A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems
Abstract
:1. Introduction
1.1. Electric Vehicle (EV) Overview
1.2. Lithium-Ion Battery
- 1.
- Clearly and systematically presents and classifies various charging protocols and the main controllable input and output parameters for each.
- 2.
- Reveals a full comparison between the sub charging methodologies of each charging protocol and the impact on the charging time, efficiency, lifetime, and energy loss.
- 3.
- Defines new up-to-date strategies depending on the power management, thermal management, and material aspects that are not mentioned in other literature reviews. In addition, a full identification of the pros and cons of each protocol may provide scope for the researchers to improve the existing protocols.
2. Introduction of Fast Charging Protocols
3. Power Management Charging Protocol
3.1. Constant Current Constant Voltage (CC-CV) Protocol
3.2. Multi-Stage Charging Currents (MSCC) Protocol
3.3. Thermal Management Protocol
3.4. Pulse Charging Current (PCC) Protocol
3.4.1. The Positive Pulsed Charging Current (PPCC) Protocol
- Standard PCC Protocol
- Pulse Charging Current-Constant Voltage (PCC-CV) Protocol
- Constant Current-Pulse Charging Current (CC-PCC) Protocol
3.4.2. Bidirectional Pulsed Charging Current (BPCC) Protocol
3.4.3. Negative Pulsed Charging Current
4. Material Aspects Charging Protocol
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanguesa, J.; Torres-Sanz, V.; Garrido, P.; Martinez, F.; Marquez-Barja, J. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 22. [Google Scholar] [CrossRef]
- Khaksari, A.; Tsaousoglou, G.; Makris, P.; Steriotis, K.; Efthymiopoulos, N.; Varvarigos, E. Sizing of electric vehicle charging stations with smart charging capabilities and quality of service requirements. Sustain. Cities Soc. 2021, 70, 102872. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global EV Outlook 2021, Accelerating Ambitions Despite the Pandemic. April 2021. Available online: https://www.iea.org/reports/global-ev-outlook-2021 (accessed on 30 October 2021).
- Yilmaz, M.; Krein, P.T. Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [Google Scholar] [CrossRef]
- El-Bayeh, C.Z.; Alzaareer, K.; Aldaoudeyeh, A.-M.I.; Brahmi, B.; Zellagui, M. Charging and Discharging Strategies of Electric Vehicles: A Survey. World Electr. Veh. J. 2021, 12, 11. [Google Scholar] [CrossRef]
- Khalid, M.R.; Alam, M.S.; Sarwar, A.; Asghar, M.J. A Comprehensive review on electric vehicles charging infrastructures and their impacts on power-quality of the utility grid. eTransportation 2019, 1, 100006. [Google Scholar] [CrossRef]
- Muthukumar, M.; Rengarajan, N.; Velliyangiri, B.; Omprakas, M.; Rohit, C.; Raja, U.K. The development of fuel cell electric vehicles—A review. Mater. Today: Proc. 2021, 45, 1181–1187. [Google Scholar] [CrossRef]
- Nour, M.; Chaves-Ávila, J.P.; Magdy, G.; Sánchez-Miralles, Á. Review of positive and negative impacts of electric vehicles charging on electric power systems. Energies 2020, 13, 4675. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, X.-P.; Wang, J.; Li, J.; Wu, C.; Hu, M.; Bian, H. A Review on Electric Vehicle Charging Infrastructure Development in the UK. J. Mod. Power Syst. Clean Energy 2020, 8, 193–205. [Google Scholar] [CrossRef]
- Guarnieri, M. Looking back to electric cars. In Proceedings of the 2012 Third IEEE HISTory of ELectro-technology Conference (HISTELCON), Pavia, Italy, 5–7 September 2012; pp. 1–6. [Google Scholar]
- IEC 62196-1:2014; Plugs, Socket-Outlets, Vehicle Couplers and Vehicle Inlets—Conductive Charging of Electric Vehicles—Part 1. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2014.
- J1772_201710; SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Couplerl. SAE International: Warrendale, PA, USA, 2017.
- Shareef, H.; Islam, M.M.; Mohamed, A. A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles. Renew. Sustain. Energy Rev. 2016, 64, 403–420. [Google Scholar] [CrossRef]
- Das, H.S.; Rahman, M.M.; Li, S.; Tan, C.W. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renew. Sustain. Energy Rev. 2020, 120, 109618. [Google Scholar] [CrossRef]
- Duru, K.K.; Karra, C.; Venkatachalam, P.; Betha, S.A.; Madhavan, A.A.; Kalluri, S. Critical Insights into Fast Charging Techniques for Lithium-Ion Batteries in Electric Vehicles. IEEE Trans. Device Mater. Reliab. 2021, 21, 137–152. [Google Scholar] [CrossRef]
- Ucer, E.; Koyuncu, I.; Kisacikoglu, M.C.; Yavuz, M.; Meintz, A.; Rames, C. Modeling and Analysis of a Fast Charging Station and Evaluation of Service Quality for Electric Vehicles. IEEE Trans. Transp. Electrif. 2019, 5, 215–225. [Google Scholar] [CrossRef]
- Tu, H.; Feng, H.; Srdic, S.; Lukic, S. Extreme Fast Charging of Electric Vehicles: A Technology Overview. IEEE Trans. Transp. Electrif. 2019, 5, 861–878. [Google Scholar] [CrossRef]
- Yang, Y.; El Baghdadi, M.; Lan, Y.; Benomar, Y.; Van Mierlo, J.; Hegazy, O. Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles. Energies 2018, 11, 1716. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, N.; Aymen, F.; Alqarni, M.; Turky, R.A.; Alamri, B.; Ali, Z.M.; Aleem, S.H.A. A new wireless charging system for electric vehicles using two receiver coils. Ain Shams Eng. J. 2021, 13, 101569. [Google Scholar] [CrossRef]
- Wu, H. A Survey of Battery Swapping Stations for Electric Vehicles: Operation Modes and Decision Scenarios. IEEE Trans. Intell. Transp. Syst. 2021, 1–23. [Google Scholar] [CrossRef]
- Sarker, M.R.; Pandžić, H.; Ortega-Vazquez, M.A. Optimal operation and services scheduling for an electric vehicle battery swapping station. IEEE Trans. Power Syst. 2014, 30, 901–910. [Google Scholar] [CrossRef]
- The Massachusetts Department of Energy Resources. Installation Guide for Electric Vehicle Supply Equipment (EVSE). June 2014. Available online: https://www.mass.gov/doc/electric-vehicle-charging-infrastructure-manual/download (accessed on 30 October 2021).
- Knez, M.; Zevnik, G.K.; Obrecht, M. A review of available chargers for electric vehicles: United States of America, European Union, and Asia. Renew. Sustain. Energy Rev. 2019, 109, 284–293. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Schneider, J.; Frank, A.; Wildfeuer, L.; Lin, X.; Jossen, A.; Lienkamp, M. Review of fast charging strategies for lithium-ion battery systems and their applicability for battery electric vehicles. J. Energy Storage 2021, 44, 103306. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Cheng, Q.; Guo, B.; Yang, J. Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries. IEEE Access 2019, 7, 43511–43524. [Google Scholar] [CrossRef]
- Chen, C.; Wei, Z.; Knoll, A.C. Charging Optimization for Li-ion Battery in Electric Vehicles: A Review. IEEE Trans. Transp. Electrif. 2021, 1–23. [Google Scholar] [CrossRef]
- Miao, Y.; Hynan, P.; Von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Bao, N.; Garg, A.; Peng, X.; Gao, L. A Fast Charging–Cooling Coupled Scheduling Method for a Liquid Cooling-Based Thermal Management System for Lithium-Ion Batteries. Engineering 2021, 7, 1165–1176. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Guo, Z.; Liaw, B.Y.; Qiu, X.; Gao, L.; Zhang, C. Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging. J. Power Sources 2015, 274, 957–964. [Google Scholar] [CrossRef]
- Keil, P.; Jossen, A. Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells. J. Energy Storage 2016, 6, 125–141. [Google Scholar] [CrossRef]
- Sachan, S.; Deb, S.; Singh, S.N. Different charging infrastructures along with smart charging strategies for electric vehicles. Sustain. Cities Soc. 2020, 60, 102238. [Google Scholar] [CrossRef]
- Tamilselvi, S.; Gunasundari, S.; Karuppiah, N.; Rk, A.R.; Madhusudan, S.; Nagarajan, V.M.; Sathish, T.; Shamim, M.Z.M.; Saleel, C.A.; Afzal, A. A Review on Battery Modelling Techniques. Sustainability 2021, 13, 10042. [Google Scholar] [CrossRef]
- Makeen, P.; Ghali, H.A.; Memon, S. Experimental and Theoretical Analysis of the Fast Charging Polymer Lithium-Ion Battery Based on Cuckoo Optimization Algorithm (COA). IEEE Access 2020, 8, 140486–140496. [Google Scholar] [CrossRef]
- Khalfi, J.; Boumaaz, N.; Soulmani, A.; Laadissi, E.M. Nonlinear Modeling of Lithium-Ion Battery Cells for Electric Vehicles using a Hammerstein–Wiener Model. J. Electr. Eng. Technol. 2021, 16, 659–669. [Google Scholar] [CrossRef]
- Seaman, A.; Dao, T.-S.; McPhee, J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Sources 2014, 256, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, J.; He, H.; Wang, H. Lithium-ion battery modeling based on Big Data. Energy Procedia 2019, 159, 168–173. [Google Scholar] [CrossRef]
- Mehta, R.; Gupta, A. An improved single-particle model with electrolyte dynamics for high current applications of lithium-ion cells. Electrochim. Acta 2021, 389, 138623. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Y.; Chen, Z. An improved single particle model for lithium-ion batteries based on main stress factor compensation. J. Clean. Prod. 2021, 278, 123456. [Google Scholar] [CrossRef]
- An, F.; Zhou, W.; Li, P. A comparison of model prediction from P2D and particle packing with experiment. Electrochim. Acta 2021, 370, 137775. [Google Scholar] [CrossRef]
- Bermejo, R. Numerical analysis of a finite element formulation of the P2D model for Lithium-ion cells. Numer. Math. 2021, 149, 463–505. [Google Scholar] [CrossRef]
- Zhou, F.; Bao, C. Analysis of the lithium-ion battery capacity degradation behavior with a comprehensive mathematical model. J. Power Sources 2021, 515, 230630. [Google Scholar] [CrossRef]
- Shuai, W.; Li, E.; Wang, H. An equivalent circuit model of a deformed Li-ion battery with parameter identification. Int. J. Energy Res. 2020, 44, 8372–8387. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Lei, G. A Review of Li-ion Battery Equivalent Circuit Models. Trans. Electr. Electron. Mater. 2016, 17, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, T.R.B.; McGordon, A.; Jennings, P.A. Structural Identifiability of Equivalent Circuit Models for Li-Ion Batteries. Energies 2017, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.-C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.M.; Ahn, S. Battery dimensional changes occurring during charge/discharge cycles—Thin rectangular lithium ion and polymer cells. J. Power Sources 2003, 119-121, 833–837. [Google Scholar] [CrossRef]
- Cho, I.-H.; Lee, P.-Y.; Kim, J.-H. Analysis of the Effect of the Variable Charging Current Control Method on Cycle Life of Li-ion Batteries. Energies 2019, 12, 3023. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Zhu, C.; Ge, Y.; Zhao, Y. A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries. J. Nanomater. 2015, 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Belov, D.; Yang, M.-H. Failure mechanism of Li-ion battery at overcharge conditions. J. Solid State Electrochem. 2008, 12, 885–894. [Google Scholar] [CrossRef]
- Makeen, P.; Memon, S.; Elkasrawy, M.A.; Abdullatif, S.O.; Ghali, H.A. Smart green charging scheme of centralized electric vehicle stations. Int. J. Green Energy 2021, 1–9. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, C.; Xu, Y.; Jin, Y.; Shui, J. Performance improvement of lithium-ion battery by pulse current. J. Energy Chem. 2020, 46, 208–214. [Google Scholar] [CrossRef]
- Amanor-Boadu, J.M.; Guiseppi-Elie, A. Improved Performance of Li-ion Polymer Batteries through Improved Pulse Charging Algorithm. Appl. Sci. 2020, 10, 895. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Feng, X.; Lu, L.; Li, J.; Han, X.; Ouyang, M. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model. Appl. Energy 2017, 204, 1240–1250. [Google Scholar] [CrossRef]
- Notten, P.; Veld, J.O.H.; van Beek, J. Boostcharging Li-ion batteries: A challenging new charging concept. J. Power Sources 2005, 145, 89–94. [Google Scholar] [CrossRef]
- Mathieu, R.; Briat, O.; Gyan, P.; Vinassa, J.-M. Fast charging for electric vehicles applications: Numerical optimization of a multi-stage charging protocol for lithium-ion battery and impact on cycle life. J. Energy Storage 2021, 40, 102756. [Google Scholar] [CrossRef]
- Chen, G.-J.; Liu, Y.-H.; Wang, S.-C.; Luo, Y.-F.; Yang, Z.-Z. Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of Li-ion batteries. J. Energy Storage 2021, 33, 101933. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Xie, Y.; Liu, J.; Fu, C.; Liu, B. Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current–constant voltage charging strategy. Renew. Energy 2020, 146, 2688–2699. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, Y.; Lin, X.; Xie, Y. Optimal Multistage Charging of NCA/Graphite Lithium-Ion Batteries Based on Electrothermal-Aging Dynamics. IEEE Trans. Transp. Electrif. 2020, 6, 427–438. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Y.; Huang, Y.; Yu, J.; Qiao, X.; Wang, Y.; Huang, C.; Cao, Y. Optimization of multi-stage constant current charging pattern based on Taguchi method for Li-Ion battery. Appl. Energy 2020, 259, 114148. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chang, T.-W.; Hsu, S.-H.; Jiang, J.-A. Taguchi-based PSO for searching an optimal four-stage charge pattern of Li-ion batteries. J. Energy Storage 2019, 21, 301–309. [Google Scholar] [CrossRef]
- Sun, J.; Ma, Q.; Liu, R.; Wang, T.; Tang, C. A novel multiobjective charging optimization method of power lithium-ion batteries based on charging time and temperature rise. Int. J. Energy Res. 2019, 43, 7672–7681. [Google Scholar] [CrossRef]
- Makeen, P.; Ghali, H.; Memon, S. Controllable Electric Vehicle Fast Charging Approach Based on Multi-Stage Charging Current Methodology. In Proceedings of the 2020 IEEE International Conference on Power and Energy (PECon), Online, 7–8 December 2020; pp. 398–403. [Google Scholar]
- Yun, S.-S.; Kee, S.-C. Improved Multilevel Multistage Constant-Current Constant-Voltage Superfast Charging of Multiple Cells. J. Electr. Eng. Technol. 2021, 17, 209–219. [Google Scholar] [CrossRef]
- Jeon, S.U.; Park, J.-W.; Kang, B.-K.; Lee, H.-J. Study on Battery Charging Strategy of Electric Vehicles Considering Battery Capacity. IEEE Access 2021, 9, 89757–89767. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 100011. [Google Scholar] [CrossRef]
- Min, H.; Sun, W.; Li, X.; Guo, D.; Yu, Y.; Zhu, T.; Zhao, Z. Research on the Optimal Charging Strategy for Li-Ion Batteries Based on Multi-Objective Optimization. Energies 2017, 10, 709. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, L.; Praneeth, A.V.J.S.; Williamson, S.S. A Closed-Loop Constant-Temperature Constant-Voltage Charging Technique to Reduce Charge Time of Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2019, 66, 1059–1067. [Google Scholar] [CrossRef]
- Nambisan, P.; Saha, P.; Khanra, M. Real-time optimal fast charging of Li-ion batteries with varying temperature and charging behaviour constraints. J. Energy Storage 2021, 41, 102918. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, X.; Xiao, R.; Yan, W.; Liu, Y.; Shen, J. Optimal charging strategy design for lithium-ion batteries considering minimization of temperature rise and energy loss. Int. J. Energy Res. 2019, 43, 4344–4358. [Google Scholar] [CrossRef]
- Xu, M.; Wang, R.; Reichman, B.; Wang, X. Modeling the effect of two-stage fast charging protocol on thermal behavior and charging energy efficiency of lithium-ion batteries. J. Energy Storage 2018, 20, 298–309. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.-G.; Ge, S.; Leng, Y.; Wang, C.-Y. Ultrafast charging of energy-dense lithium-ion batteries for urban air mobility. eTransportation 2021, 7, 100103. [Google Scholar] [CrossRef]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries—A Post-Mortem study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Cao, R.; Yang, C. An investigation on electrical and thermal characteristics of cylindrical lithium-ion batteries at low temperatures. Energy 2021, 225, 120223. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. Characterization and Modeling of a Hybrid-Electric-Vehicle Lithium-Ion Battery Pack at Low Temperatures. IEEE Trans. Veh. Technol. 2016, 65, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.-T.F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F.N.; Kato, K.; Joyner, J.; Ajayan, P.M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550. [Google Scholar] [CrossRef]
- Yang, X.-G.; Zhang, G.; Ge, S.; Wang, C.-Y. Fast charging of lithium-ion batteries at all temperatures. Proc. Natl. Acad. Sci. USA 2018, 115, 7266–7271. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, J.; Liaw, B.Y.; Metzler, V.; Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 2014, 254, 168–182. [Google Scholar] [CrossRef]
- Leng, F.; Tan, C.M.; Pecht, M. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Sci. Rep. 2015, 5, 12967. [Google Scholar] [CrossRef] [Green Version]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Murphy, E.; Winnick, J.; Kohl, P.A. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. J. Power Sources 2001, 102, 302–309. [Google Scholar] [CrossRef]
- Purushothaman, B.; Landau, U. Rapid charging of lithium-ion batteries using pulsed currents: A theoretical analysis. J. Electrochem. Soc. 2006, 153, A533. [Google Scholar] [CrossRef]
- Li, S.; Wu, Q.; Zhang, D.; Liu, Z.; He, Y.; Wang, Z.L.; Sun, C. Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy 2019, 56, 555–562. [Google Scholar] [CrossRef]
- Lv, H.; Huang, X.; Liu, Y. Analysis on pulse charging—Discharging strategies for improving capacity retention rates of lithium-ion batteries. Ionics 2020, 26, 1749–1770. [Google Scholar] [CrossRef]
