Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Jean W. H. Yong

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2745 KiB  
Article
Cobalt and Titanium Alleviate the Methylglyoxal-Induced Oxidative Stress in Pennisetum divisum Seedlings under Saline Conditions
by Bushra Ahmed Alhammad, Khansa Saleem, Muhammad Ahsan Asghar, Ali Raza, Abd Ullah, Taimoor Hassan Farooq, Jean W. H. Yong, Fei Xu, Mahmoud F. Seleiman and Aamir Riaz
Metabolites 2023, 13(11), 1162; https://doi.org/10.3390/metabo13111162 - 19 Nov 2023
Cited by 9 | Viewed by 2163
Abstract
Salinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants’ growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in [...] Read more.
Salinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants’ growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in improving plant growth and development under salinity stress. In the current study, Co and Ti impact on the morphological, biochemical, nutritional, and metabolic profile of Pennisetum divisum plants under three salinity levels which were assessed. Two concentrations of Co (Co-1; 15.0 mg/L and Co-2; 25.0 mg/L), and two concentrations of Ti (Ti-1; 50.0 mg/L and Ti-2; 100.0 mg/L) were applied as foliar application to the P. divisum plants under salinity (S1; 200 mM, S2; 500 mM, and S3; 1000 mM) stress. The results revealed that various morphological, biochemical, and metabolic processes were drastically impacted by the salinity-induced methylglyoxal (MG) stress. The excessive accumulation of salt ions, including Na+ (1.24- and 1.21-fold), and Cl (1.53- and 1.15-fold) in leaves and roots of P. divisum, resulted in the higher production of MG (2.77- and 2.95-fold) in leaves and roots under severe (1000 mM) salinity stress, respectively. However, Ti-treated leaves showed a significant reduction in ionic imbalance and MG concentrations, whereas considerable improvement was shown in K+ and Ca2+ under salinity stress, and Co treatment showed downregulation of MG content (26, 16, and 14%) and improved the antioxidant activity, such as a reduction in glutathione (GSH), oxidized glutathione (GSSG), Glutathione reductase (GR), Glyoxalase I (Gly I), and Glyoxalase II (Gly II) by up to 1.13-, 1.35-, 3.75-, 2.08-, and 1.68-fold under severe salinity stress in P. divisum roots. Furthermore, MG-induced stress negatively impacted the metabolic profile and antioxidants activity of P. divisum’s root and leaves; however, Co and Ti treatment considerably improved the biochemical processes and metabolic profile in both underground and aerial parts of the studied plants. Collectively, the results depicted that Co treatment showed significant results in roots and Ti treatment presented considerable changes in leaves of P. divism under salinity stress. Full article
Show Figures

Graphical abstract

14 pages, 4139 KiB  
Article
Study on the Soil Microbial Diversity of Cymbidium goeringii and Cymbidium faberi in the Qinling Mountains after Introduction and Domestication
by Ruixue Lv, Jing Zhang, Huimin Liao, Jean W. H. Yong and Junyang Song
Diversity 2023, 15(9), 951; https://doi.org/10.3390/d15090951 - 23 Aug 2023
Viewed by 1705
Abstract
Rhizosphere microbial communities have abundant species and a large number, and affect the physiology and growth of plants. When studying rhizosphere microbes, the rhizosphere ecosystem function and protection of wild orchids will be facilitated. By using high-throughput sequencing technology, the rhizosphere and non-rhizosphere [...] Read more.
Rhizosphere microbial communities have abundant species and a large number, and affect the physiology and growth of plants. When studying rhizosphere microbes, the rhizosphere ecosystem function and protection of wild orchids will be facilitated. By using high-throughput sequencing technology, the rhizosphere and non-rhizosphere bacteria and fungi of wild Cymbidium goeringii and Cymbidium faberi in the Qinling Mountains were analyzed at phylum, class, order, family, and genus levels to explore the rhizosphere bacterial and fungal community structure and diversity of orchid plants (C. goeringii and C. faberi) under natural conditions. The results showed that at the phylum level Proteobacteria was dominant in rhizosphere and non-rhizosphere soil of C. goeringii and C. faberi, but the proportion was different. The abundance of Proteobacteria in rhizosphere soil of C. faberi was the highest (35.5%), which was about 1.3 times of that in non-rhizosphere soil. Bacteroidetes accounted for 17.2% in rhizosphere soil of C. goeringii, much higher than that of non-rhizosphere soil (7.92%). The dominant groups of fungi in rhizosphere soil of C. goeringii and C. faberi were both Ascomycota. At the genus level, PCoA analysis showed that the community structure of bacteria and fungi in different samples was not only common but also specific, which was manifested in the similar dominant species but different subdominant species. This difference is reflected in the composition and relative abundance of microbial communities between different samples, and will gradually become obvious with the refinement of genera. Full article
(This article belongs to the Special Issue Microbiota Diversity in Plants and Forest)
Show Figures

