Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Authors = Dimitra Kourti

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4338 KiB  
Article
Aflatoxin M1 Determination in Whole Milk with Immersible Silicon Photonic Immunosensor
by Dimitra Kourti, Michailia Angelopoulou, Eleni Makarona, Anastasios Economou, Panagiota Petrou, Konstantinos Misiakos and Sotirios Kakabakos
Toxins 2025, 17(4), 165; https://doi.org/10.3390/toxins17040165 - 26 Mar 2025
Viewed by 704
Abstract
Aflatoxin M1 (AFM1) appears in the milk of animals that have consumed feed contaminated with aflatoxin B1. AFM1 presence in milk is regulated by the European Commission, which has set the maximum allowable limits for adult and infant consumption to 50 and 25 [...] Read more.
Aflatoxin M1 (AFM1) appears in the milk of animals that have consumed feed contaminated with aflatoxin B1. AFM1 presence in milk is regulated by the European Commission, which has set the maximum allowable limits for adult and infant consumption to 50 and 25 pg/mL, respectively. Here, a rapid and sensitive method for detecting AFM1 in milk based on an immersible silicon photonic chip is presented. The chip features two U-shaped silicon nitride waveguides formed as Mach–Zehnder interferometers. One interferometer is functionalized with AFM1–bovine serum albumin conjugate and the other with BSA to serve as a blank. The chip is connected to a broad-band white LED and a spectrophotometer by a bifurcated optical fiber and an assay is performed by immersing the chip in a mixture of milk with the anti-AFM1 antibody. Then, the chip is sequentially immersed in biotinylated anti-rabbit IgG antibody and streptavidin solutions for signal enhancement. The assay is completed in 20 min and the detection limit for AFM1 in undiluted milk is 20 pg/mL. Given its analytical performance and the absence of pumps and fluidics that lead to a compact instrument design, the proposed immunosensor is ideal for the on-site detection of AFM1 in milk samples. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

14 pages, 1843 KiB  
Article
Sensitive Aflatoxin M1 Detection in Milk by ELISA: Investigation of Different Assay Configurations
by Dimitra Kourti, Michailia Angelopoulou, Panagiota Petrou and Sotirios Kakabakos
Toxins 2024, 16(12), 515; https://doi.org/10.3390/toxins16120515 - 29 Nov 2024
Viewed by 1367
Abstract
Aflatoxin M1 (AFM1) exposure through dairy products is associated with adverse health effects, including hepatotoxicity and carcinogenicity. Therefore, the AFM1 presence in milk and dairy products is strictly regulated. In this context, the current work focuses on the investigation of different competitive enzyme [...] Read more.
Aflatoxin M1 (AFM1) exposure through dairy products is associated with adverse health effects, including hepatotoxicity and carcinogenicity. Therefore, the AFM1 presence in milk and dairy products is strictly regulated. In this context, the current work focuses on the investigation of different competitive enzyme immunoassay configurations for the determination of AFM1 in milk with high sensitivity and short assay duration. Amongst the configurations tested, the one based on incubation of the anti-AFM1 specific antibody along with the calibrators/samples and a biotinylated conjugate of AFM1 with bovine serum albumin (BSA) in microwells coated with a secondary antibody provided a six-fold lower detection limit than the configuration involving immobilized AFM1-BSA conjugate and liquid phase antibody. The detection limit achieved was 5.0 pg/mL, with a dynamic range of up to 2.0 ng/mL. The assay was repeatable with intra- and inter-assay coefficients of variations lower than 3.2% and 6.5%, respectively, and accurate with recovery values from 87.5 to 108%. Moreover, the assay was completed in 1.5 h. The excellent analytical characteristics and short analysis time make the proposed assay suitable for use by the food industry. Furthermore, the proposed configuration could be employed to enhance the detection sensitivity of competitive immunoassays for other low-molecular-weight analytes. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

13 pages, 5707 KiB  
Article
Photonic Dipstick Immunosensor to Detect Adulteration of Ewe, Goat, and Donkey Milk with Cow Milk through Bovine κ-Casein Detection
by Dimitra Kourti, Michailia Angelopoulou, Eleni Makarona, Anastasios Economou, Panagiota Petrou, Konstantinos Misiakos and Sotirios Kakabakos
Sensors 2024, 24(17), 5688; https://doi.org/10.3390/s24175688 - 31 Aug 2024
Cited by 1 | Viewed by 1587
Abstract
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a [...] Read more.
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a silicon photonic dipstick sensor accommodating two U-shaped Mach–Zehnder Interferometers (MZIs) was employed for the label-free detection of the adulteration of ewe, goat, and donkey milk with cow milk. One of the two MZIs of the chip was modified with bovine κ-casein, while the other was modified with bovine serum albumin to serve as a blank. All assay steps were performed by immersion of the chip side where the MZIs are positioned into the reagent solutions, leading to a photonic dipstick immunosensor. Thus, the chip was first immersed in a mixture of milk with anti-bovine κ-casein antibody and then in a secondary antibody solution for signal enhancement. A limit of detection of 0.05% v/v cow milk in ewe, goat, or donkey milk was achieved in 12 min using a 50-times diluted sample. This fast, sensitive, and simple assay, without the need for sample pre-processing, microfluidics, or pumps, makes the developed sensor ideal for the detection of milk adulteration at the point of need. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2024)
Show Figures

