Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Emmanuelle Vennin ORCID = 0000-0002-5899-0399

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6505 KB  
Article
Effect of Culture pH on Properties of Exopolymeric Substances from Synechococcus PCC7942: Implications for Carbonate Precipitation
by Marlisa Martinho de Brito, Irina Bundeleva, Frédéric Marin, Emmanuelle Vennin, Annick Wilmotte, Laurent Plasseraud and Pieter T. Visscher
Geosciences 2022, 12(5), 210; https://doi.org/10.3390/geosciences12050210 - 16 May 2022
Cited by 8 | Viewed by 4898
Abstract
The role of culture conditions on the production of exopolymeric substances (EPS) by Synechococcus strain PCC7942 was investigated. Carbonate mineral precipitation in these EPS was assessed in forced precipitation experiments. Cultures were grown in HEPES-buffered medium and non-buffered medium. The pH of buffered [...] Read more.
The role of culture conditions on the production of exopolymeric substances (EPS) by Synechococcus strain PCC7942 was investigated. Carbonate mineral precipitation in these EPS was assessed in forced precipitation experiments. Cultures were grown in HEPES-buffered medium and non-buffered medium. The pH of buffered medium remained constant at 7.5, but in non-buffered medium it increased to 9.5 within a day and leveled off at 10.5. The cell yield at harvest was twice as high in non-buffered medium than in buffered medium. High molecular weight (>10 kDa) and low molecular weight (3–10 kDa) fractions of EPS were obtained from both cultures. The cell-specific EPS production in buffered medium was twice as high as in non-buffered medium. EPS from non-buffered cultures contained more negatively charged macromolecules and more proteins than EPS from buffered cultures. The higher protein content at elevated pH may be due to the induction of carbon-concentrating mechanisms, necessary to perform photosynthetic carbon fixation in these conditions. Forced precipitation showed smaller calcite carbonate crystals in EPS from non-buffered medium and larger minerals in polymers from buffered medium. Vaterite formed only at low EPS concentrations. Experimental results are used to conceptually model the impact of pH on the potential of cyanobacterial blooms to produce minerals. We hypothesize that in freshwater systems, small crystal production may benefit the picoplankton by minimizing the mineral ballast, and thus prolonging the residence time in the photic zone, which might result in slow sinking rates. Full article
(This article belongs to the Special Issue Current and Future Perspectives in Microbial Carbonate Precipitation)
Show Figures

Figure 1

29 pages, 115725 KB  
Article
Successive Modes of Carbonate Precipitation in Microbialites along the Hydrothermal Spring of La Salsa in Laguna Pastos Grandes (Bolivian Altiplano)
by Elodie Muller, Magali Ader, Giovanni Aloisi, Cédric Bougeault, Christophe Durlet, Emmanuelle Vennin, Karim Benzerara, Eric C. Gaucher, Aurélien Virgone, Marco Chavez, Pierre Souquet and Emmanuelle Gérard
Geosciences 2022, 12(2), 88; https://doi.org/10.3390/geosciences12020088 - 16 Feb 2022
Cited by 6 | Viewed by 4166
Abstract
Interpreting the paleoecosystems of ancient microbialites relies on our understanding of how modern microbialites form in relation with the bio-physico-chemical conditions of their environment. In this study, we investigated the formation of modern carbonate microbialites in the hydrothermal system of La Salsa in [...] Read more.
Interpreting the paleoecosystems of ancient microbialites relies on our understanding of how modern microbialites form in relation with the bio-physico-chemical conditions of their environment. In this study, we investigated the formation of modern carbonate microbialites in the hydrothermal system of La Salsa in Laguna Pastos Grandes (Bolivia), which spans a wide range of physicochemical conditions and associated microbial communities. By combining dissolved inorganic carbon (DIC) isotope mass balance modeling, analysis of carbonates solubility diagram, and imaging of the microorganisms–mineral assemblages within microbial mats, we found that several modes of carbonate precipitation dominate in distinct portions of the hydrothermal system. (1) In high-[DIC] waters, undersaturated to slightly saturated with respect to calcite, cyanobacterial calcification is promoted by CO2 degassing and photosynthetic activity within the microbial mats. (2) In alkaline waters undergoing sustained evaporation, the precipitation of an amorphous calcium carbonate phase seems to control the water a(Ca2+)/a(CO32−) ratio and to serve as a precursor to micritic calcite formation in microbial mats. (3) In saline ephemeral ponds, where the carbonate precipitation is the highest, calcite precipitation probably occurs through a different pathway, leading to a different calcite texture, i.e., aggregates of rhombohedral crystals. Full article
(This article belongs to the Special Issue Current and Future Perspectives in Microbial Carbonate Precipitation)
Show Figures

