Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Evelyn Lamy ORCID = 0000-0002-5620-1595

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 138 KiB  
Correction
Correction: Pfäffle et al. A 14-Day Double-Blind, Randomized, Controlled Crossover Intervention Study with Anti-Bacterial Benzyl Isothiocyanate from Nasturtium (Tropaeolum majus) on Human Gut Microbiome and Host Defense. Nutrients 2024, 16, 373
by Simon P. Pfäffle, Corinna Herz, Eva Brombacher, Michele Proietti, Michael Gigl, Christoph K. Hofstetter, Verena K. Mittermeier-Kleßinger, Sophie Claßen, Hoai T. T. Tran, Dhairya Rajguru, Corinna Dawid, Clemens Kreutz, Stefan Günther and Evelyn Lamy
Nutrients 2025, 17(8), 1367; https://doi.org/10.3390/nu17081367 - 17 Apr 2025
Viewed by 347
Abstract
Dhairya Rajguru was not included as an author in the original publication [...] Full article
19 pages, 3265 KiB  
Article
A 14-Day Double-Blind, Randomized, Controlled Crossover Intervention Study with Anti-Bacterial Benzyl Isothiocyanate from Nasturtium (Tropaeolum majus) on Human Gut Microbiome and Host Defense
by Simon P. Pfäffle, Corinna Herz, Eva Brombacher, Michele Proietti, Michael Gigl, Christoph K. Hofstetter, Verena K. Mittermeier-Kleßinger, Sophie Claßen, Hoai T. T. Tran, Dhairya Rajguru, Corinna Dawid, Clemens Kreutz, Stefan Günther and Evelyn Lamy
Nutrients 2024, 16(3), 373; https://doi.org/10.3390/nu16030373 - 26 Jan 2024
Cited by 5 | Viewed by 3321 | Correction
Abstract
Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus [...] Read more.
Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species. Full article
(This article belongs to the Special Issue Natural Products and Health: 2nd Edition)
Show Figures

Figure 1

19 pages, 4231 KiB  
Article
Development of an Inflammation-Triggered In Vitro “Leaky Gut” Model Using Caco-2/HT29-MTX-E12 Combined with Macrophage-like THP-1 Cells or Primary Human-Derived Macrophages
by Nguyen Phan Khoi Le, Markus Jörg Altenburger and Evelyn Lamy
Int. J. Mol. Sci. 2023, 24(8), 7427; https://doi.org/10.3390/ijms24087427 - 18 Apr 2023
Cited by 25 | Viewed by 7317
Abstract
The “leaky gut” syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the “leaky gut” syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed [...] Read more.
The “leaky gut” syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the “leaky gut” syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed a complex in vitro inflammation-triggered triple-culture model using 21-day-differentiated human intestinal Caco-2 epithelial cells and HT29-MTX-E12 mucus-producing goblet cells (90:10 ratio) in close contact with differentiated human macrophage-like THP-1 cells or primary monocyte-derived macrophages from human peripheral blood. Upon an inflammatory stimulus, the characteristics of a “leaky gut” became evident: a significant loss of intestinal cell integrity in terms of decreased transepithelial/transendothelial electrical resistance (TEER), as well as a loss of tight junction proteins. The cell permeability for FITC-dextran 4 kDa was then increased, and key pro-inflammatory cytokines, including TNF-alpha and IL-6, were substantially released. Whereas in the M1 macrophage-like THP-1 co-culture model, we could not detect the release of IL-23, which plays a crucial regulatory role in IBD, this cytokine was clearly detected when using primary human M1 macrophages instead. In conclusion, we provide an advanced human in vitro model that could be useful for screening and evaluating therapeutic drugs for IBD treatment, including potential IL-23 inhibitors. Full article
(This article belongs to the Special Issue Solving the Puzzle: Molecular Research in Inflammatory Bowel Diseases)
Show Figures