- Amanor-Boadu, J.M.; Guiseppi-Elie, A.; Sánchez-Sinencio, E. The impact of pulse charging parameters on the life cycle of lithium-ion polymer batteries. Energies 2018, 11, 2162. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Du, J.; Lu, L.; Gao, M.; Haase, F.; Li, J.; Ouyang, M. A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life. Appl. Energy 2020, 280, 115957. [Google Scholar] [CrossRef]
- Qiu, C.; He, G.; Shi, W.; Zou, M.; Liu, C. The polarization characteristics of lithium-ion batteries under cyclic charge and discharge. J. Solid State Electrochem. 2019, 23, 1887–1902. [Google Scholar] [CrossRef]
- Song, M.; Choe, S.-Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery. J. Power Sources 2019, 436, 226835. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, B.; Song, Y.; Zhang, J. A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging time and capacity utilization. Front. Struct. Civ. Eng. 2019, 13, 294–302. [Google Scholar] [CrossRef]
- Li, M.; Feng, M.; Luo, D.; Chen, Z. Fast Charging Li-Ion Batteries for a New Era of Electric Vehicles. Cell Rep. Phys. Sci. 2020, 1, 100212. [Google Scholar] [CrossRef]
- Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N.R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; et al. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater. 2021, 11, 2101126. [Google Scholar] [CrossRef]
- Han, J.-G.; Jeong, M.-Y.; Kim, K.; Park, C.; Sung, C.H.; Bak, D.W.; Kim, K.H.; Jeong, K.-M.; Choi, N.-S. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. J. Power Sources 2020, 446, 227366. [Google Scholar] [CrossRef]
- Colclasure, A.; Tanim, T.R.; Jansen, A.; Trask, S.E.; Dunlop, A.R.; Polzin, B.J.; Bloom, I.; Robertson, D.; Flores, L.; Evans, M.; et al. Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells. Electrochim. Acta 2020, 337, 135854. [Google Scholar] [CrossRef]
- Du, Z.; Wood III, D.L.; Belharouak, I. Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes. Electrochem. Commun. 2019, 103, 109–113. [Google Scholar] [CrossRef]
- Habedank, J.B.; Kraft, L.; Rheinfeld, A.; Krezdorn, C.; Jossen, A.; Zaeh, M.F. Increasing the Discharge Rate Capability of Lithium-Ion Cells with Laser-Structured Graphite Anodes: Modeling and Simulation. J. Electrochem. Soc. 2018, 165, A1563–A1573. [Google Scholar] [CrossRef]
- Zeng, Y.; Chalise, D.; Lubner, S.D.; Kaur, S.; Prasher, R.S. A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging. Energy Storage Mater. 2021, 41, 264–288. [Google Scholar] [CrossRef]
- Cai, W.; Yao, Y.-X.; Zhu, G.-L.; Yan, C.; Jiang, L.-L.; He, C.; Huang, J.-Q.; Zhang, Q. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 2020, 49, 3806–3833. [Google Scholar] [CrossRef]
Charging Levels | Maximum Power Rating (kW) | Voltage (V) | Maximum Current Rating (A) | Charging Time |
---|---|---|---|---|
IEC-62196 Standard [1] | ||||
AC Level 1 | 3.8 | 230–240 V AC | 16 | NA |
7.6 | 480 V AC | |||
AC Level 2 | 7.6 | 230–240 V AC | 32 | |
15.3 | 480 V AC | |||
AC Level 3 | 60 | 230–240 V AC | 32–250 | |
120 | 480 V AC | |||
DC | 400 | 600–1000 V DC | 250–400 | |
SAE-J1772 Standards [22] | ||||
AC Level 1 | 1.9 | 120 V AC | 16 | PHEV: 7 h BEV: 17 h |
AC Level 2 | 3.3 | 240 V AC | 80 | PHEV: 3 h BEV: 7 h |
7 | PHEV: 1.5 h BEV: 3.5 h | |||
20 | PHEV: 22 min BEV: 1.2 h | |||
DC Level 1 | 40 | 200 to 500 V DC | 80 | PHEV: 22 min BEV: 1.2 h |
DC Level 2 | Up to 100 | 200 to 500 V DC | 200 | PHEV: 10 min BEV: 20 min |
