Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Horst E. Friedrich

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2810 KiB  
Article
Life Cycle Analysis of an On-the-Road Modular Vehicle Concept
by Christian Ulrich, Mario Feinauer, Katharina Bieber, Stephan A. Schmid and Horst E. Friedrich
Sustainability 2023, 15(13), 10303; https://doi.org/10.3390/su151310303 - 29 Jun 2023
Cited by 4 | Viewed by 2047
Abstract
In order to reduce the environmental impacts caused by the transport sector, autonomous and electrified on-the-road modular vehicles (otrm) could be a solution. By separating the drive unit from the transport unit, they enable use cases for various transport tasks and reduce individual [...] Read more.
In order to reduce the environmental impacts caused by the transport sector, autonomous and electrified on-the-road modular vehicles (otrm) could be a solution. By separating the drive unit from the transport unit, they enable use cases for various transport tasks and reduce individual and motorized transport and its generated emissions. Therefore, the goal of this study is to assess the environmental impacts from cradle to grave by applying the LCA methodology for a defined otrm—the U-Shift—vehicle fleet considering a specific use case relative to a reference vehicle fleet. The results indicate that the U-Shift fleet reduces the life cycle environmental impacts in a range of 3–28% for all of the seven impact categories, which are analyzed in detail. While emissions from the use phase are similar, U-Shift has an environmental benefit in the production phase due to a low amount of resource-intensive driveboards. Considering the early development stage of U-Shift, several measures are discussed, addressing the material and configuration aspects of the vehicles as well as optimized use case applications, which promise further impact-reduction potential. Full article
Show Figures

Figure 1

24 pages, 5975 KiB  
Article
Monitoring and Forecasting of Key Functions and Technologies for Automated Driving
by Christian Ulrich, Benjamin Frieske, Stephan A. Schmid and Horst E. Friedrich
Forecasting 2022, 4(2), 477-500; https://doi.org/10.3390/forecast4020027 - 20 May 2022
Cited by 9 | Viewed by 4751
Abstract
Companies facing transformation in the automotive industry will need to adapt to new trends, technologies and functions, in order to remain competitive. The challenge is to anticipate such trends and to forecast their development over time. The aim of this paper is to [...] Read more.
Companies facing transformation in the automotive industry will need to adapt to new trends, technologies and functions, in order to remain competitive. The challenge is to anticipate such trends and to forecast their development over time. The aim of this paper is to develop a methodology that allows us to analyze the temporal development of technologies, taking automated driving as an example. The framework consists of a technological and a functional roadmap. The technology roadmap provides information on the temporal development of 59 technologies based on expert elicitation using a multi-stage Delphi survey and patent analyses. The functional roadmap is derived from a meta-analysis of studies including 209 predictions of the maturity of automated driving functions. The technological and functional roadmaps are merged into a consolidated roadmap, linking the temporal development of technologies and functions. Based on the publication analysis, SAE level 5 is predicted to be market-ready by 2030. Contrasted to the results from the Delphi survey in the technological roadmap, 2030 seems to be too optimistic, however, as some key technologies would not have reached market readiness by this time. As with all forecasts, the proposed framework is not able to accurately predict the future. However, the combination of different forecast approaches enables users to have a more holistic view of future developments than with single forecasting methods. Full article
Show Figures

Figure 1

16 pages, 6112 KiB  
Article
New Operating Strategies for an On-the-Road Modular, Electric and Autonomous Vehicle Concept in Urban Transportation
by Christian Ulrich, Horst E. Friedrich, Jürgen Weimer and Stephan A. Schmid
World Electr. Veh. J. 2019, 10(4), 91; https://doi.org/10.3390/wevj10040091 - 13 Dec 2019
Cited by 18 | Viewed by 5999
Abstract
Today commercial transport in urban areas faces major challenges. These include making optimal use of limited space, avoiding empty trips, meeting driver shortages as well as reducing costs and emissions such as CO2, particulate matter and noise. The mutual acceleration and [...] Read more.
Today commercial transport in urban areas faces major challenges. These include making optimal use of limited space, avoiding empty trips, meeting driver shortages as well as reducing costs and emissions such as CO2, particulate matter and noise. The mutual acceleration and reinforcement of technological trends such as electrification, digitization and automation may enable new vehicle and mobility concepts that can meet these challenges. One possible vehicle concept is presented in this article. It is based on on-the-road modularization, i.e., a vehicle that can change different transport capsules during operation. The vehicle is divided into an electrically propelled autonomous drive unit and a transport unit. Standardized interfaces between these units enable the easy design of capsules for different uses, while the drive unit can be used universally. Business models and operating strategies that allow optimal use of this vehicle concept are discussed in depth in the article. First, the current situation is analyzed followed by a detailed description of an exemplary business model using a business model canvas. The operating strategies and logistics concepts are illustrated and compared with conventional concepts. Full article
Show Figures

