by 7365
Abstract
The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape [...] Read more.
The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

15 pages, 8127 KiB  
Article
Multioutlet Hydrants in Mediterranean Pressurized Irrigation Networks: Operation Problems and Hydraulic Characterization
by Iban Balbastre-Peralta, Jaime Arviza-Valverde, Carmen Virginia Palau, Cesar González-Pavón and Juan Manzano-Juárez
Agronomy 2021, 11(11), 2240; https://doi.org/10.3390/agronomy11112240 - 5 Nov 2021
Cited by 1 | Viewed by 2625
Abstract
Multioutlet hydrants as joint network infrastructure remain briefly addressed in the literature. Studies have always been limited to the individual treatment of the hydraulic components but not as a whole element. This study presents the main problems in the field of multioutlet hydrants [...] Read more.
Multioutlet hydrants as joint network infrastructure remain briefly addressed in the literature. Studies have always been limited to the individual treatment of the hydraulic components but not as a whole element. This study presents the main problems in the field of multioutlet hydrants within hydraulic infrastructure for pressure irrigation networks in Mediterranean agriculture. First, a field study with interviews was carried out in 30 water users associations (WUAs) between 2010 and 2018. Following this study, a laboratory test methodology was proposed to characterize this type of hydrant. Subsequently, four laboratory tests were performed on 12 multioutlet hydrants with different and common configurations found in irrigation networks: (i) head losses produced, (ii) global measurement precision in the multioutlet hydrant, (iii) blockage analysis in meters in vertical orientation, and (iv) hydrant behavior in response to hydraulic transients. The tests show that a horizontal configuration of the measuring elements with fewer than ten outlets and a suitable dimensioning of elements improve element maneuverability, instrument metrology, and irrigation emission uniformity. Finally, the importance of adequate design, dimensioning, and maintenance of the multioutlet hydrant devices is evidenced as a key point for the adequate management of collective pressure irrigation networks. Full article
(This article belongs to the Special Issue Modernization and Optimization of Irrigation Systems)
Show Figures

Figure 1

21 pages, 6837 KiB  
Article
Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain)
by Carles Sanchis-Ibor, Mar Ortega-Reig, Amanda Guillem-García, Juan M. Carricondo, Juan Manzano-Juárez, Marta García-Mollá and Álvaro Royuela
Agriculture 2021, 11(4), 317; https://doi.org/10.3390/agriculture11040317 - 4 Apr 2021
Cited by 15 | Viewed by 4970
Abstract
During the last three decades, like many other Mediterranean states, Spain has intensively promoted the modernization of irrigation, focusing mainly on the introduction of pressurized irrigation systems. Following 30 years of investment, a shift in irrigation policies is needed to solve some of [...] Read more.
During the last three decades, like many other Mediterranean states, Spain has intensively promoted the modernization of irrigation, focusing mainly on the introduction of pressurized irrigation systems. Following 30 years of investment, a shift in irrigation policies is needed to solve some of the deficiencies in this modernization process and to incorporate new measures to cope with upcoming challenges generated by international markets, climate change and other social and economic processes. This paper describes and analyses the results of participatory research carried out with the water user associations in the autonomous region of Valencia, in order to define post-modernization irrigation policies. A survey and 24 local workshops involving 304 water user associations were conducted during the irrigation season of 2018 in order to form an assessment of the sector and design new irrigation policies. The results show that after 30 years of important investment, the obsolescence of the infrastructure has become the current main priority, making farmers dependent on public subsidies. New necessities have also emerged, such as renewable energies and nonconventional water resources, which farmers consider indispensable in order to reduce operating costs and guarantee water supply. Full article
(This article belongs to the Special Issue Future of Irrigation in Agriculture)
Show Figures

Figure 1

13 pages, 3469 KiB  
Article
Investigation on the Effect of Structural Parameters on Cavitation Characteristics for the Venturi Tube Using the CFD Method
by Pan Tang, Juan Manzano Juárez and Hong Li
Water 2019, 11(10), 2194; https://doi.org/10.3390/w11102194 - 22 Oct 2019
Cited by 14 | Viewed by 7043
Abstract
The venturi tube is a special kind of pipe which has been widely applied in many fields. Cavitation is one of the most important research issues for the Venturi tube. Hence, three key structural parameters (contraction angle, diffusion angle and contraction ratio) were [...] Read more.
The venturi tube is a special kind of pipe which has been widely applied in many fields. Cavitation is one of the most important research issues for the Venturi tube. Hence, three key structural parameters (contraction angle, diffusion angle and contraction ratio) were selected to investigate the influence of different factors on cavitation characteristics, using the computational fluid dynamics (CFD) method. A series of experiments for measuring the relationship between differential pressure and flow rate were carried out to verify the accuracy of the simulation method. Results showed that the simulation results had a high accuracy and the numerical method was feasible. The average vapor volume fraction of cross-section from the throat in the axial direction increased with increasing contraction angle. The cavity length increased with increasing contraction angle. The average volume fraction in the diffusion section rapidly decreased with increasing diffusion angle. The diffusion angle had no significant effect on the cavitation characteristics in the throat section and had a significant influence in the diffusion section. The average vapor volume fraction increased with decreasing contraction ratio. The contraction ratio had no significant effect on the cavity length under the same differential pressure. The average vapor volume fraction increased with decreasing contraction ratio. However, the variation in the throat section was less than the diffusion section. Under the same inlet and outlet pressure, the cavity lengths for different contraction ratios were basically the same, which indicated that the contraction ratio had no significant effect on the cavity length. Full article
(This article belongs to the Special Issue Pipeline Fluid Mechanics)
Show Figures

Figure 1

17 pages, 1333 KiB  
Article
Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System
by Miguel Ángel Pardo Picazo, Juan Manzano Juárez and Diego García-Márquez
Sustainability 2018, 10(11), 4203; https://doi.org/10.3390/su10114203 - 14 Nov 2018
Cited by 33 | Viewed by 4101
Abstract
Due to the fact that irrigation networks are water and energy hungry and that both resources are scarce, many strategies have been developed to reduce this consumption. Solar energy sources have emerged as a green alternative with lower energy costs and, consequently, lower [...] Read more.
Due to the fact that irrigation networks are water and energy hungry and that both resources are scarce, many strategies have been developed to reduce this consumption. Solar energy sources have emerged as a green alternative with lower energy costs and, consequently, lower environmental impacts. In this work, a new methodology is proposed to select a scheduled program for irrigation which minimizes the number of photovoltaic solar panels to be installed and which better fits energy consumption (calculated for discrete potential combinations, assisted by programming software) to available energy obtained by panels without any power conditioning unit. Thus, the irrigation hours available to satisfy the water demands are limited by sunlight, the schedule type of irrigation has to be rigid (rotation predetermined), and the pressure at any node has to be above the minimum pressure required by standards. A case study was undertaken and, after running the software 105 times, the best result was an irrigation schedule which satisfied all the requirements, involving the installation of 651 solar panels and energy consumption of 428.74 kWh per day, to deliver water to orchards of different varieties of citrus fruit spread over 167.7 ha. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop