Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Guoxiang Chi ORCID = 0000-0003-0368-6215

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8969 KiB  
Article
Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China
by Mimi Yang, Xingyuan Li, Guoxiang Chi, Hao Song, Zhengqi Xu and Fufeng Zhao
Minerals 2024, 14(9), 874; https://doi.org/10.3390/min14090874 - 27 Aug 2024
Viewed by 1466
Abstract
The Xifanping deposit is a distinct Cenozoic porphyry Cu (Au) deposit located in the Sanjing porphyry metallogenic belt 100–150 km east of the JinshajFiang fault in the western Yangtze craton. We present new zircon U–Pb–Lu–Hf isotopic studies and geochemical data of the ore-bearing [...] Read more.
The Xifanping deposit is a distinct Cenozoic porphyry Cu (Au) deposit located in the Sanjing porphyry metallogenic belt 100–150 km east of the JinshajFiang fault in the western Yangtze craton. We present new zircon U–Pb–Lu–Hf isotopic studies and geochemical data of the ore-bearing quartz monzonite porphyry from the Xifanping deposit to determine their petrogenesis and geodynamic mechanisms. LA–ICP–MS zircon U–Pb dating yielded precise emplacement ages of 31.87 ± 0.41 Ma (MSWD = 0.86) and 32.24 ± 0.61 Ma (MSWD = 1.8) for quartz monzonite porphyry intrusions, and 254.9 ± 5.1 Ma (MSWD = 1.7) for inherited zircons of the monzonite porphyry. The ore-bearing monzonite porphyry is characterized by high-K calc–alkaline to shoshonite and peraluminous series, relatively enriched in light over heavy REEs, with no distinct Eu anomalies, as well as enrichment in LILEs and depletion of HFSEs, with adakitic affinities. The zircon Lu–Hf isotope data ranged from εHf(t) values of −2.94 to +3.68 (average −0.47) with crustal model (TDM2) ages ranging from 0.88 to 1.30 Ga, whereas the inherited zircons displayed positive εHf(t) values ranging from +1.83 to +7.98 (average +5.82), with crustal model (TDM2) ages ranging from 0.77 to 1.17 Ga. Results suggest that the Xifanping porphyry Cu (Au) deposit is related to two periods of magmatic activities. Early magmas were generated from the Paleo-Tethys oceanic subduction during the Late Permian. The subsequent porphyry magma was likely formed by the remelting of previously subduction-modified arc lithosphere, triggered by the continental collision between the Indian and Asian plates in the Cenozoic. The deep magmas and late hydrothermal fluids took advantage of the early magma transport channels along tectonically weak zones during the transition from an extrusive to an extensional–tensional tectonic environment. Early dikes from remelted and assimilated crust contributed to the two age ranges observed in the porphyry intrusions from the Xifanping deposit. The juvenile lower crust materials of the early magmatic arc were potential sources of the Cenozoic porphyry magmas, which has significant implications for mineral exploration and the geological understanding of porphyry Cu deposits in this region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 2367 KiB  
Article
Associations between Ileal Juice Bile Acids and Colorectal Advanced Adenoma
by Hung N. Luu, Chi Thi-Du Tran, Renwei Wang, Mai Vu-Tuyet Nguyen, Mo Thi Tran, Thuy Thi-Van Tuong, Quang Hong Tran, Linh Cu Le, Huong Thi-Thu Pham, Hien Huy Vu, Nam Chi Bui, Hien Thi-Thu Ha, Dung Tuan Trinh, Claire E. Thomas, Jennifer Adams-Haduch, Liudmilla Velikokhatnaya, Robert E. Schoen, Guoxiang Xie, Wei Jia, Paolo Boffetta, Jose C. Clemente and Jian-Min Yuanadd Show full author list remove Hide full author list
Nutrients 2023, 15(13), 2930; https://doi.org/10.3390/nu15132930 - 28 Jun 2023
Cited by 6 | Viewed by 2867
Abstract
Background: There is an urgent need to identify biomarkers for advanced adenoma, an important precursor of colorectal cancer (CRC). We aimed to determine alterations in ileal juice bile acids associated with colorectal advanced adenoma. Methods: We quantified a comprehensive panel of primary and [...] Read more.
