Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Flora Giudicepietro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2595 KiB  
Article
Efficient SOM’s Application to Seismic Fumarolic Tremor for the Detection of Anomalous Hydrothermal Activity in Campi Flegrei Volcano (Italy)
by Antonietta M. Esposito, Walter De Cesare, Giovanni Macedonio and Flora Giudicepietro
Appl. Sci. 2023, 13(9), 5505; https://doi.org/10.3390/app13095505 - 28 Apr 2023
Cited by 4 | Viewed by 1581
Abstract
In recent decades, the Campi Flegrei caldera (Italy) showed unrest characterized by increases in seismicity, ground uplift, and hydrothermal activity. Currently, the seismic and hydrothermal phenomena are mostly concentrated in the Solfatara–Pisciarelli area, which presents a wide fumarolic field and mud emissions. The [...] Read more.
In recent decades, the Campi Flegrei caldera (Italy) showed unrest characterized by increases in seismicity, ground uplift, and hydrothermal activity. Currently, the seismic and hydrothermal phenomena are mostly concentrated in the Solfatara–Pisciarelli area, which presents a wide fumarolic field and mud emissions. The main fumarole in Pisciarelli is associated with a boiling mud pool. Recently, episodes of a sudden increase in hydrothermal activity and expansion of mud and gas emissions occurred in this area. During these episodes, which occurred in December 2018 and September 2020, Short Duration Events (SDEs), related to the intensity of mud pool boiling, were recorded in the fumarolic seismic tremor. We applied a Self-Organizing Map (SOM) neural network to recognize the occurrence of SDEs in the fumarolic tremor of Campi Flegrei, which provides important information on the state of activity of the hydrothermal system and about the possible phreatic activity. Our method, based on an ad hoc feature extraction procedure, effectively clustered the seismic signals containing SDEs and separated them from those representing the normal fumarolic tremor. This result is useful for improving the monitoring of the Solfatara–Pisciarelli hydrothermal area which is a high-risk zone in Campi Flegrei. Full article
Show Figures

Figure 1

4 pages, 184 KiB  
Editorial
Volcanic Processes Monitoring and Hazard Assessment Using Integration of Remote Sensing and Ground-Based Techniques
by Sonia Calvari, Alessandro Bonaccorso, Annalisa Cappello, Flora Giudicepietro and Eugenio Sansosti
Remote Sens. 2022, 14(15), 3626; https://doi.org/10.3390/rs14153626 - 29 Jul 2022
Cited by 1 | Viewed by 1911
Abstract
The monitoring of active volcanoes is a complex task based on multidisciplinary and integrated analyses that use ground, drones, and satellite monitoring devices [...] Full article
26 pages, 7986 KiB  
Article
Changes in the Eruptive Style of Stromboli Volcano before the 2019 Paroxysmal Phase Discovered through SOM Clustering of Seismo-Acoustic Features Compared with Camera Images and GBInSAR Data
by Flora Giudicepietro, Sonia Calvari, Luca D’Auria, Federico Di Traglia, Lukas Layer, Giovanni Macedonio, Teresa Caputo, Walter De Cesare, Gaetana Ganci, Marcello Martini, Massimo Orazi, Rosario Peluso, Giovanni Scarpato, Laura Spina, Teresa Nolesini, Nicola Casagli, Anna Tramelli and Antonietta M. Esposito
Remote Sens. 2022, 14(5), 1287; https://doi.org/10.3390/rs14051287 - 6 Mar 2022
Cited by 10 | Viewed by 3538
Abstract
Two paroxysmal explosions occurred at Stromboli on 3 July and 28 August 2019, the first of which caused the death of a young tourist. After the first paroxysm an effusive activity began from the summit vents and affected the NW flank of the [...] Read more.
Two paroxysmal explosions occurred at Stromboli on 3 July and 28 August 2019, the first of which caused the death of a young tourist. After the first paroxysm an effusive activity began from the summit vents and affected the NW flank of the island for the entire period between the two paroxysms. We carried out an unsupervised analysis of seismic and infrasonic data of Strombolian explosions over 10 months (15 November 2018–15 September 2019) using a Self-Organizing Map (SOM) neural network to recognize changes in the eruptive patterns of Stromboli that preceded the paroxysms. We used a dataset of 14,289 events. The SOM analysis identified three main clusters that showed different occurrences with time indicating a clear change in Stromboli’s eruptive style before the paroxysm of 3 July 2019. We compared the main clusters with the recordings of the fixed monitoring cameras and with the Ground-Based Interferometric Synthetic Aperture Radar measurements, and found that the clusters are associated with different types of Strombolian explosions and different deformation patterns of the summit area. Our findings provide new insights into Strombolian eruptive mechanisms and new perspectives to improve the monitoring of Stromboli and other open conduit volcanoes. Full article
Show Figures