Figure 1

25 pages, 5447 KB  
Article
Variability of Carbonate Isotope Signatures in a Hydrothermally Influenced System: Insights from the Pastos Grandes Caldera (Bolivia)
by Cédric Bougeault, Christophe Durlet, Emmanuelle Vennin, Elodie Muller, Magali Ader, Bassam Ghaleb, Emmanuelle Gérard, Aurélien Virgone and Eric C. Gaucher
Minerals 2020, 10(11), 989; https://doi.org/10.3390/min10110989 - 7 Nov 2020
Cited by 12 | Viewed by 4016
Abstract
Laguna Pastos Grandes (Bolivia), nesting in a volcanic caldera, is a large, palustrine-to-lacustrine system fed by meteoric and hydrothermal calco–carbonic fluids. These different fluid inputs favor a complex mosaic of depositional environments, including hydrothermal springs, pools, and an ephemeral lake, producing abundant present-day [...] Read more.
Laguna Pastos Grandes (Bolivia), nesting in a volcanic caldera, is a large, palustrine-to-lacustrine system fed by meteoric and hydrothermal calco–carbonic fluids. These different fluid inputs favor a complex mosaic of depositional environments, including hydrothermal springs, pools, and an ephemeral lake, producing abundant present-day carbonates developing over a Holocene carbonate crust dated by U–Th. Present-day carbonates (muds, concretions, and microbialites) recorded a large range of isotope variations, reaching 13.9‰ in δ13C and 11.1‰ in δ18O. Sedimentological and geochemical data indicated that the main processes influencing the isotope record were: (i) rapid CO2 degassing and temperature decreases along hydrothermal discharges; (ii) strong evaporation favored by the arid high-altitude Andean climate, locally enhanced by capillary water rise within microbial mats or by wind-induced spray falling on vadose concretions. Unlike past or present perennial lake systems in Central Andes, the short residence time of brine waters in the ephemeral central lake prevents enrichment of lacustrine carbonates in 13C and 18O. The very low fraction modern F14C in these present-day carbonates demonstrates that incorporation of fossil magmatic carbon related to the volcanic context also prevents any radiocarbon dating. The use of isotopes for the interpretation of ancient continental series should always be accompanied by a thorough characterization of the environmental setting. Full article
Show Figures

