Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Francesco Timpone ORCID = 0000-0001-6039-3895

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6853 KiB  
Article
Analysis of the Scenarios of Use of an Innovative Technology for the Fast and Nondestructive Characterization of Viscoelastic Materials in the Tires Field
by Flavio Farroni, Francesco Timpone and Andrea Genovese
Sensors 2024, 24(4), 1136; https://doi.org/10.3390/s24041136 - 9 Feb 2024
Cited by 4 | Viewed by 1931
Abstract
The properties of tires related to their viscoelastic behavior have a significant impact in the field of vehicle dynamics. They affect the performance and safety of a vehicle based on how they change when the tire performs in variable thermal conditions, interacts with [...] Read more.
The properties of tires related to their viscoelastic behavior have a significant impact in the field of vehicle dynamics. They affect the performance and safety of a vehicle based on how they change when the tire performs in variable thermal conditions, interacts with various kinds of road surfaces, and accumulates mileage over time. To analyze and understand such properties of viscoelastic materials, destructive tests like dynamic mechanical analysis (DMA) are used, which make the tire unusable after the test; these are usually carried out on specimens cut from the zone of interest. The development of an innovative testing methodology connected to a hardware device called VESevo allows the characterization of the viscoelastic properties of tire compounds belonging to tread or other parts in a fast and nondestructive way. This new device provides valuable information about the evolution of the tire’s viscoelastic properties, allowing it to monitor them throughout the whole lifecycle. In the paper, an overview of the possible sensitivities that can be investigated thanks to the VESevo is provided: The tread viscoelasticity was characterized and monitored for several tire tread compounds, over tire mileage, over tread thermal curing cycles, and as an index of the tread quality and uniformity in production. Preliminary results were collected and are presented. In the final paragraph, further recent applications developed from the tire field, which are not directly related, are reported. Full article
(This article belongs to the Special Issue Feature Papers in Vehicular Sensing 2023)
Show Figures

Figure 1

25 pages, 1179 KiB  
Article
Four-Wheeled Vehicle Sideslip Angle Estimation: A Machine Learning-Based Technique for Real-Time Virtual Sensor Development
by Guido Napolitano Dell’Annunziata, Marco Ruffini, Raffaele Stefanelli, Giovanni Adiletta, Gabriele Fichera and Francesco Timpone
Appl. Sci. 2024, 14(3), 1036; https://doi.org/10.3390/app14031036 - 25 Jan 2024
Cited by 6 | Viewed by 2922
Abstract
In the last few decades, the role of vehicle dynamics control systems has become crucial. In this complex scenario, the correct real-time estimation of the vehicle’s sideslip angle is decisive. Indeed, this quantity is deeply linked to several aspects, such as traction and [...] Read more.
In the last few decades, the role of vehicle dynamics control systems has become crucial. In this complex scenario, the correct real-time estimation of the vehicle’s sideslip angle is decisive. Indeed, this quantity is deeply linked to several aspects, such as traction and stability optimization, and its correct understanding leads to the possibility of reaching greater road safety, increased efficiency, and a better driving experience for both autonomous and human-controlled vehicles. This paper aims to estimate accurately the sideslip angle of the vehicle using different neural network configurations. Then, the proposed approach involves using two separate neural networks in a dual-network architecture. The first network is dedicated to estimating the longitudinal velocity, while the second network predicts the sideslip angle and takes the longitudinal velocity estimate from the first network as input. This enables the creation of a virtual sensor to replace the real one. To obtain a reliable training dataset, several test sessions were conducted on different tracks with various layouts and characteristics, using the same reference instrumented vehicle. Starting from the acquired channels, such as lateral and longitudinal acceleration, steering angle, yaw rate, and angular wheel speeds, it has been possible to estimate the sideslip angle through different neural network architectures and training strategies. The goodness of the approach was assessed by comparing the estimations with the measurements obtained from an optical sensor able to provide accurate values of the target variable. The obtained results show a robust alignment with the reference values in a great number of tested conditions. This confirms that the adoption of artificial neural networks represents a reliable strategy to develop real-time virtual sensors for onboard solutions, expanding the information available for controls. Full article
(This article belongs to the Special Issue Vehicle Technology and Its Applications)
Show Figures