Figure 1

8 pages, 1118 KiB  
Communication
Electrochemical Aptasensor with Antifouling Properties for Label-Free Detection of Oxytetracycline
by Dimitra Kourti, Georgia Geka, Lidia Nemtsov, Soha Ahmadi, Anastasios Economou and Michael Thompson
Sensors 2024, 24(17), 5488; https://doi.org/10.3390/s24175488 - 24 Aug 2024
Cited by 3 | Viewed by 1527
Abstract
Oxytetracycline (OTC) is a widely employed antibiotic in veterinary treatment and in the prevention of infections, potentially leaving residues in animal-derived food products, such as milk, that are consumed by humans. Given the detrimental effects of prolonged human exposure to antibiotics, it has [...] Read more.
Oxytetracycline (OTC) is a widely employed antibiotic in veterinary treatment and in the prevention of infections, potentially leaving residues in animal-derived food products, such as milk, that are consumed by humans. Given the detrimental effects of prolonged human exposure to antibiotics, it has become imperative to develop precise and sensitive methods for monitoring the presence of OTC in food. Herein, we describe the development and results of a preliminary label-free electrochemical aptasensor with antifouling properties designed to detect OTC in milk samples. The sensor was realized by modifying a gold screen-printed electrode with α-lipoic acid–NHS and an amine-terminated aptamer. Different electrochemical techniques were used to study the steps of the fabrication process and to quantify OTC in the presence of the Fe(CN)64−/Fe(CN)63− redox couple The detectable range of concentrations satisfy the maximum residue limits set by the European Union, with an limit of detection (LOD) of 14 ng/mL in phosphate buffer (BP) and 10 ng/mL in the milk matrix, and a dynamic range of up to 500 ng/mL This study is a steppingstone towards the implementation of a sensitive monitoring method for OTC in dairy products. Full article
Show Figures

Figure 1

2 pages, 137 KiB  
Abstract
Detection of Aflatoxin M1 in Milk with a Mach–Zehnder Interferometric Immunosensor
by Dimitra Kourti, Michailia Angelopoulou, Konstantinos Misiakos, Eleni Makarona, Anastasios Economou, Panagiota Petrou and Sotirios Kakabakos
Proceedings 2024, 104(1), 16; https://doi.org/10.3390/proceedings2024104016 - 28 May 2024
Viewed by 603
Abstract
Aflatoxin M1 (AFM1) is the hydroxylated form of Aflatoxin B1 (AFB1) and is expelled in the milk of both humans and animals following the consumption of AFB1-contaminated food. AFM1 has been categorized as a Group 1 carcinogen by the International Agency for Research [...] Read more.
Aflatoxin M1 (AFM1) is the hydroxylated form of Aflatoxin B1 (AFB1) and is expelled in the milk of both humans and animals following the consumption of AFB1-contaminated food. AFM1 has been categorized as a Group 1 carcinogen by the International Agency for Research on Cancer. Consequently, the European Commission has established a maximum allowable concentration of 50 pg/mL for AFM1 in dairy products and milk. Here, a rapid and sensitive approach for detecting AFM1 in bovine milk is presented. The analytical setup comprises a broad-band white LED, a spectrophotometer, and a silicon photonic probe, all interconnected by a bifurcated optical fiber [1]. Additionally, a laptop powers the system and facilitates signal monitoring through specialized software. The silicon photonic probe is equipped with two Mach–Zehnder interferometers: one functionalized with AFM1-bovine serum albumin conjugate, and the other with bovine serum albumin to serve as a blank. The analysis involves immersing the probe directly into a mixture of anti-AFM1 antibodies and the sample, followed by sequential immersion into biotinylated anti-rabbit IgG antibody and streptavidin solutions. The entire assay process takes 12 min, and the limit of detection in undiluted milk is 20 pg/mL, below the EU maximum allowable limit of 50 pg/mL. The assay demonstrates accuracy, with %recovery values ranging from 87.5 to 112%, and repeatability, with intra/inter-assay coefficients of variation below 7.6%. Given its analytical performance and compact instrumentation, the proposed immunosensor proves to be an ideal solution for precise on-site determination of AFM1 in milk samples. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
16 pages, 7507 KiB  
Article
Electronic and Structural Properties of Antibacterial Ag–Ti-Based Surfaces: An Ab Initio Theoretical Study
by Stefanos Papantoniou-Chatzigiosis, Athina C. Galani, Dimitra Fylaktopoylou, Christina Kourti, Androniki Mosxou, Maria E. Nousia, Thomas Anthopoulos, Elefterios Lidorikis and Christina E. Lekka
Crystals 2024, 14(5), 428; https://doi.org/10.3390/cryst14050428 - 30 Apr 2024
Viewed by 1642
Abstract
Coatings with tunable multifunctional features are important for several technological applications. Ti-based materials have been used in diverse applications ranging from metallic diodes in electronic devices up to medical implants. This work uses ab initio calculations to achieve a more fundamental understanding of [...] Read more.
Coatings with tunable multifunctional features are important for several technological applications. Ti-based materials have been used in diverse applications ranging from metallic diodes in electronic devices up to medical implants. This work uses ab initio calculations to achieve a more fundamental understanding of the structural and electronic properties of β-TiNb and its passive TiO2 film surfaces upon Ag addition, investigating the alterations in the electronic band gap and the stability of the antibacterial coating. We find that Ag’s 4d electrons introduce localized electron states, characterized by bonding features with the favoured Ti first neighbour atoms, approximately −5 eV below the fermi level in both β-TiNb bulk and surface. Ag’s binding energy on β-TiNb(110) depends on the local environment (the lattice site and the type of bonded surface atoms) ranging from −2.70 eV up to −4.21 eV for the adatom on a four-fold Ti site, offering a variety of options for the design of a stable coating or for Ag ion release. In Ti–O terminated anatase and rutile (001) surfaces, surface states are introduced altering the TiO2 band gap. Silver is bonded more strongly, and therefore creates a more stable antibacterial coat on rutile than on anatase. In addition, the Ag coating exhibits enhanced 4d electron states at the highest occupied state on anatase (001),which are extended from −5 eV up to the Fermi level on rutile (001), which might be altered depending on the coat structural features, thus creating systems with tunable electronic band gap that can be used for the design of thin film semiconductors. Full article
(This article belongs to the Special Issue Advanced Surface Modifications on Materials)
Show Figures