Figure 1

50 pages, 45430 KB  
Review
The Record of Environmental and Microbial Signatures in Ancient Microbialites: The Terminal Carbonate Complex from the Neogene Basins of Southeastern Spain
by Raphaël Bourillot, Emmanuelle Vennin, Christophe Dupraz, Aurélie Pace, Anneleen Foubert, Jean-Marie Rouchy, Patricia Patrier, Philippe Blanc, Dominique Bernard, Julien Lesseur and Pieter T. Visscher
Minerals 2020, 10(3), 276; https://doi.org/10.3390/min10030276 - 19 Mar 2020
Cited by 20 | Viewed by 8243
Abstract
The Messinian microbialites of the Terminal Carbonate Complex (TCC) from the Neogene basins of southeastern Spain show both diversified morphologies and an excellent preservation of primary microbial microstructures. Their stratigraphic architecture, fabric (micro-, meso-, and macro-fabric), and mineralogical composition were investigated in eight [...] Read more.
The Messinian microbialites of the Terminal Carbonate Complex (TCC) from the Neogene basins of southeastern Spain show both diversified morphologies and an excellent preservation of primary microbial microstructures. Their stratigraphic architecture, fabric (micro-, meso-, and macro-fabric), and mineralogical composition were investigated in eight localities from three sedimentary basins of southeastern Spain: The Sorbas and Bajo Segura basins and the Agua Amarga depression. Two recurrent microbialite associations were distinguished. Laterally linked low relief stromatolites predominated in Microbialite Association 1 (MA1), which probably formed in low energy lagoons or lakes with fluctuating normal marine to hypersaline water. The microfabrics of MA1 reflected the predominance of microbially induced/influenced precipitation of carbonates and locally (Ca)-Mg-Al silicates. Microbialite Association 2 (MA2) developed in high energy wave and tidal influenced foreshore to shoreface, in normal marine to hypersaline water. High-relief buildups surrounded by mobile sediment (e.g., ooids or pellets) dominated in this environment. MA2 microbialites showed a significant proportion of thrombolitic mesofabric. Grain-rich microfabrics indicated that trapping and binding played a significant role in their accretion, together with microbially induced/influenced carbonate precipitation. The stratigraphic distribution of MA1 and MA2 was strongly influenced by water level changes, the morphology and nature of the substratum, and exposure to waves. MA1 favorably developed in protected areas during third to fourth order early transgression and regression phases. MA2 mostly formed during the late transgressions and early regressions in high energy coastal areas, often corresponding to fossil coral reefs. Platform scale syn-sedimentary gypsum deformation and dissolution enhanced microbial carbonate production, microbialites being thicker and more extended in zones of maximum deformation/dissolution. Microbial microstructures (e.g., microbial peloids) and microfossils were preserved in the microbialites. Dolomite microspheres and filaments showed many morphological similarities with some of the cyanobacteria observed in modern open marine and hypersaline microbialites. Dolomite potentially replaced a metastable carbonate phase during early diagenesis, possibly in close relationship with extracellular polymeric substances (EPS) degradation. Double-layered microspheres locally showed an inner coating made of (Ca)-Mg-Al silicates and carbonates. This mineral coating could have formed around coccoid cyanobacteria and indicated an elevated pH in the upper part of the microbial mats and a potential dissolution of diatoms as a source of silica. Massive primary dolomite production in TCC microbialites may have resulted from enhanced sulfate reduction possibly linked to the dissolving gypsum that would have provided large amounts of sulfate-rich brines to microbial mats. Our results open new perspectives for the interpretation of ancient microbialites associated with major evaporite deposits, from microbe to carbonate platform scales. Full article
(This article belongs to the Special Issue Microbialites: Preservation of Extant and Extinct Systems)
Show Figures

Figure 1

34 pages, 88885 KB  
Article
Microbial Origin of the Organic Matter Preserved in the Cayo Coco Lagoonal Network, Cuba
by Anthony Bouton, Emmanuelle Vennin, Christophe Thomazo, Olivier Mathieu, Fabien Garcia, Maxime Jaubert and Pieter T. Visscher
Minerals 2020, 10(2), 143; https://doi.org/10.3390/min10020143 - 7 Feb 2020
Cited by 7 | Viewed by 5072
Abstract
The southern part of the tropical Cayo Coco Island (Cuba) hosts a complex, highly evaporative and marine-fed lagoonal network. In the easternmost lagoon of this network, hypersaline conditions favour the development of complex sedimentary microbial ecosystems within the water column at the bottom [...] Read more.
The southern part of the tropical Cayo Coco Island (Cuba) hosts a complex, highly evaporative and marine-fed lagoonal network. In the easternmost lagoon of this network, hypersaline conditions favour the development of complex sedimentary microbial ecosystems within the water column at the bottom water-sediment interface and on the shore. Some of these ecosystems are producing microbial mats and biofilms with variable mineralisation rates, depending on their location. Since the mineralisation of these microbial deposits is rare, the sedimentary record does not provide a direct window on the evolution of these ecosystems or their distribution through space and time. However, microbial deposits also produce copious amounts of organic matter, which may be used to decipher any microbial-related origin within the sedimentary record. Microbial mats and biofilms were identified as the potential source of organic material in addition to the surrounding mangrove, soils and suspended particulate matter (SPM). The origin and evolution of the sedimentary organic matter preserved within the lagoonal sediments has been analysed using geochemical parameters such as elemental (TOC, TN and [C/N]atomic ratio) and isotopic (δ13Corg and δ15NTN) signals on four sedimentary cores retrieved from different locations in the lagoon and compared with the geochemical signatures of the potential sources. Despite the high potential for organic matter accumulation in the studied lagoon, the TOC and TN downcore values in sediments that were analysed (i.e., micritic muds and bioclastic sands) remain very low compared to the sediment-water interface. The relative contributions of the different potential sources of organic matter were estimated using [C/N]atomic ratios and δ13Corg values. The δ15NTN signature was discarded as a source signature as it records synsedimentary, early diagenetic, secondary evolution of the nitrogen signal associated with OM remineralisation (i.e., denitrification). Finally, among the microbial deposits, the slime recognised in the permanently submersed zone of the waterbody appears to be the main contributor to the organic matter preserved within the sediments of the lagoon. SPM, mainly composed of microbial-rich particles, also contribute and cannot be ruled out as a source. Full article
(This article belongs to the Special Issue Microbialites: Preservation of Extant and Extinct Systems)
Show Figures