Figure 1

15 pages, 5738 KiB  
Article
A Non-Destructive Methodology for the Viscoelastic Characterization of Polymers: Toward the Identification of the Time–Temperature Superposition Shift Law
by Aleksandr Sakhnevych, Raffaele Maglione and Francesco Timpone
Sensors 2023, 23(22), 9213; https://doi.org/10.3390/s23229213 - 16 Nov 2023
Cited by 5 | Viewed by 2416
Abstract
Polymers find widespread applications in various industries, such as civil engineering, aerospace, and industrial machinery, contributing to vibration control, dampening, and insulation. To accurately design products that are able to predict their dynamic behavior in the virtual environment, it is essential to understand [...] Read more.
Polymers find widespread applications in various industries, such as civil engineering, aerospace, and industrial machinery, contributing to vibration control, dampening, and insulation. To accurately design products that are able to predict their dynamic behavior in the virtual environment, it is essential to understand and reproduce their viscoelastic properties via material physical modeling. While Dynamic Mechanical Analysis (DMA) has traditionally been used, innovative non-destructive techniques are emerging for characterizing components and monitoring their performance without deconstructing them. In this context, the Time–Temperature Superposition Principle (TTSP) represents a powerful empirical procedure to extend a polymer’s viscoelastic behavior across a wider frequency range. This study focuses on replicating an indentation test on viscoelastic materials using the non-destructive Viscoelasticity Evaluation System evolved (VESevo) tool. The primary objective is to derive a unique temperature–frequency relationship, referred to as a “shift law”, using characteristic curves from this non-invasive approach. Encouragingly, modifying the device setup enabled us to replicate, virtually, three tests under identical initial conditions but with varying indentation frequencies. This highlights the tool’s ability to conduct material testing across a range of frequencies. These findings set the stage for our upcoming experiment campaign, aiming to create an innovative shift algorithm from at least three distinct master curves at specific frequencies, offering a significant breakthrough in non-destructive polymer characterization with broad industrial potential. Full article
Show Figures

Figure 1

17 pages, 8736 KiB  
Article
A Co-Simulation Platform with Tire and Brake Thermal Model for the Analysis and Reproduction of Blanking
by Fabio Romagnuolo, Stefano Avolio, Gabriele Fichera, Marco Ruffini, Raffaele Stefanelli and Francesco Timpone
Vehicles 2023, 5(4), 1605-1621; https://doi.org/10.3390/vehicles5040087 - 6 Nov 2023
Cited by 2 | Viewed by 2532
Abstract
In the world of motorsports engineering, improving brake performance is a crucial goal. One significant factor that affects this performance is the increase in brake disc temperature due to reduced cooling airflow, a phenomenon called “blanking”. This temperature increase also impacts the rim [...] Read more.
In the world of motorsports engineering, improving brake performance is a crucial goal. One significant factor that affects this performance is the increase in brake disc temperature due to reduced cooling airflow, a phenomenon called “blanking”. This temperature increase also impacts the rim and the air inside the tire, causing changes in tire temperature and pressure, which affects the vehicle’s performance. Properly adjusting the brake blanking can be essential to keep the tire running at the right temperature, resulting in maximization of the performance on track. To address this complex problem, this study describes the problem of cooling brake discs, and this problem is then used as an opportunity to introduce a new variable in order to optimize the performance of the vehicle. By changing the thermal evolution of the brake disc, through the blanking, it can change a large percentage of heat that heats the tire. When combining an existing brake model in the literature with a tire thermal model in a co-platform simulation, it was seen that it is possible to work these two models together with the aim of being able to obtain the prediction of the optimal blanking value to be adopted before proceeding on track, thus saving time and costs. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

26 pages, 1725 KiB  
Article
Tire Wear Sensitivity Analysis and Modeling Based on a Statistical Multidisciplinary Approach for High-Performance Vehicles
by Guido Napolitano Dell’Annunziata, Giovanni Adiletta, Flavio Farroni, Aleksandr Sakhnevych and Francesco Timpone
Lubricants 2023, 11(7), 269; https://doi.org/10.3390/lubricants11070269 - 21 Jun 2023
Cited by 3 | Viewed by 4457
Abstract
One of the main challenges in maximizing vehicle performance is to predict and optimize tire behavior in different working conditions, such as temperature, friction, and wear. Starting from several approaches to develop tire grip and wear models, based on physical principles, experimental data, [...] Read more.
One of the main challenges in maximizing vehicle performance is to predict and optimize tire behavior in different working conditions, such as temperature, friction, and wear. Starting from several approaches to develop tire grip and wear models, based on physical principles, experimental data, or statistical methods available in the literature, this work aims to propose a novel tire wear model that combines physical and statistical analysis on a large number of high-performance vehicle telemetries, tracks, and road data, as well as tires’ viscoelastic properties. Another contribution of this multidisciplinary study is the definition of the functional relationships that govern the tire–road interaction in terms of friction and degradation, conducting a thorough analysis of the car’s telemetry, the track and asphalt features, and the viscoelastic properties of the tires. Full article
(This article belongs to the Special Issue Friction and Wear in Vehicles)
Show Figures