CHAdeMO [1,23] | ||||
DC Fast Charging | 400 | 400 DC | 200 | 20 min |
Type | Battery | Circuit | Charging Time (min) | Maximum Charging Current (A) | No of Stages | SOCf (%) | Charging Efficiency (%) | Charging Loss (J) | Cycling | Temperature Rise (°C) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Numerical optimization [56] | Case A 25 °C | CC-CV | INR18650HG2 from LG, 3Ah | Coupled Electro-thermal model | 61 | 1.33 C | --- | 96.2 | N/A | N/A | 330 | N/A |
MSCC | 65 | 1.917 C | 10 | 96.8 | N/A | N/A | 700–800 | N/A | ||||
Case B 25 °C | CC-CV | 43 | 1.66 C | --- | 96.2 | N/A | N/A | 330 | N/A | |||
MSCC | 52 | 3 C | 10 | 93.5 | N/A | N/A | 450 | N/A | ||||
Case C 25 °C | CC-CV | 46 | 1.67 C | --- | 83.3 | N/A | N/A | 600 | N/A | |||
MSCC | 37 | 3 C | 5 | 78.4 | N/A | N/A | 1200 | N/A | ||||
Case D 5 °C | CC-CV | 66 | 1.33 C | --- | 91.4 | N/A | N/A | 100 | N/A | |||
MSCC | 91 | 1.167 C | 10 | 90.4 | N/A | N/A | 400 | N/A | ||||
Case E 45 °C | CC-CV | 53 | 1.33 C | --- | 97.8 | N/A | N/A | 900–1000 | N/A | |||
MSCC | 44 | 2.33 C | 10 | 95.1 | N/A | N/A | 1200 | N/A | ||||
Grey Wolf optimization algorithm [57] | 2C-CC-CV | SAMSUNG INR18650–25R Li-Ion Battery | Thevenin equivalent circuit | 66 | 2 C | --- | 98.43 | 98.31 | N/A | N/A | ~+2 K | |
1C-CC-CV | 97 | 1 C | --- | 100 | 98.4 | 1363.04 | 167 | ~+1.75 K | ||||
Case-1 | 92 | 0.8292 C | 5 | 98.45 | 98.87 | 1133.91 | 300 | ~+1.75 K | ||||
Case-2 | 93 | 0.832 C | 5 | 98.46 | 98.82 | 1142.4 | N/A | ~+1.75 K | ||||
Case-3 | 85 | 1 C | 5 | 98.79 | 98.69 | 1334.99 | N/A | ~+2.1 K | ||||
Case-4 | 89 | 0.9092 C | 5 | 98.48 | 98.7 | 1239.26 | N/A | ~+2 K | ||||
Case-5 | 91 | 0.8692 C | 5 | 98.01 | 98.79 | 1175.86 | N/A | ~+1.9 K | ||||
Case-6 | 93 | 0.822 C | 5 | 98.46 | 98.81 | 1132.1 | N/A | ~+1.75 K | ||||
Adaptive MSCC [58] | Fast Charging (β = 1) | CC-CV | NCR18650B battery | 1RC transient | 52.7 | 1 C | --- | N/A | N/A | N/A | N/A | +5.1 °C |
CC-CV | 68.383 | 0.75 C | --- | N/A | N/A | N/A | N/A | +3 °C | ||||
MCCCV | 52.7 | 1 C | NA | N/A | N/A | N/A | N/A | +5.1 °C | ||||
Minimum-aging (β = 0) | MCCCV | 200 | 0.25 C | NA | N/A | N/A | N/A | N/A | +0.35 °C | |||
Balanced charging (β = 0.014) | MCCCV | 58 | 0.7836 C | NA | 99.013 | N/A | N/A | N/A | +3.5 °C | |||
CC-CV | 102.77 | 0.5 C | --- | N/A | N/A | N/A | N/A | +1.5 °C | ||||
Taguchi-orthogonal based Particle Swarm Optimisation (TPSO) [61] | CC-CV | Sanyo UR14500P 840 mAh | N/A | 119 | 0.7 C | 0 | 99.5 | 99.10 | N/A | 280 | ~+2.75 °C | |
ECCCV | 114 | 0.8036 C | 0 | 98.7 | 98.93 | N/A | N/A | ~+1.5 °C | ||||
MSCC | 67 | 1.262 C | 4 | 94.7 | 98.97 | N/A | 190 | ~+3.5 °C | ||||
MSCC | Sanyo UR14500P 2200 mAh | 51 | 1.44 C | 5 | 98.91 | N/A | N/A | N/A | ||||
CC-CV | 118 | 1.44 C | 0 | 98.54 | N/A | N/A | N/A | |||||
Multi-objective particle swarm optimisation (MOPSO) [62] | MSCC | LiFePO4 battery 8 Ah and 3.2 V | 1RC transient | 25.567 | 4.925 C | 8 | N/A | N/A | N/A | N/A | +4.1 °C | |
Taguchi-orthogonal method [60] | CC-CV_0.1C | 3150 mAh | 1 Resistor + 1 Impedance | 59.4 | 1.55 C | --- | 94.1 | 93.3 | N/A | N/A | +20.3 °C | |
CC-CV_0.2C | 49.37 | 1.55 C | --- | 92.3 | 93 | N/A | N/A | NA | ||||
MSCC_1 | 54.22 | 1.55 C | 5 | 93 | 93.9 | N/A | N/A | +19.2 °C | ||||
MSCC_2 | 55.47 | 2 C | 5 | 93.1 | 91.1 | N/A | N/A | +28.5 °C | ||||
Particle Swarm Optimisation (PSO) [59] | 1C-CC-CV | Panasonic 18,650 LI-ION CELLS | 1RC transient | 50 | 1 C | N/A | N/A | N/A | N/A | N/A | ~+6 °C | |