Figure 1

22 pages, 6773 KB  
Article
Carbonate Precipitation in Mixed Cyanobacterial Biofilms Forming Freshwater Microbial Tufa
by Dahédrey Payandi-Rolland, Adeline Roche, Emmanuelle Vennin, Pieter T. Visscher, Philippe Amiotte-Suchet, Camille Thomas and Irina A. Bundeleva
Minerals 2019, 9(7), 409; https://doi.org/10.3390/min9070409 - 3 Jul 2019
Cited by 19 | Viewed by 7822
Abstract
Mixed cyanobacteria-dominated biofilms, enriched from a tributary of the Mérantaise (France) were used to conduct laboratory experiments in order to understand the relationship between the morphology of carbonate precipitates and the biological activity (e.g., cyanobacterial exopolymeric substances (EPS) production, photosynthetic pH increases). DNA [...] Read more.
Mixed cyanobacteria-dominated biofilms, enriched from a tributary of the Mérantaise (France) were used to conduct laboratory experiments in order to understand the relationship between the morphology of carbonate precipitates and the biological activity (e.g., cyanobacterial exopolymeric substances (EPS) production, photosynthetic pH increases). DNA sequencing data showed that the enriched biofilm was composed predominantly of two types of filamentous cyanobacteria that belonged to the Oscillatoriaceae and Phormidiaceae families, respectively. Microscopic analysis also indicated the presence of some coccoid cyanobacteria resembling Gloeocapsa. Analysis of carbonate precipitates in experimental biofilms showed three main morphologies: micro-peloids with different shapes of mesocrystals associated with Oscillatoriaceae filaments and theirs EPS, lamellae of carbonate formed directly on Phormidiaceae filaments, and rhombic sparite crystals wrapped in EPS. All crystals were identified by FT-IR spectroscopy as calcite. Similar structures as those that formed in laboratory conditions were observed in the microbial-tufa deposits collected in the stream. Microscopic and spectroscopic analysis of laboratory and natural samples indicated a close proximity of the cyanobacterial EPS and precipitated carbonates in both. Based on the laboratory experiments, we conclude that the microbial tufa in the stream is in an early stage of formation. Full article
(This article belongs to the Special Issue Microbialites: Preservation of Extant and Extinct Systems)
Show Figures