Figure 1

15 pages, 2630 KiB  
Article
A 3D-Printed Electrochemical Immunosensor Employing Cd/Se ZnS QDs as Labels for the Rapid and Ultrasensitive Detection of Salmonella typhimurium in Poultry Samples
by Michailia Angelopoulou, Dimitra Kourti, Maria Mertiri, Panagiota Petrou, Sotirios Kakabakos and Christos Kokkinos
Chemosensors 2023, 11(9), 475; https://doi.org/10.3390/chemosensors11090475 - 26 Aug 2023
Cited by 6 | Viewed by 3027
Abstract
Salmonella is one of the leading causes of foodborne illnesses worldwide, with poultry products being a major source of contamination. Thus, the detection of salmonella in commercial poultry products is crucial to minimize the effects on public health. Electrochemical sensors are promising tools [...] Read more.
Salmonella is one of the leading causes of foodborne illnesses worldwide, with poultry products being a major source of contamination. Thus, the detection of salmonella in commercial poultry products is crucial to minimize the effects on public health. Electrochemical sensors are promising tools for bacteria detection due to their sensitivity, simplicity, and potential for on-site analysis. In this work, a three-dimensional (3D) printed electrochemical immunosensor for the determination of Salmonella typhimurium in fresh chicken through a sandwich immunoassay employing biotinylated anti-S. typhimurium antibody followed by streptavidin labeled with Cd/Se ZnS quantum dots (QDs) is presented. The device features three carbon-black polylactic acid electrodes and a holder, and the quantification of S. typhimurium is performed by anodic stripping voltametric (ASV) determination of the Cd(II) released after acidic dissolution of the QDs. To enhance sensitivity, an electroplated bismuth film was deposited on the working electrode, achieving a detection limit of 5 cfu/mL in a total assay time of 25 min, whereas 5 h of sample pre-enrichment was required for the detection of 1 cfu/25 mL of chicken rinse and chicken broth. The method is accurate, with %recovery values ranging from 93.3 to 113% in fresh chicken samples, and repeatable with intra- and inter- assay coefficient of variations <2 and 5%, respectively, indicating the suitability of the proposed immunosensor for the detection of S. typhimurium at the point-of-need. Full article
(This article belongs to the Special Issue Electrochemical Detection: Analytical and Biological Challenges)
Show Figures