Graphical abstract

14 pages, 2910 KiB  
Article
Study of Surface Emissions of 220Rn (Thoron) at Two Sites in the Campi Flegrei Caldera (Italy) during Volcanic Unrest in the Period 2011–2017
by Fabrizio Ambrosino, Carlo Sabbarese, Flora Giudicepietro, Walter De Cesare, Mariagabriella Pugliese and Vincenzo Roca
Appl. Sci. 2021, 11(13), 5809; https://doi.org/10.3390/app11135809 - 23 Jun 2021
Cited by 8 | Viewed by 1853
Abstract
The study concerns the analysis of 220Rn (thoron) recorded in the surface soil in two sites of the Campi Flegrei caldera (Naples, Southern Italy) characterized by phases of volcanic unrest in the seven-year period 1 July 2011–31 December 2017. Thoron comes only [...] Read more.
The study concerns the analysis of 220Rn (thoron) recorded in the surface soil in two sites of the Campi Flegrei caldera (Naples, Southern Italy) characterized by phases of volcanic unrest in the seven-year period 1 July 2011–31 December 2017. Thoron comes only from the most surface layer, so the characteristics of its time series are strictly connected to the shallow phenomena, which can also act at a distance from the measuring point in these particular areas. Since we measured 220Rn in parallel with 222Rn (radon), we found that by using the same analysis applied to radon, we obtained interesting information. While knowing the limits of this radioisotope well, we highlight only the particular characteristics of the emissions of thoron in the surface soil. Here, we show that it also shows some clear features found in the radon signal, such as anomalies and signal trends. Consequently, we provide good evidence that, in spite of the very short life of 220Rn compared to 222Rn, both are related to the carrier effect of CO2, which has significantly increased in the last few years within the caldera. The hydrothermal alterations, induced by the increase in temperature and pressure of the caldera system, occur in the surface soils and significantly influence thoron’s power of exhalation from the surface layer. The effects on the surface thoron are reflected in both sites, but with less intensity, the same behavior of 222Rn following the increasing movements and fluctuations of the geophysical and geochemical parameters (CO2 flux, fumarolic tremor, background seismicity, soil deformation). An overall linear correlation was found between the 222−220Rn signals, indicating the effect of the CO2 vector. The overall results represent a significant step forward in the use and interpretation of the thoron signal. Full article
Show Figures

Figure 1

30 pages, 15522 KiB  
Article
Variable Magnitude and Intensity of Strombolian Explosions: Focus on the Eruptive Processes for a First Classification Scheme for Stromboli Volcano (Italy)
by Sonia Calvari, Flora Giudicepietro, Federico Di Traglia, Alessandro Bonaccorso, Giovanni Macedonio and Nicola Casagli
Remote Sens. 2021, 13(5), 944; https://doi.org/10.3390/rs13050944 - 3 Mar 2021
Cited by 30 | Viewed by 5303
Abstract
Strombolian activity varies in magnitude and intensity and may evolve into a threat for the local populations living on volcanoes with persistent or semi-persistent activity. A key example comes from the activity of Stromboli volcano (Italy). The “ordinary” Strombolian activity, consisting in intermittent [...] Read more.
Strombolian activity varies in magnitude and intensity and may evolve into a threat for the local populations living on volcanoes with persistent or semi-persistent activity. A key example comes from the activity of Stromboli volcano (Italy). The “ordinary” Strombolian activity, consisting in intermittent ejection of bombs and lapilli around the eruptive vents, is sometimes interrupted by high-energy explosive events (locally called major or paroxysmal explosions), which can affect very large areas. Recently, the 3 July 2019 explosive paroxysm at Stromboli volcano caused serious concerns in the local population and media, having killed one tourist while hiking on the volcano. Major explosions, albeit not endangering inhabited areas, often produce a fallout of bombs and lapilli in zones frequented by tourists. Despite this, the classification of Strombolian explosions on the basis of their intensity derives from measurements that are not always replicable (i.e., field surveys). Hence the need for a fast, objective and quantitative classification of explosive activity. Here, we use images of the monitoring camera network, seismicity and ground deformation data, to characterize and distinguish paroxysms, impacting the whole island, from major explosions, that affect the summit of the volcano above 500 m elevation, and from the persistent, mild explosive activity that normally has no impact on the local population. This analysis comprises 12 explosive events occurring at Stromboli after 25 June 2019 and is updated to 6 December 2020. Full article
Show Figures