2C-CC-CV | ~29.2 | 2 C | N/A | N/A | N/A | N/A | N/A | ~+18 °C | ||||
Minimum charging time (β = 1) | 27.43 | 2 C | N/A | N/A | N/A | N/A | Decays 0.8% | ~+18 °C | ||||
Minimum Aging charging (β = 0) | ~60 | 0.077 C | N/A | N/A | N/A | N/A | Decays 0.5576% | ~+0.04 °C | ||||
Balanced charging (β = 0.0113) | 51.832 | 0.89 C | N/A | N/A | N/A | N/A | Decays 0.6276% | ~+4 °C | ||||
Cuckoo Optimisation Algorith (COA) [34,63] | CC-CV | Lithium Polymer ion battery 1000 mAh | 2RC transient | 118.33 | 1 C | --- | 100 | NA | 1127.667 | N/A | N/A | |
The hierarchical technique (HT) | 96.92 | 1 C | 5 | 100 | CC-CV + 8% | 1039.9 | N/A | N/A | ||||
The conditional random technique (CRT) | 91.767 | 1 C | 5 | 100 | CC-CV + 14.1% | 1010.3 | N/A | N/A | ||||
Constant Temperature Constant Voltage (CT-CV) protocol [68] | CC-CV | Samsung INR18650-25R cylindrical cell | Thevenin model + Second-order thermal model | 85 | 1 C | --- | 100 | N/A | N/A | N/A | +7.5 °C | |
CT-CV | 69.5 | 2 C | --- | 100 | N/A | N/A | N/A | +7.5 °C | ||||
Pontryagin’s Minimum Principle (PMP) [69] | Real time PMP | Panasonic NCR18650PF | Thermal Dynamics | 18 | 5 C | --- | 20 to 70 | N/A | N/A | N/A | ~+6 °C | |
CC-CV | 16 | 1.61 C | --- | 20 to 70 | N/A | N/A | N/A | ~+5.5 °C | ||||
Genetic Algorithm (GA) optimal charging strategy [70] | CC | LiNMC, 5 Ah, 3.6 V | 1RC transient | 40.05 | 0.5 C | --- | 95.34 | N/A | 0.77 | N/A | +2.13 °C | |
Optimal Improvement | 36.1 | 0.5 C | --- | 95.34 | N/A | 0.7 | N/A | +1.91 °C | ||||
Two Stage Constant Current (2SCC) [71] | High-low profile | A123 26,650 LiFePO4 graphite cylindrical battery cell | N/A | 30 | 2.6 C to 0.6 C | 2 | 80 | 98.1 | 6.62 | N/A | ~+8 °C | |
Low high profile | 30 | 0.6 C to 2.6 C | 2 | 80 | 95.1 | 6.83 | N/A | ~+8.5 °C |
Protocol Type | Duty Cycle | Frequency | Compared with | Impact |
---|---|---|---|---|
Standard PCC based on Orthogonal arrays [31] | 50% | 12 kHz | CC-CV | +100 cycle life |
Standard PCC [87] | 50% | 25 Hz | CC-CV | Same cycle life |
50% | 1 Hz | Same cycle life, only a somewhat faster capacity fade can be observed | ||
Pulse charging current constant voltage (PCC-CV) [86] | 50% | 0.02 Hz | CC-CV | Same cycle life |
Constant Current-Pulse Charging Current (CC-PCC) [31] | 50% | 2.5 Hz | CC-CV | Same cycle life |
Up to 80% SOC Fresh Cell | Up to 100% SOC Fresh Cell | Up to 100% SOC after 20 Cycles | Up to 100% SOC after 60 Cycles | |
---|---|---|---|---|
3C CC-CV | 15.7 min | 44 min | 47.3 min | 55.2 min |
2C CC-CV | 22.8 min | 56 min | 56.1 min | 59.2 min |
FCNP | 16.6 min | 49 min | 51.1 min | 52 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makeen, P.; Ghali, H.A.; Memon, S. A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems. Future Transp. 2022, 2, 281-299. https://doi.org/10.3390/futuretransp2010015
Makeen P, Ghali HA, Memon S. A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems. Future Transportation. 2022; 2(1):281-299. https://doi.org/10.3390/futuretransp2010015
Chicago/Turabian StyleMakeen, Peter, Hani A. Ghali, and Saim Memon. 2022. "A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems" Future Transportation 2, no. 1: 281-299. https://doi.org/10.3390/futuretransp2010015
APA StyleMakeen, P., Ghali, H. A., & Memon, S. (2022). A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems. Future Transportation, 2(1), 281-299. https://doi.org/10.3390/futuretransp2010015