Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Conrad Sanderson

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 13181 KiB  
Article
Drone-Based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty
by Juan Sandino, Frederic Maire, Peter Caccetta, Conrad Sanderson and Felipe Gonzalez
Remote Sens. 2021, 13(21), 4481; https://doi.org/10.3390/rs13214481 - 8 Nov 2021
Cited by 31 | Viewed by 9414
Abstract
Recent advances in autonomy of unmanned aerial vehicles (UAVs) have increased their use in remote sensing applications, such as precision agriculture, biosecurity, disaster monitoring, and surveillance. However, onboard UAV cognition capabilities for understanding and interacting in environments with imprecise or partial observations, for [...] Read more.
Recent advances in autonomy of unmanned aerial vehicles (UAVs) have increased their use in remote sensing applications, such as precision agriculture, biosecurity, disaster monitoring, and surveillance. However, onboard UAV cognition capabilities for understanding and interacting in environments with imprecise or partial observations, for objects of interest within complex scenes, are limited, and have not yet been fully investigated. This limitation of onboard decision-making under uncertainty has delegated the motion planning strategy in complex environments to human pilots, which rely on communication subsystems and real-time telemetry from ground control stations. This paper presents a UAV-based autonomous motion planning and object finding system under uncertainty and partial observability in outdoor environments. The proposed system architecture follows a modular design, which allocates most of the computationally intensive tasks to a companion computer onboard the UAV to achieve high-fidelity results in simulated environments. We demonstrate the system with a search and rescue (SAR) case study, where a lost person (victim) in bushland needs to be found using a sub-2 kg quadrotor UAV. The navigation problem is mathematically formulated as a partially observable Markov decision process (POMDP). A motion strategy (or policy) is obtained once a POMDP is solved mid-flight and in real time using augmented belief trees (ABT) and the TAPIR toolkit. The system’s performance was assessed using three flight modes: (1) mission mode, which follows a survey plan and used here as the baseline motion planner; (2) offboard mode, which runs the POMDP-based planner across the flying area; and (3) hybrid mode, which combines mission and offboard modes for improved coverage in outdoor scenarios. Results suggest the increased cognitive power added by the proposed motion planner and flight modes allow UAVs to collect more accurate victim coordinates compared to the baseline planner. Adding the proposed system to UAVs results in improved robustness against potential false positive readings of detected objects caused by data noise, inaccurate detections, and elevated complexity to navigate in time-critical applications, such as SAR. Full article
(This article belongs to the Special Issue Rapid Processing and Analysis for Drone Applications)
Show Figures

Figure 1

31 pages, 10416 KiB  
Article
UAV Framework for Autonomous Onboard Navigation and People/Object Detection in Cluttered Indoor Environments
by Juan Sandino, Fernando Vanegas, Frederic Maire, Peter Caccetta, Conrad Sanderson and Felipe Gonzalez
Remote Sens. 2020, 12(20), 3386; https://doi.org/10.3390/rs12203386 - 16 Oct 2020
Cited by 74 | Viewed by 11381
Abstract
Response efforts in emergency applications such as border protection, humanitarian relief and disaster monitoring have improved with the use of Unmanned Aerial Vehicles (UAVs), which provide a flexibly deployed eye in the sky. These efforts have been further improved with advances in autonomous [...] Read more.
Response efforts in emergency applications such as border protection, humanitarian relief and disaster monitoring have improved with the use of Unmanned Aerial Vehicles (UAVs), which provide a flexibly deployed eye in the sky. These efforts have been further improved with advances in autonomous behaviours such as obstacle avoidance, take-off, landing, hovering and waypoint flight modes. However, most UAVs lack autonomous decision making for navigating in complex environments. This limitation creates a reliance on ground control stations to UAVs and, therefore, on their communication systems. The challenge is even more complex in indoor flight operations, where the strength of the Global Navigation Satellite System (GNSS) signals is absent or weak and compromises aircraft behaviour. This paper proposes a UAV framework for autonomous navigation to address uncertainty and partial observability from imperfect sensor readings in cluttered indoor scenarios. The framework design allocates the computing processes onboard the flight controller and companion computer of the UAV, allowing it to explore dangerous indoor areas without the supervision and physical presence of the human operator. The system is illustrated under a Search and Rescue (SAR) scenario to detect and locate victims inside a simulated office building. The navigation problem is modelled as a Partially Observable Markov Decision Process (POMDP) and solved in real time through the Augmented Belief Trees (ABT) algorithm. Data is collected using Hardware in the Loop (HIL) simulations and real flight tests. Experimental results show the robustness of the proposed framework to detect victims at various levels of location uncertainty. The proposed system ensures personal safety by letting the UAV to explore dangerous environments without the intervention of the human operator. Full article
Show Figures

Graphical abstract

16 pages, 402 KiB  
Article
Practical Sparse Matrices in C++ with Hybrid Storage and Template-Based Expression Optimisation
by Conrad Sanderson and Ryan Curtin
Math. Comput. Appl. 2019, 24(3), 70; https://doi.org/10.3390/mca24030070 - 19 Jul 2019
Cited by 19 | Viewed by 10300
Abstract
Despite the importance of sparse matrices in numerous fields of science, software implementations remain difficult to use for non-expert users, generally requiring the understanding of the underlying details of the chosen sparse matrix storage format. In addition, to achieve good performance, several formats [...] Read more.
Despite the importance of sparse matrices in numerous fields of science, software implementations remain difficult to use for non-expert users, generally requiring the understanding of the underlying details of the chosen sparse matrix storage format. In addition, to achieve good performance, several formats may need to be used in one program, requiring explicit selection and conversion between the formats. This can be both tedious and error-prone, especially for non-expert users. Motivated by these issues, we present a user-friendly and open-source sparse matrix class for the C++ language, with a high-level application programming interface deliberately similar to the widely-used MATLAB language. This facilitates prototyping directly in C++ and aids the conversion of research code into production environments. The class internally uses two main approaches to achieve efficient execution: (i) a hybrid storage framework, which automatically and seamlessly switches between three underlying storage formats (compressed sparse column, red-black tree, coordinate list) depending on which format is best suited and/or available for specific operations, and (ii) a template-based meta-programming framework to automatically detect and optimise the execution of common expression patterns. Empirical evaluations on large sparse matrices with various densities of non-zero elements demonstrate the advantages of the hybrid storage framework and the expression optimisation mechanism. Full article
Show Figures

Figure 1

Back to TopTop