Background: There is an urgent need to identify biomarkers for advanced adenoma, an important precursor of colorectal cancer (CRC). We aimed to determine alterations in ileal juice bile acids associated with colorectal advanced adenoma. Methods: We quantified a comprehensive panel of primary and secondary bile acids and their conjugates using an ultraperformance liquid chromatography triple-quadrupole mass spectrometric assay in ileal juice collected at colonoscopy from 46 study subjects (i.e., 14 biopsy-confirmed advanced adenomas and 32 controls free of adenoma or cancer). Using analysis of covariance (ANCOVA), we examined the differences in bile acid concentrations by disease status, adjusting for age, sex, body mass index, smoking status and type 2 diabetes. Results: The concentrations of hyodeoxycholic acid (HCA) species in ileal juice of the advanced adenoma patients (geometric mean = 4501.9 nM) were significantly higher than those of controls (geometric mean = 1292.3 nM, p = 0.001). The relative abundance of ursodeoxycholic acid (UDCA) in total bile acids was significantly reduced in cases than controls (0.73% in cases vs. 1.33% in controls; p = 0.046). No significant difference between cases and controls was observed for concentrations of total or specific primary bile acids (i.e., cholic acid (CA), chenodeoxycholic acid (CDCA) and their glycine- and taurine-conjugates) and total and specific major secondary bile acids (i.e., deoxycholic acid and lithocholic acid). Conclusions: Colorectal advanced adenoma was associated with altered bile acids in ileal juice. The HCA species may promote the development of colorectal advanced adenoma, whereas gut microbiota responsible for the conversion of CDCA to UDCA may protect against it. Our findings have important implications for the use of bile acids as biomarkers in early detection of colorectal cancer. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 6301 KiB  
Article
LA-ICP-MS Mapping of Barren Sandstone from the Proterozoic Athabasca Basin (Canada)—Footprint of U- and REE-Rich Basinal Fluids
by Guoxiang Chi, Eric G. Potter, Duane C. Petts, Simon Jackson and Haixia Chu
Minerals 2022, 12(6), 733; https://doi.org/10.3390/min12060733 - 8 Jun 2022
Cited by 6 | Viewed by 3389
Abstract
The Proterozoic Athabasca Basin hosts a large number of high-grade, large-tonnage unconformity-related uranium (U) deposits, many of which are also enriched in rare earth elements (REE). The basin also contains hydrothermal REE mineralization unassociated with U. Previous studies postulated that U and REE [...] Read more.
The Proterozoic Athabasca Basin hosts a large number of high-grade, large-tonnage unconformity-related uranium (U) deposits, many of which are also enriched in rare earth elements (REE). The basin also contains hydrothermal REE mineralization unassociated with U. Previous studies postulated that U and REE were derived from either the basin or the basement; however, the exact source of the metals remains ambiguous. This study provides evidence of U- and REE-rich fluids throughout the Athabasca Basin through laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) mapping of barren sandstone distal to mineralized areas. The results indicate that elevated U and REE concentrations mainly occur in the matrix; there are strong positive correlations between U and REE, Th, P and Sr, and moderate positive correlations between U and Zr, Ba, Fe, Al, K and Ca, but the few spots with the highest U are unrelated to these elements. Quantitative evaluation of the element correlations, together with scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis, suggests that most of the elevated U and REE are hosted in aluminum phosphate sulfate (APS) minerals rather than apatite and monazite. As the APS minerals are of diagenetic-hydrothermal origin, the results testify to the presence of U- and REE-rich fluids within the Athabasca Basin. The elevated Th/U ratio (~10) and REE pattern (strong heavy rare earth element (HREE) depletion) are consistent with a model in which large amounts of U and REE (especially HREE) were leached from the sandstone within the Athabasca Basin and contributed to U and REE mineralization near the unconformity between the sedimentary rocks in the basin and underlying basement rocks. This study demonstrates that LA-ICP-MS mapping can be effectively used to evaluate microscale distribution of elements and their mobility in sedimentary rocks to address mineralization related problems. Full article
(This article belongs to the Special Issue Geochemistry, Mineral Chemistry and Geochronology of Uranium Deposits)
Show Figures