Figure 1

21 pages, 2671 KiB  
Article
Metabolic Processes and Biological Macromolecules Defined the Positive Effects of Protein-Rich Biostimulants on Sugar Beet Plant Development
by Okanlawon L. Jolayemi, Ali H. Malik, Ramesh R. Vetukuri, Ganapathi V. Saripella, Pruthvi B. Kalyandurg, Tobias Ekblad, Jean W. H. Yong, Marie E. Olsson and Eva Johansson
Int. J. Mol. Sci. 2023, 24(11), 9720; https://doi.org/10.3390/ijms24119720 - 3 Jun 2023
Cited by 7 | Viewed by 3774
Abstract
Protein-based biostimulants (PBBs) have a positive effect on plant development, although the biological background for this effect is not well understood. Here, hydrolyzed wheat gluten (HWG) and potato protein film (PF) in two levels (1 and 2 g/kg soil) and in two different [...] Read more.
Protein-based biostimulants (PBBs) have a positive effect on plant development, although the biological background for this effect is not well understood. Here, hydrolyzed wheat gluten (HWG) and potato protein film (PF) in two levels (1 and 2 g/kg soil) and in two different soils (low and high nutrient; LNC and HNC) were used as PBBs. The effect of these PBBs on agronomic traits, sugars, protein, and peptides, as well as metabolic processes, were evaluated on sugar beet in comparison with no treatment (control) and treatment with nutrient solution (NS). The results showed a significant growth enhancement of the plants using HWG and PF across the two soils. Sucrose and total sugar content in the roots were high in NS-treated plants and correlated to root growth in HNC soil. Traits related to protein composition, including nitrogen, peptide, and RuBisCO contents, were enhanced in PBB-treated plants (mostly for HWG and PF at 2 g/kg soil) by 100% and >250% in HNC and LNC, respectively, compared to control. The transcriptomic analysis revealed that genes associated with ribosomes and photosynthesis were upregulated in the leaf samples of plants treated with either HWG or PP compared to the control. Furthermore, genes associated with the biosynthesis of secondary metabolites were largely down-regulated in root samples of HWG or PF-treated plants. Thus, the PBBs enhanced protein-related traits in the plants through a higher transcription rate of genes related to protein- and photosynthesis, which resulted in increased plant growth, especially when added in certain amounts (2 g/kg soil). However, sucrose accumulation in the roots of sugar beet seemed to be related to the easy availability of nitrogen. Full article
(This article belongs to the Special Issue A New Era of Sustainability: Plant Biostimulants)
Show Figures