Figure 1

15 pages, 1252 KiB  
Article
In Vitro Effect of Taraxacum officinale Leaf Aqueous Extract on the Interaction between ACE2 Cell Surface Receptor and SARS-CoV-2 Spike Protein D614 and Four Mutants
by Hoai Thi Thu Tran, Michael Gigl, Nguyen Phan Khoi Le, Corinna Dawid and Evelyn Lamy
Pharmaceuticals 2021, 14(10), 1055; https://doi.org/10.3390/ph14101055 - 17 Oct 2021
Cited by 18 | Viewed by 33076
Abstract
To date, there have been rapidly spreading new SARS-CoV-2 “variants of concern”. They all contain multiple mutations in the ACE2 receptor recognition site of the spike protein, compared to the original Wuhan sequence, which is of great concern, because of their potential for [...] Read more.
To date, there have been rapidly spreading new SARS-CoV-2 “variants of concern”. They all contain multiple mutations in the ACE2 receptor recognition site of the spike protein, compared to the original Wuhan sequence, which is of great concern, because of their potential for immune escape. Here we report on the efficacy of common dandelion (Taraxacum officinale) to block protein–protein interaction of SARS-COV-2 spike to the human ACE2 receptor. This could be shown for the wild type and mutant forms (D614G, N501Y, and a mix of K417N, E484K, and N501Y) in human HEK293-hACE2 kidney and A549-hACE2-TMPRSS2 lung cells. High-molecular-weight compounds in the water-based extract account for this effect. Infection of the lung cells using SARS-CoV-2 spike D614 and spike Delta (B.1.617.2) variant pseudotyped lentivirus particles was efficiently prevented by the extract and so was virus-triggered pro-inflammatory interleukin 6 secretion. Modern herbal monographs consider the usage of this medicinal plant as safe. Thus, the in vitro results reported here should encourage further research on the clinical relevance and applicability of the extract as prevention strategy for SARS-CoV-2 infection in terms of a non-invasive, oral post-exposure prophylaxis. Full article
(This article belongs to the Special Issue COVID-19 in Pharmaceuticals)
Show Figures

Figure 1

20 pages, 2908 KiB  
Article
Identification of Salicylates in Willow Bark (Salix Cortex) for Targeting Peripheral Inflammation
by Kyriaki Antoniadou, Corinna Herz, Nguyen Phan Khoi Le, Verena Karolin Mittermeier-Kleßinger, Nadja Förster, Matthias Zander, Christian Ulrichs, Inga Mewis, Thomas Hofmann, Corinna Dawid and Evelyn Lamy
Int. J. Mol. Sci. 2021, 22(20), 11138; https://doi.org/10.3390/ijms222011138 - 15 Oct 2021
Cited by 20 | Viewed by 4826
Abstract
Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds [...] Read more.
Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2-O-acetylsalicortin (1), 3-O-acetylsalicortin (2), 2-O-acetylsalicin (3), 2,6-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine. Full article
Show Figures

Graphical abstract

16 pages, 2010 KiB  
Article
Comparative Anti-Inflammatory Effects of Salix Cortex Extracts and Acetylsalicylic Acid in SARS-CoV-2 Peptide and LPS-Activated Human In Vitro Systems
by Nguyen Phan Khoi Le, Corinna Herz, João Victor Dutra Gomes, Nadja Förster, Kyriaki Antoniadou, Verena Karolin Mittermeier-Kleßinger, Inga Mewis, Corinna Dawid, Christian Ulrichs and Evelyn Lamy
Int. J. Mol. Sci. 2021, 22(13), 6766; https://doi.org/10.3390/ijms22136766 - 23 Jun 2021
Cited by 22 | Viewed by 5312
Abstract
The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the [...] Read more.
The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic acid (ASA). Here, we report on the in vitro anti-inflammatory efficacy of two methanolic Salix extracts, standardized to phenolic compounds, in comparison to ASA in the context of a SARS-CoV-2 peptide challenge. Using SARS-CoV-2 peptide/IL-1β- or LPS-activated human PBMCs and an inflammatory intestinal Caco-2/HT29-MTX co-culture, Salix extracts, and ASA concentration-dependently suppressed prostaglandin E2 (PGE2), a principal mediator of inflammation. The inhibition of COX-2 enzyme activity, but not protein expression was observed for ASA and one Salix extract. In activated PBMCs, the suppression of relevant cytokines (i.e., IL-6, IL-1β, and IL-10) was seen for both Salix extracts. The anti-inflammatory capacity of Salix extracts was still retained after transepithelial passage and liver cell metabolism in an advanced co-culture model system consisting of intestinal Caco-2/HT29-MTX cells and differentiated hepatocyte-like HepaRG cells. Taken together, our in vitro data suggest that Salix extracts might present an additional anti-inflammatory treatment option in the context of SARS-CoV-2 peptides challenge; however, more confirmatory data are needed. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Anti-inflammatory Phytochemicals)
Show Figures