Figure 1

23 pages, 2915 KiB  
Review
Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion
by Guoxiang Chi, Larryn W. Diamond, Huanzhang Lu, Jianqing Lai and Haixia Chu
Minerals 2021, 11(1), 7; https://doi.org/10.3390/min11010007 - 24 Dec 2020
Cited by 129 | Viewed by 14827
Abstract
The study of fluid inclusions is important for understanding various geologic processes involving geofluids. However, there are a number of problems that are frequently encountered in the study of fluid inclusions, especially by beginners, and many of these problems are critical for the [...] Read more.
The study of fluid inclusions is important for understanding various geologic processes involving geofluids. However, there are a number of problems that are frequently encountered in the study of fluid inclusions, especially by beginners, and many of these problems are critical for the validity of the fluid inclusion data and their interpretations. This paper discusses some of the most common problems and/or pitfalls, including those related to fluid inclusion petrography, metastability, fluid phase relationships, fluid temperature and pressure calculation and interpretation, bulk fluid inclusion analysis, and data presentation. A total of 16 problems, many of which have been discussed in the literature, are described and analyzed systematically. The causes of the problems, their potential impact on data quality and interpretation, as well as possible remediation or alleviation, are discussed. Full article
Show Figures

Graphical abstract

10 pages, 2899 KiB  
Article
Quantification of Solute Composition in H2O-NaCl-CaCl2 Solutions Using Cryogenic 2D Raman Mapping
by Haixia Chu, Guoxiang Chi and Chunji Xue
Minerals 2020, 10(11), 1043; https://doi.org/10.3390/min10111043 - 23 Nov 2020
Cited by 3 | Viewed by 2501
Abstract
Various analytical techniques have been developed to determine the solution composition of fluid inclusions, including destructive, non-destructive, single-inclusion, and bulk-inclusion methods. Cryogenic Raman spectroscopy, as a non-destructive and single-inclusion method, has emerged as a potentially powerful tool of quantitative analysis of fluid inclusion [...] Read more.
Various analytical techniques have been developed to determine the solution composition of fluid inclusions, including destructive, non-destructive, single-inclusion, and bulk-inclusion methods. Cryogenic Raman spectroscopy, as a non-destructive and single-inclusion method, has emerged as a potentially powerful tool of quantitative analysis of fluid inclusion composition. A method of point analysis using cryogenic Raman spectroscopy has been previously proposed to quantitatively estimate the solute composition of H2O-NaCl-CaCl2 solutions, but there are uncertainties related to heterogeneity of frozen fluid inclusions and potential bias in the processing of Raman spectra. A new method of quantitative analysis of solute composition of H2O-NaCl-CaCl2 solutions using Raman mapping technology is proposed in this study, which can overcome the problems encountered in the point analysis. It is shown that the NaCl/(NaCl + CaCl2) molar ratio of the solution, X(NaCl, m), can be related to the area fraction of hydrohalite over hydrohalite plus antarcticite, Fhydrohalite, by the equation X(NaCl, m) = 1.1435 Fhydrohalite − 0.0884, where Fhydrohalite = hydrohalite area/(hydrohalite area + antarcticite area). This equation suggests that the molar fraction of a salt component may be estimated from the fraction of the Raman peak area of the relevant hydrate. This study has established a new way of estimating solute composition of fluid inclusions using cryogenic Raman mapping technique, which may be extended to other solutions. Full article
Show Figures