Figure 1

37 pages, 32209 KB  
Article
Biotic–Abiotic Influences on Modern Ca–Si-Rich Hydrothermal Spring Mounds of the Pastos Grandes Volcanic Caldera (Bolivia)
by Cédric Bougeault, Emmanuelle Vennin, Christophe Durlet, Elodie Muller, Mathilde Mercuzot, Marco Chavez, Emmanuelle Gérard, Magali Ader, Aurélien Virgone and Eric C. Gaucher
Minerals 2019, 9(6), 380; https://doi.org/10.3390/min9060380 - 23 Jun 2019
Cited by 23 | Viewed by 5964
Abstract
The lacustrine-to-palustrine Pastos Grandes Laguna (Bolivia) is located in a volcanic caldera fed by active hot springs, with a carbonate crust extending over 40 km2. An integrated approach based on geology and hydrochemistry was used to characterize La Salsa, one of [...] Read more.
The lacustrine-to-palustrine Pastos Grandes Laguna (Bolivia) is located in a volcanic caldera fed by active hot springs, with a carbonate crust extending over 40 km2. An integrated approach based on geology and hydrochemistry was used to characterize La Salsa, one of its hydrothermal systems, composed of a flat mound with a hydrothermal discharge. The mound is composed of carbonate–diatom aggregates, forming muds that accumulate and undergo slight swelling. The discharge area along the hydrothermal pathway exhibits several facies and microfabrics, with considerable biological activity and microbialite development. Both the downstream evolution of carbonate and silica content in sediments and the distribution of microbialites can be linked to changes in biotic-abiotic processes occurring along the pathway. The spatial distribution of microbialites and their morphologies are related to hydrodynamic conditions, the nature of the substrate on which they grow and, to a lesser extent, to the accommodation space available. The evolution of the physicochemical properties of the water and biological activity mainly impact mineral precipitation but also affect microbialite morphologies and microstructures. This atypical Si- and Ca-rich hydrothermal system therefore provides insights into the diversity of environmental, chemical, and biotic factors controlling mineralization, which also responds to independent thermodynamic controls. Full article
(This article belongs to the Special Issue Microbialites: Preservation of Extant and Extinct Systems)
Show Figures

Figure 1

33 pages, 30134 KB  
Article
The Role of the Substrate on the Mineralization Potential of Microbial Mats in A Modern Freshwater River (Paris Basin, France)
by Adeline Roche, Emmanuelle Vennin, Irina Bundeleva, Anthony Bouton, Dahédrey Payandi-Rolland, Philippe Amiotte-Suchet, Eric C. Gaucher, Hélène Courvoisier and Pieter T. Visscher
Minerals 2019, 9(6), 359; https://doi.org/10.3390/min9060359 - 13 Jun 2019
Cited by 22 | Viewed by 6289
Abstract
The relationship between environmental conditions and the development, mineralization and preservation of modern tufa microbialites was investigated in a 1.1 km long freshwater stream in Villiers-le-Bâcle, a tributary of Mérantaise river. Detailed mapping of the tufa microbialite distribution combined with sedimentological, petrographical and [...] Read more.
The relationship between environmental conditions and the development, mineralization and preservation of modern tufa microbialites was investigated in a 1.1 km long freshwater stream in Villiers-le-Bâcle, a tributary of Mérantaise river. Detailed mapping of the tufa microbialite distribution combined with sedimentological, petrographical and mineralogical analyses were coupled with chemical measurements. Six organosedimentary structures were identified; their distribution appears heterogeneous along the stream and responds to physicochemical conditions of water and specific biological components (e.g., microorganism, exopolymeric substance). Two of the organosedimentary structures show evidence of mineralization and only one is lithified. Based on field observations and in-situ deployment of mineralization markers (bricks), three zones with increasing mineralization intensities are defined, ranging from no mineralization to thick mineralized crusts forming riverine tufa. Both biotic and abiotic processes were proposed for the tufa microbialite formation. We explained changes in mineralization intensities by the specific physicochemical conditions (e.g., calcite saturation index (SIcalc) and partial pressure of CO2 (pCO2) and a closed proximity of the cyanobacterial biofilm and carbonates precipitates. The physical and chemical composition of substrate impact development of microbial communities, mineralization potential of tufa microbialite. Even though the physicochemical and biological conditions were optimal for mineral precipitation, the potential of lithification depended on the presence of a suitable (physical and chemical) substrate. Full article
(This article belongs to the Special Issue Microbialites: Preservation of Extant and Extinct Systems)
Show Figures

Figure 1

Back to TopTop