Figure 1

13 pages, 3591 KiB  
Article
Stand-Alone Battery Thermal Management for Fast Charging of Electric Two Wheelers—Integrated Busbar Cooling
by Bastian Mayer, Michael Schier and Horst E. Friedrich
World Electr. Veh. J. 2019, 10(2), 37; https://doi.org/10.3390/wevj10020037 - 4 Jun 2019
Cited by 11 | Viewed by 6542
Abstract
This paper presents a thermal interface for cylindrical cells using busbar-integrated cooling channels. This interface is available due to the use of a stand-alone refrigerant circuit for the thermal management of the battery. A stand-alone refrigerant circuit offers performance and efficiency increases compared [...] Read more.
This paper presents a thermal interface for cylindrical cells using busbar-integrated cooling channels. This interface is available due to the use of a stand-alone refrigerant circuit for the thermal management of the battery. A stand-alone refrigerant circuit offers performance and efficiency increases compared to state-of-the-art battery thermal management systems. This can be achieved by increasing the evaporation temperature to the requirements of the Li-ion cells and the use of alternative refrigerants. The solution proposed in this paper is defined for electric two-wheelers, as the thermal management of these vehicles is currently insufficient for fast charging where high heat losses occur. Three channel patterns for the integrated busbar cooling were examined regarding their thermal performance to cool the li-ion cells of a 16p14s battery pack during fast charging. A method of coupling correlation-based heat transfer and pressure drop with thermal finite element method (FEM) simulations was developed. The symmetric channel pattern offers a good compromise between battery temperatures and homogeneity, as well as the best volumetric and gravimetric energy densities on system level. Average cell temperatures of 22 °C with a maximum temperature spread of 8 K were achieved. Full article
Show Figures

Figure 1

10 pages, 725 KiB  
Article
Modelling customer choice and market development for future automotive powertrain technologies
by Martin Redelbach, Michael Sparka, Stephan Schmid and Horst E. Friedrich
World Electr. Veh. J. 2013, 6(4), 935-944; https://doi.org/10.3390/wevj6040935 - 27 Dec 2013
Cited by 6 | Viewed by 1237
Abstract
The paper introduces an innovative utility-based approach to model customer choice for alternative powertrain technologies within a dynamic scenario tool. The study covers a wide portfolio of different powertrain concepts from conventional combustion engines to advanced hybrid and electric cars. The assessment of [...] Read more.
The paper introduces an innovative utility-based approach to model customer choice for alternative powertrain technologies within a dynamic scenario tool. The study covers a wide portfolio of different powertrain concepts from conventional combustion engines to advanced hybrid and electric cars. The assessment of their economic and technical attributes builds on a large set of vehicle simulation data and detailed cost models. In contrast to previous cost-based studies the applied methodology maps the observed diversity of user characteristics more realistically. Therefore, the driving behaviour and preferences of car buyers are analysed empirically based on major representative surveys and the resulting distribution functions are integrated in the model. After testing and validation with historic data the model is applied to the German vehicle market and a potential scenario for the prospective composition of the new passenger car fleet by 2030 is presented. The scenario simulation shows that a significant reduction of CO2 emissions is feasible especially by the introduction of plug-in hybrids and range extended electric vehicles. However, the growing technical complexity and the additional effort for efficiency improvements also result in increasing total costs of ownership for the customer. Full article
Back to TopTop