Figure 1

9 pages, 1127 KiB  
Article
Short-Term Dietary Intervention with Cooked but Not Raw Brassica Leafy Vegetables Increases Telomerase Activity in CD8+ Lymphocytes in a Randomized Human Trial
by Hoai Thi Thu Tran, Nina Schlotz, Monika Schreiner and Evelyn Lamy
Nutrients 2019, 11(4), 786; https://doi.org/10.3390/nu11040786 - 5 Apr 2019
Cited by 14 | Viewed by 4759
Abstract
Telomerase in T lymphocytes is dynamic and limited evidence from epidemiological studies indicates that the enzyme can be modulated in peripheral lymphocytes by dietary and lifestyle factors. The differential effect of dietary intervention on T cell subsets has not been investigated so far. [...] Read more.
Telomerase in T lymphocytes is dynamic and limited evidence from epidemiological studies indicates that the enzyme can be modulated in peripheral lymphocytes by dietary and lifestyle factors. The differential effect of dietary intervention on T cell subsets has not been investigated so far. Brassica vegetables are known for their multiple beneficial effects on human health, and here, the effect of a five-day short-term intervention with raw or cooked leaves of Brassica carinata on telomerase activity in CD4+ and CD8+ T cells from 22 healthy volunteers was investigated in a randomized single-blind, controlled crossover study. Blood samples were collected before and after intervention, and CD4+/CD8+ T lymphocytes were isolated. Telomerase activity was quantified using the TRAP-ELISA assay. Intervention with both preparations led to a marginal increase in telomerase activity of CD4+ cells compared to the baseline level. In CD8+ cells, a significant increase in telomerase activity (25%, p < 0.05) was seen after intervention with the cooked material. An increase in telomerase activity in CD8+ cells of healthy volunteers could be regarded as beneficial in terms of helping with the cell-mediated immune response. Whether a Brassica intervention has long-term effects on telomere extension in specific T cell subsets needs to be determined. Full article
(This article belongs to the Special Issue Plant Food, Nutrition and Human Health)
Show Figures

Figure 1

14 pages, 1661 KiB  
Article
Are Raw Brassica Vegetables Healthier Than Cooked Ones? A Randomized, Controlled Crossover Intervention Trial on the Health-Promoting Potential of Ethiopian Kale
by Nina Schlotz, Grace A. Odongo, Corinna Herz, Hanna Waßmer, Carla Kühn, Franziska S. Hanschen, Susanne Neugart, Nadine Binder, Benard Ngwene, Monika Schreiner, Sascha Rohn and Evelyn Lamy
Nutrients 2018, 10(11), 1622; https://doi.org/10.3390/nu10111622 - 2 Nov 2018
Cited by 13 | Viewed by 6975
Abstract
The present human intervention trial investigated the health-promoting potential of B. carinata, with a focus on effects of thermal processing on bioactivity. Twenty-two healthy subjects consumed a B. carinata preparation from raw (allyl isothiocyanate-containing) or cooked (no allyl isothiocyanate) leaves for five days [...] Read more.
The present human intervention trial investigated the health-promoting potential of B. carinata, with a focus on effects of thermal processing on bioactivity. Twenty-two healthy subjects consumed a B. carinata preparation from raw (allyl isothiocyanate-containing) or cooked (no allyl isothiocyanate) leaves for five days in a randomized crossover design. Peripheral blood mononuclear cells were exposed to aflatoxin B1 (AFB1), with or without metabolic activation using human S9 mix, and subsequently analyzed for DNA damage using the comet assay. Plasma was analyzed for total antioxidant capacity and prostaglandin E2 (PGE2) levels. Cooked B. carinata significantly reduced DNA damage induced by AFB1 as compared to baseline levels (+S9 mix: 35%, −S9 mix: 33%, p ≤ 0.01, respectively). Raw B. carinata only reduced DNA damage by S9-activated AFB1 by 21% (p = 0.08). PGE2 plasma levels were significantly reduced in subjects after consuming raw B. carinata. No changes in plasma antioxidant capacity were detectable. A balanced diet, including raw and cooked Brassica vegetables, might be suited to fully exploit the health-promoting potential. These results also advocate the promotion of B. carinata cultivation in Eastern Africa as a measure to combat effects of unavoidable aflatoxin exposure. Full article
(This article belongs to the Special Issue Plant Food, Nutrition and Human Health)
Show Figures

Figure 1

20 pages, 2942 KiB  
Article
African Nightshade (Solanum scabrum Mill.): Impact of Cultivation and Plant Processing on Its Health Promoting Potential as Determined in a Human Liver Cell Model
by Grace Akinyi Odongo, Nina Schlotz, Susanne Baldermann, Susanne Neugart, Susanne Huyskens-Keil, Benard Ngwene, Bernhard Trierweiler, Monika Schreiner and Evelyn Lamy
Nutrients 2018, 10(10), 1532; https://doi.org/10.3390/nu10101532 - 17 Oct 2018
Cited by 18 | Viewed by 8197
Abstract
Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients [...] Read more.
Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB1 induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant. Full article
(This article belongs to the Special Issue Plant Food, Nutrition and Human Health)
Show Figures

Figure 1

Back to TopTop