Figure 1

27 pages, 13822 KiB  
Article
Stratigraphic and Structural Control on Hydrothermal Dolomitization in the Middle Permian Carbonates, Southwestern Sichuan Basin (China)
by Haofu Zheng, Yongsheng Ma, Guoxiang Chi, Hairuo Qing, Bo Liu, Xuefeng Zhang, Yingchu Shen, Jianqiang Liu and Yuanchong Wang
Minerals 2019, 9(1), 32; https://doi.org/10.3390/min9010032 - 10 Jan 2019
Cited by 36 | Viewed by 5185
Abstract
The Qixia Formation and Maokou Formation of Middle Permian in the southwestern Sichuan Basin were pervasively dolomitized during the diagenetic history. Petrographically, four types of dolomites, namely three replacive dolomites (Rd1, Rd2, and Rd3) and one dolomite cement (Cd), were distinguished. Rd1 dolomite [...] Read more.
The Qixia Formation and Maokou Formation of Middle Permian in the southwestern Sichuan Basin were pervasively dolomitized during the diagenetic history. Petrographically, four types of dolomites, namely three replacive dolomites (Rd1, Rd2, and Rd3) and one dolomite cement (Cd), were distinguished. Rd1 dolomite occurs as very fine (<50 µm), planar-s to nonplanar crystals; Rd2 dolomite shows planar-e to planar-s crystal shapes with fine crystal sizes (50–250 µm) and is characterized by center-frog and margin-clear; Rd3 dolomite occurs as medium to coarse (250 µm–2 mm), nonplanar crystals; and Cd dolomite is characterized by saddle crystals filling dissolution pores and/or fractures, translucent white color in the hand samples, and strong sweeping extinction under cross-polarized light. In areas close to reactivated basement faults (Zhangcun outcrop and well Hanshen1), Rd3 (~65% by abundance) was the dominant type of replacement dolomite and minor amounts of Rd1 and Rd2 (~10%) were found in this area. Cd (~25%) was extensively developed in fractures and dissolution pores, whereas, in areas far away from the fault zones (Xinjigu outcrop), Rd1 (~20%) and Rd2 (~55%) were dominant replacement dolomites, and only a small portion of them were recrystallized to form Rd3 (~20%), with minor Cd (~5%) dolomite occurring in some dissolution pores. The δ13CV-PDB (−0.37‰ to 4.32‰) and δ18OV-PDB values (−7.41‰ to −5.19‰), 87Sr/86Sr ratios (0.707085 to 0.707795), and rare earth elements (REE) patterns (flat REE patterns with slight light rare earth element (LREE) enrichment and slight negative Ce anomalies) suggest that Rd1 dolomite was formed penecontemporaneously in an evaporitic tidal flat evaporation environment with salinities higher than seawater. The Rd2 dolomite, characterized by δ13CV-PDB (−0.18‰ to 4.89‰) and δ18OV-PDB values from −6.6‰ to −5.5‰, 87Sr/86Sr ratios from 0.707292 to 0.707951, and LREE enrichment and slight negative Ce anomalies, was interpreted as forming from the recrystallization of Rd1 at shallow burial. The δ18OV-PDB values (−12.01‰ to −8.23‰), the prominent positive anomaly of Eu, high 87Sr/86Sr ratios (0.7081–0.7198) and high fluid inclusion homogenization temperatures (149–255 °C) suggest that Rd3 and Cd dolomite were formed from hot fluids. Based on regional stratigraphic data, the Rd3 and Cd were likely formed at depths less than 1500 m; thus, the ambient burial temperature would be lower than 85 °C. The high fluid temperatures recorded by fluid inclusions, thus, indicate that the dolomitization was of hydrothermal nature. The δ18OV-SMOW values, homogenization temperatures, and salinities of the fluid inclusions of Rd3 and Cd in proximal areas were systematically higher than those in distal areas, suggesting that the hydrothermal fluid ascended along faults in proximal areas and then migrated laterally along the strata to distal areas. The dolomites of the Middle Permian carbonates in the southwestern Sichuan Basin, thus, resulted from different dolomitization phases, and the latter hydrothermal dolomitization was controlled by a combination of strata and structures. Full article
Show Figures

Figure 1

Back to TopTop