Graphical abstract

19 pages, 77413 KiB  
Article
Static and Dynamic Analysis of Non-Pneumatic Tires Based on Experimental and Numerical Methods
by Andrea Genovese, Dario Garofano, Aleksandr Sakhnevych, Francesco Timpone and Flavio Farroni
Appl. Sci. 2021, 11(23), 11232; https://doi.org/10.3390/app112311232 - 26 Nov 2021
Cited by 34 | Viewed by 6664
Abstract
Since the beginning of their production, pneumatic tires have experienced tremendous improvements in structure and materials, becoming the dominant design in the world tires market. Nevertheless, relying upon pressurized air, they are affected by maintenance and security issues that can lead to fatal [...] Read more.
Since the beginning of their production, pneumatic tires have experienced tremendous improvements in structure and materials, becoming the dominant design in the world tires market. Nevertheless, relying upon pressurized air, they are affected by maintenance and security issues that can lead to fatal accidents. Therefore, tire-makers are investigating new tire designs, called Airless or Non-Pneumatic, with the aim of removing air-related problems. The research about such tires is still at an early stage, especially if compared to the one conducted on the pneumatic ones. In this paper, the development of a methodology capable of studying the mechanical behavior of a Non-Pneumatic Tire (NPT) by means of experimental data and numerical approach is illustrated. The experimental activities consisted of a scanner acquisition of the NPT and a footprint analysis for the calculation of the radial stiffness and contact patch pressure distribution. Moreover, the Digital Image Correlation (DIC) technique was applied to carry out a more specific study about the spoke’s deformation. From the acquired 3D model, a calculation of the NPT vertical deflection with finite element analysis (FEA) was performed—validating the model and then submitting it to a steady state analysis—that allows the simulation of a steady state rolling tire with the possibility to replicate different values of slip ratio. The results of the experimental activities are in good agreement with the ones obtained with FEA, further validating the developed methodology. Full article
Show Figures

Figure 1

19 pages, 3298 KiB  
Article
Study on the Generalized Formulations with the Aim to Reproduce the Viscoelastic Dynamic Behavior of Polymers
by Andrea Genovese, Francesco Carputo, Antonio Maiorano, Francesco Timpone, Flavio Farroni and Aleksandr Sakhnevych
Appl. Sci. 2020, 10(7), 2321; https://doi.org/10.3390/app10072321 - 28 Mar 2020
Cited by 16 | Viewed by 4663
Abstract
Appropriate modelling of the real behavior of viscoelastic materials is of fundamental importance for correct studies and analyses of structures and components where such materials are employed. In this paper, the potential to employ a generalized Maxwell model and the relative fraction derivative [...] Read more.
Appropriate modelling of the real behavior of viscoelastic materials is of fundamental importance for correct studies and analyses of structures and components where such materials are employed. In this paper, the potential to employ a generalized Maxwell model and the relative fraction derivative model is studied with the aim to reproduce the experimental behavior of viscoelastic materials. For both models, the advantage of using the pole-zero formulation is demonstrated and a specifically constrained identification procedure to obtain the optimum parameters set is illustrated. Particular emphasis is given on the ability of the models to adequately fit the experimental data with a minimum number of parameters, addressing the possible computational issues. The question arises about the minimum number of experimental data necessary to estimate the material behavior in a wide frequency range, demonstrating that accurate results can be obtained by knowing only the data of the upper and low frequency plateaus plus the ones at the loss tangent peak. Full article
(This article belongs to the Special Issue Advances in Mechanical Systems Dynamics 2020)
Show Figures

Figure 1

13 pages, 3896 KiB  
Article
A Real-Time Thermal Model for the Analysis of Tire/Road Interaction in Motorcycle Applications
by Flavio Farroni, Nicolò Mancinelli and Francesco Timpone
Appl. Sci. 2020, 10(5), 1604; https://doi.org/10.3390/app10051604 - 28 Feb 2020
Cited by 20 | Viewed by 8160
Abstract
While in the automotive field the relationship between road adherence and tire temperature is mainly investigated with the aim to enhance the vehicle performance in motorsport, the motorcycle sector is highly sensitive to such theme also from less extreme applications. The small extension [...] Read more.
While in the automotive field the relationship between road adherence and tire temperature is mainly investigated with the aim to enhance the vehicle performance in motorsport, the motorcycle sector is highly sensitive to such theme also from less extreme applications. The small extension of the footprint, along with the need to guarantee driver stability and safety in the widest possible range of riding conditions, requires that tires work as most as possible at a temperature able to let the viscoelastic compounds-constituting the tread and the composite materials of the whole carcass structure-provide the highest interaction force with road. Moreover, both for tire manufacturing companies and for single track vehicles designers and racing teams, a deep knowledge of the thermodynamic phenomena involved at the ground level is a key factor for the development of optimal solutions and setup. This paper proposes a physical model based on the application of the Fourier thermodynamic equations to a three-dimensional domain, accounting for all the sources of heating like friction power at the road interface and the cyclic generation of heat because of rolling and to asphalt indentation, and for the cooling effects because of the air forced convection, to road conduction and to turbulences in the inflation chamber. The complex heat exchanges in the system are fully described and modeled, with particular reference to the management of contact patch position, correlated to camber angle and requiring the adoption of an innovative multi-ribbed and multi-layered tire structure. The completely physical approach induces the need of a proper parameterization of the model, whose main stages are described, both from the experimental and identification points of view, with particular reference to non-destructive procedures for thermal parameters definition. One of the most peculiar and challenging features of the model is linked with its topological and analytical structure, allowing to run in real-time, usefully for the application in co-simulation vehicle dynamics platforms, for performance prediction and setup optimization applications. Full article
(This article belongs to the Special Issue Advances in Mechanical Systems Dynamics 2020)
Show Figures

Figure 1

Back to TopTop