Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Hani A. Ghali

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3882 KiB  
Article
Insightful Electric Vehicle Utility Grid Aggregator Methodology Based on the G2V and V2G Technologies in Egypt
by Peter Makeen, Hani A. Ghali, Saim Memon and Fang Duan
Sustainability 2023, 15(2), 1283; https://doi.org/10.3390/su15021283 - 10 Jan 2023
Cited by 16 | Viewed by 3542
Abstract
Due to the exponential expansion of the global fleet of electric vehicles (EVs) in the utility grid, the vehicle-to-grid paradigm is gaining more attention to alleviate the pressure on the grid. Therefore, an EV aggregator acts as a resilient load to enhance the [...] Read more.
Due to the exponential expansion of the global fleet of electric vehicles (EVs) in the utility grid, the vehicle-to-grid paradigm is gaining more attention to alleviate the pressure on the grid. Therefore, an EV aggregator acts as a resilient load to enhance the power deficiency in the electrical grid. This paper proposes the vital development of a central aggregator to optimize the hierarchical bi-directional technique throughout the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) technologies. This study was implemented using three different types of EVs that are assumed to penetrate the utility grid throughout the day in an organized pattern. The aggregator determines the number of EVs that would participate in the electric power trade during the day and sets the charging/discharging capacity level for each EV. In addition, the proposed model minimized the battery degradation cost while maximizing the revenue of the EV owner using the V2G technology and ensuring a sufficient grid peak load demand shaving based on the genetic algorithm (GA). Three case studies were investigated based on the parking interval time where the battery degradation cost was minimized to reach approx. 82.04%. However, the revenue of the EV owner increased when the battery degradation cost was ignored. In addition, the load demand decreased by 26.5%. The implemented methodology ensured an effective grid stabilization service by shaving the load demand to identify the average required power throughout the day. The efficiency of the proposed methodology is ensured since our output findings were in good agreement with the literature survey. Full article
Show Figures

Figure 1

16 pages, 2978 KiB  
Article
Theoretical and Experimental Analysis of a New Intelligent Charging Controller for Off-Board Electric Vehicles Using PV Standalone System Represented by a Small-Scale Lithium-Ion Battery
by Peter Makeen, Hani A. Ghali and Saim Memon
Sustainability 2022, 14(12), 7396; https://doi.org/10.3390/su14127396 - 16 Jun 2022
Cited by 11 | Viewed by 3329
Abstract
Electric vehicles are rapidly infiltrating the power grid worldwide, initiating an immediate need for a smart charging technique to maintain the stability and robustness of the charging process despite the generation type. Renewable energy sources (RESs), especially photovoltaic (PV), are becoming the essential [...] Read more.
Electric vehicles are rapidly infiltrating the power grid worldwide, initiating an immediate need for a smart charging technique to maintain the stability and robustness of the charging process despite the generation type. Renewable energy sources (RESs), especially photovoltaic (PV), are becoming the essential source for electric vehicle charging points. The stochastic behavior of the PV output power affects the power conversion for regulating the battery charger voltage levels, which influences the battery to overheat and degrade. This study presents a PV standalone smart charging process for off-board plug-in electric vehicles, represented by a small-scale lithium-ion battery based on the multistage charging currents (MSCC) protocol. The charger comprises a DC–DC buck converter controlled by an artificial neural network predictive controller (NNPC), trained and supported by the long short-term memory recurrent neural network (LSTM). The LSTM network model was utilized in the offline forecasting of the PV output power, which was fed to the NNPC as the training data. Additionally, it was used as an alarm flag for any possible PV output shortage during the charging process in the long- and short-term prediction to be supported by any other electricity source. The NNPC–LSTM controller was compared with the fuzzy logic and the conventional PID controllers while varying the input voltage and implementing the MSCC protocol. The proposed charging controller perfectly ensured that the minimum battery terminal voltage ripple and charging current ripple reached 1 mV and 1 mA, respectively, with a very high-speed response of 1 ms in reaching the predetermined charging current stages. The present simulated and experimental results are in good agreement with the previous related work in the literature survey. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

19 pages, 4032 KiB  
Review
A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems
by Peter Makeen, Hani A. Ghali and Saim Memon
Future Transp. 2022, 2(1), 281-299; https://doi.org/10.3390/futuretransp2010015 - 4 Mar 2022
Cited by 40 | Viewed by 11672
Abstract
Despite fast technological advances, the worldwide adoption of electric vehicles (EVs) is still hampered mainly by charging time, efficiency, and lifespan. Lithium-ion batteries have become the primary source for EVs because of their high energy density and long lifetime. Currently, several methods intend [...] Read more.
Despite fast technological advances, the worldwide adoption of electric vehicles (EVs) is still hampered mainly by charging time, efficiency, and lifespan. Lithium-ion batteries have become the primary source for EVs because of their high energy density and long lifetime. Currently, several methods intend to determine the health of lithium-ion batteries fast-charging protocols. Filling a gap in the literature, a clear classification of charging protocols is presented and investigated here. This paper categorizes fast-charging protocols into the power management protocol, which depends on a controllable current, voltage, and cell temperature, and the material aspects charging protocol, which is based on material physical modification and chemical structures of the lithium-ion battery. In addition, each of the charging protocols is further subdivided into more detailed methodologies and aspects. A full evaluation and comparison of the latest studies is proposed according to the underlying parameterization effort, the battery cell used, efficiency, cycle life, charging time, and increase in surface temperature of the battery. The pros and cons of each protocol are scrutinized to reveal possible research tracks concerning EV fast-charging protocols. Full article
Show Figures

Figure 1

Back to TopTop