Figure 1

20 pages, 3969 KiB  
Article
Biochar-Mediated Control of Metabolites and Other Physiological Responses in Water-Stressed Leptocohloa fusca
by Khansa Saleem, Muhammad Ahsan Asghar, Ali Raza, Hafiz Hassan Javed, Taimoor Hassan Farooq, Muhammad Arslan Ahmad, Altafur Rahman, Abd Ullah, Baiquan Song, Junbo Du, Fei Xu, Aamir Riaz and Jean W. H. Yong
Metabolites 2023, 13(4), 511; https://doi.org/10.3390/metabo13040511 - 1 Apr 2023
Cited by 19 | Viewed by 2843
Abstract
We investigated biochar-induced drought tolerance in Leptocohloa fusca (Kallar grass) by exploring the plant defense system at physiological level. L. fusca plants were exposed to drought stress (100%, 70%, and 30% field capacity), and biochar (BC), as an organic soil amendment was applied [...] Read more.
We investigated biochar-induced drought tolerance in Leptocohloa fusca (Kallar grass) by exploring the plant defense system at physiological level. L. fusca plants were exposed to drought stress (100%, 70%, and 30% field capacity), and biochar (BC), as an organic soil amendment was applied in two concentrations (15 and 30 mg kg−1 soil) to induce drought tolerance. Our results demonstrated that drought restricted the growth of L. fusca by inhibiting shoot and root (fresh and dry) weight, total chlorophyll content and photosynthetic rate. Under drought stress, the uptake of essential nutrients was also limited due to lower water supply, which ultimately affected metabolites including amino and organic acids, and soluble sugars. In addition, drought stress induced oxidative stress, which is evidenced by the higher production of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide ion (O2), hydroxyl ion (OH), and malondialdehyde (MDA). The current study revealed that stress-induced oxidative injury is not a linear path, since the excessive production of lipid peroxidation led to the accumulation of methylglyoxal (MG), a member of reactive carbonyl species (RCS), which ultimately caused cell injury. As a consequence of oxidative-stress induction, the ascorbate–glutathione (AsA–GSH) pathway, followed by a series of reactions, was activated by the plants to reduce ROS-induced oxidative damage. Furthermore, biochar considerably improved plant growth and development by mediating metabolites and soil physio-chemical status. Full article
Show Figures

Graphical abstract

27 pages, 1714 KiB  
Review
Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming
by Md. Nasir Hossain Sani and Jean W. H. Yong
Biology 2022, 11(1), 41; https://doi.org/10.3390/biology11010041 - 28 Dec 2021
Cited by 60 | Viewed by 10359
Abstract
Demand for organically grown food crops is rising substantially annually owing to their contributions to human health. However, organic farm production is still generally lower compared to conventional farming. Nutrient availability, content consistency, uptake, assimilation, and crop responses to various stresses were reported [...] Read more.
Demand for organically grown food crops is rising substantially annually owing to their contributions to human health. However, organic farm production is still generally lower compared to conventional farming. Nutrient availability, content consistency, uptake, assimilation, and crop responses to various stresses were reported as critical yield-limiting factors in many organic farming systems. In recent years, plant biostimulants (BSs) have gained much interest from researchers and growers, and with the objective of integrating these products to enhance nutrient use efficiency (NUE), crop performance, and delivering better stress resilience in organic-related farming. This review gave an overview of direct and indirect mechanisms of microbial and non-microbial BSs in enhancing plant nutrient uptake, physiological status, productivity, resilience to various stressors, and soil-microbe-plant interactions. BSs offer a promising, innovative and sustainable strategy to supplement and replace agrochemicals in the near future. With greater mechanistic clarity, designing purposeful combinations of microbial and non-microbial BSs that would interact synergistically and deliver desired outcomes in terms of acceptable yield and high-quality products sustainably will be pivotal. Understanding these mechanisms will improve the next generation of novel and well-characterized BSs, combining microbial and non-microbial BSs strategically with specific desired synergistic bio-stimulatory action, to deliver enhanced plant growth, yield, quality, and resilience consistently in organic-related cultivation. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

21 pages, 319 KiB  
Review
The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water
by Jean W. H. Yong, Liya Ge, Yan Fei Ng and Swee Ngin Tan
Molecules 2009, 14(12), 5144-5164; https://doi.org/10.3390/molecules14125144 - 9 Dec 2009
Cited by 530 | Viewed by 109696
Abstract
Coconut water (coconut liquid endosperm), with its many applications, is one of the world’s most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut [...] Read more.
Coconut water (coconut liquid endosperm), with its many applications, is one of the world’s most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water. Full article
(This article belongs to the Special Issue Phytochemicals with Signaling, Medicinal and Therapeutic Properties)
Show Figures

Figure 1

Back to TopTop