Graphical abstract

26 pages, 6160 KiB  
Article
Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data
by Sonia Calvari, Federico Di Traglia, Gaetana Ganci, Flora Giudicepietro, Giovanni Macedonio, Annalisa Cappello, Teresa Nolesini, Emilio Pecora, Giuseppe Bilotta, Veronica Centorrino, Claudia Corradino, Nicola Casagli and Ciro Del Negro
Remote Sens. 2020, 12(18), 3010; https://doi.org/10.3390/rs12183010 - 16 Sep 2020
Cited by 38 | Viewed by 5617
Abstract
Between 28 March and 1 April 2020, Stromboli volcano erupted, with overflows from the NE crater rim spreading along the barren Sciara del Fuoco slope and reaching the sea along the NW coast of the island. Poor weather conditions did not allow a [...] Read more.
Between 28 March and 1 April 2020, Stromboli volcano erupted, with overflows from the NE crater rim spreading along the barren Sciara del Fuoco slope and reaching the sea along the NW coast of the island. Poor weather conditions did not allow a detailed observation of the crater zone through the cameras monitoring network, but a clear view of the lower slope and the flows expanding in the area allowed us to characterize the flow features. This evidence was integrated with satellite, GBInSAR, and seismic data, thus enabling a reconstruction of the whole volcanic event, which involved several small collapses of the summit cone and the generation of pyroclastic density currents (PDCs) spreading along the slope and on the sea surface. Satellite monitoring allowed for the mapping of the lava flow field and the quantification of the erupted volume, and GBInSAR continuous measurements detected the crater widening and the deflation of the summit cone caused by the last overflow. The characterization of the seismicity made it possible to identify the signals that are associated with the propagation of PDCs along the volcano flank and, for the first time, to recognize the signal that is produced by the impact of the PDCs on the coast. Full article
Show Figures

Graphical abstract

20 pages, 6756 KiB  
Article
Integration of Ground-Based Remote-Sensing and In Situ Multidisciplinary Monitoring Data to Analyze the Eruptive Activity of Stromboli Volcano in 2017–2018
by Flora Giudicepietro, Sonia Calvari, Salvatore Alparone, Francesca Bianco, Alessandro Bonaccorso, Valentina Bruno, Teresa Caputo, Antonio Cristaldi, Luca D’Auria, Walter De Cesare, Bellina Di Lieto, Antonietta M. Esposito, Salvatore Gambino, Salvatore Inguaggiato, Giovanni Macedonio, Marcello Martini, Mario Mattia, Massimo Orazi, Antonio Paonita, Rosario Peluso, Eugenio Privitera, Pierdomenico Romano, Giovanni Scarpato, Anna Tramelli and Fabio Vitaadd Show full author list remove Hide full author list
Remote Sens. 2019, 11(15), 1813; https://doi.org/10.3390/rs11151813 - 2 Aug 2019
Cited by 30 | Viewed by 6973
Abstract
After a period of mild eruptive activity, Stromboli showed between 2017 and 2018 a reawakening phase, with an increase in the eruptive activity starting in May 2017. The alert level of the volcano was raised from “green” (base) to “yellow” (attention) on 7 [...] Read more.
After a period of mild eruptive activity, Stromboli showed between 2017 and 2018 a reawakening phase, with an increase in the eruptive activity starting in May 2017. The alert level of the volcano was raised from “green” (base) to “yellow” (attention) on 7 December 2017, and a small lava overflowed the crater rim on 15 December 2017. Between July 2017 and August 2018 the monitoring networks recorded nine major explosions, which are a serious hazard for Stromboli because they affect the summit area, crowded by tourists. We studied the 2017–2018 eruptive phase through the analysis of multidisciplinary data comprising thermal video-camera images, seismic, geodetic and geochemical data. We focused on the major explosion mechanism analyzing the well-recorded 1 December 2017 major explosion as a case study. We found that the 2017–2018 eruptive phase is consistent with a greater gas-rich magma supply in the shallow system. Furthermore, through the analysis of the case study major explosion, we identified precursory phases in the strainmeter and seismic data occurring 77 and 38 s before the explosive jet reached the eruptive vent, respectively. On the basis of these short-term precursors, we propose an automatic timely alarm system for major explosions at Stromboli volcano. Full article
Show Figures

Graphical abstract

Back to TopTop