Graphical abstract

32 pages, 5627 KiB  
Review
Optical Immunosensors for Bacteria Detection in Food Matrices
by Dimitra Kourti, Michailia Angelopoulou, Panagiota Petrou and Sotirios Kakabakos
Chemosensors 2023, 11(8), 430; https://doi.org/10.3390/chemosensors11080430 - 3 Aug 2023
Cited by 10 | Viewed by 5362
Abstract
Optical immunosensors are one of the most popular categories of immunosensors with applications in many fields including diagnostics and environmental and food analysis. The latter field is of particular interest not only for scientists but also for regulatory authorities and the public since [...] Read more.
Optical immunosensors are one of the most popular categories of immunosensors with applications in many fields including diagnostics and environmental and food analysis. The latter field is of particular interest not only for scientists but also for regulatory authorities and the public since food is essential for life but can also be the source of many health problems. In this context, the current review aims to provide an overview of the different types of optical immunosensors focusing on their application for the determination of pathogenic bacteria in food samples. The optical immunosensors discussed include sensors based on evanescent wave transduction principles including surface plasmon resonance (SPR), fiber-optic-, interferometric-, grating-coupler-, and ring-resonator-based sensors, as well as reflectometric, photoluminescence, and immunosensors based on surface-enhanced Raman scattering (SERS). Thus, after a short description of each transduction technique, its implementation for the immunochemical determination of bacteria is discussed. Finally, a short commentary about the future trends in optical immunosensors for food safety applications is provided. Full article
Show Figures

Graphical abstract

5 pages, 696 KiB  
Proceeding Paper
Detection of Adulteration of Milk from Other Species with Cow Milk through an Immersible Photonic Immunosensor
by Dimitra Kourti, Michailia Angelopoulou, Konstantinos Misiakos, Eleni Makarona, Anastasios Economou, Panagiota Petrou and Sotirios Kakabakos
Eng. Proc. 2023, 35(1), 5; https://doi.org/10.3390/IECB2023-14582 - 5 Jun 2023
Cited by 6 | Viewed by 1356
Abstract
Cow milk is more allergenic than milk from other species, and therefore the adulteration of ewe or goat milk with cow milk can pose a serious threat to consumers. In this work, a silicon-based photonic immunosensor, which includes two U-shaped Mach–Zehnder Interferometers (MZIs), [...] Read more.
Cow milk is more allergenic than milk from other species, and therefore the adulteration of ewe or goat milk with cow milk can pose a serious threat to consumers. In this work, a silicon-based photonic immunosensor, which includes two U-shaped Mach–Zehnder Interferometers (MZIs), was employed for the detection of ewe and goat milk adulteration with cow milk through the immunochemical determination of the milk. The method was fast and sensitive with a detection limit of 0.04 μg/mL bovine k-casein (which corresponds to approximately 0.06% cow milk) in ewe or goat milk, respectively, and with a total assay time of 12 min. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

13 pages, 1856 KiB  
Article
Mach-Zehnder Interferometric Immunosensor for Detection of Aflatoxin M1 in Milk, Chocolate Milk, and Yogurt
by Michailia Angelopoulou, Dimitra Kourti, Konstantinos Misiakos, Anastasios Economou, Panagiota Petrou and Sotirios Kakabakos
Biosensors 2023, 13(6), 592; https://doi.org/10.3390/bios13060592 - 30 May 2023
Cited by 8 | Viewed by 3762
Abstract
Aflatoxin M1 (AFM1) is detected in the milk of animals after ingestion of aflatoxin B1-contaminated food; since 2002, it has been categorized as a group I carcinogen. In this work, a silicon-based optoelectronic immunosensor for the detection of AFM1 in milk, chocolate milk, [...] Read more.
Aflatoxin M1 (AFM1) is detected in the milk of animals after ingestion of aflatoxin B1-contaminated food; since 2002, it has been categorized as a group I carcinogen. In this work, a silicon-based optoelectronic immunosensor for the detection of AFM1 in milk, chocolate milk, and yogurt has been developed. The immunosensor consists of ten Mach–Zehnder silicon nitride waveguide interferometers (MZIs) integrated on the same chip with the respective light sources, and an external spectrophotometer for transmission spectra collection. The sensing arm windows of MZIs are bio-functionalized after chip activation with aminosilane by spotting an AFM1 conjugate with bovine serum albumin. For AFM1 detection, a three-step competitive immunoassay is employed, including the primary reaction with a rabbit polyclonal anti-AFM1 antibody, followed by biotinylated donkey polyclonal anti-rabbit IgG antibody and streptavidin. The assay duration was 15 min with limits of detection of 0.005 ng/mL in both full-fat and chocolate milk, and 0.01 ng/mL in yogurt, which are lower than the maximum allowable concentration of 0.05 ng/mL set by the European Union. The assay is accurate (% recovery values 86.7–115) and repeatable (inter- and intra-assay variation coefficients <8%). The excellent analytical performance of the proposed immunosensor paves the way for accurate on-site AFM1 determination in milk. Full article
(This article belongs to the Special Issue Construction of Biosensors Using Nano- and Microtechnology)
Show Figures

Graphical abstract

Back to TopTop