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Abstract: Response efforts in emergency applications such as border protection, humanitarian relief and
disaster monitoring have improved with the use of Unmanned Aerial Vehicles (UAVs), which provide a
flexibly deployed eye in the sky. These efforts have been further improved with advances in autonomous
behaviours such as obstacle avoidance, take-off, landing, hovering and waypoint flight modes. However,
most UAVs lack autonomous decision making for navigating in complex environments. This limitation
creates a reliance on ground control stations to UAVs and, therefore, on their communication systems.
The challenge is even more complex in indoor flight operations, where the strength of the Global
Navigation Satellite System (GNSS) signals is absent or weak and compromises aircraft behaviour.
This paper proposes a UAV framework for autonomous navigation to address uncertainty and partial
observability from imperfect sensor readings in cluttered indoor scenarios. The framework design
allocates the computing processes onboard the flight controller and companion computer of the UAV,
allowing it to explore dangerous indoor areas without the supervision and physical presence of the
human operator. The system is illustrated under a Search and Rescue (SAR) scenario to detect and
locate victims inside a simulated office building. The navigation problem is modelled as a Partially
Observable Markov Decision Process (POMDP) and solved in real time through the Augmented Belief
Trees (ABT) algorithm. Data is collected using Hardware in the Loop (HIL) simulations and real flight
tests. Experimental results show the robustness of the proposed framework to detect victims at various
levels of location uncertainty. The proposed system ensures personal safety by letting the UAV to
explore dangerous environments without the intervention of the human operator.

Keywords: partially observable Markov decision process (POMDP); machine learning; search and
rescue (SAR); probabilistic decision-making; embedded systems; computer vision; autonomous
system; unmanned aerial system (UAS); path planning; artificial intelligence

1. Introduction

High resolution satellite and aircraft imagery has and can assist in relief efforts after natural
disasters such as earthquakes, floods, landslides and bush/forest fires. Earthquakes alone are estimated
to have claimed the lives of almost 1.87 million people in the last century [1]. Research has demonstrated
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how urbanisation can increase risks to population from natural disasters in vulnerable areas [2]. Recent
studies indicate that more than 40% of human fatalities caused by earthquakes occur by weak and
collapsed building structures [3]. Therefore, studies on improving disaster management efforts in urban
and peri-urban indoor areas are key to decrease the number of fatalities.

Intelligent aerial platforms such as Unmanned Aerial Vehicles (UAVs)—commonly referred
as drones—have improved response efforts in time-critical applications such as border protection,
humanitarian relief and disaster monitoring [4]. Small UAVs—UAVs whose Maximum Take-off Weight
(MTOW) is lower or equal to 13.5 kg [5]—have offered portability and versatility to their users thanks
to advances in autonomous behaviours such as obstacle avoidance, highly stable take-off, landing,
hovering and waypoint flight modes, as well as extensive payload adaptability [6,7].

The contribution of UAVs in time-critical applications such as Search and Rescue (SAR) has
become significant in recent years. Reported key areas on the use of UAVs post-disasters include
aerial monitoring of damage evaluation, localisation of victims, SAR logistics and cargo delivery [8,9].
UAVs have also assisted through the rapid post-disaster assessment of damaged buildings after an
earthquake [10,11], the custom design of defibrillator payloads [12,13] and the deployment of first aid
kits in remote areas [14]. Recent research has also showed how UAVs can provide fast assessments
on the identification of victims and their conditions. A remote sensing life signs detector for multiple
victims, for instance, has been developed using a UAV and a vision-based algorithm [15]. Similarly,
automated detection of victims using computer vision is now possible by manually flying small
UAVs above them [16]. Despite these advances, operational software limitations of UAVs to navigate
autonomously in unknown environments have impeded their use in more real-world scenarios [17,18].
Developing autonomous decision-making processes in UAVs is a challenging issue that has attracted
the attention of the research community [19].

Whenever an emergency situation occurs, it is of utmost importance to evaluate the environment
conditions to identify critical zones that require immediate intervention and to coordinate adequate
response [20]. Real-world emergency environments are dynamic, complex, unknown or partially
known. Adding cognition capabilities in UAVs for environments under uncertainty is a problem
that can be evaluated using decision-making theory. Applied theory on decision making addresses
not only autonomous UAV navigation problems but it is also used in fields such as game theory,
navigation strategies, Bayesian principles, multi-objective decision-making, Markov Decision Processes
(MDP) and Partially Observable MDPs (POMDP) [21–23]. Research has shown how modelling UAV
navigation problems with POMDPs in environments with high levels of uncertainty is a suitable
approach. For instance, Vanegas and Gonzalez [24] developed an autonomous navigation framework
for a GNSS-denied cluttered environment using small UAVs. The framework was evaluated using
Partially Observable Monte Carlo Planning (POMCP) [25] and Augmented Belief Trees (ABT) [26],
two of the fastest POMDP online solvers known up to date. Despite the potential shown in the
proposed framework by giving the UAV the capability of making decisions in seconds with ABT,
the authors narrowed their tests using black and white rectangular augmented reality markers [27].
The POMDP solvers were also run using an external workstation and their action commands sent to
the UAV. As sustained by Carrio et al. [19] and Valavanis and Vachtsevanos [28], it is undesirable to
depend on communication modules for autonomous UAV navigation because if such modules fail,
the UAV performance might become seriously compromised.

Research by Ragi and Chong [29,30] also presented significant progress, where dynamic path-
planning in multiple target tracking was accomplished using POMDPs. Reported progress towards
fully autonomous UAVs by including path planning, collision avoidance, external wind disturbance
effects and tracking evasive threats in their problem formulation, showed the prospects of modelling
multi-objective problems using POMDPs. The tests conducted by the authors were carried out
in simulation environments only and did not provide evidence on the use of the framework in a
real-world UAV target tracking application. Similarly, Bravo et al. [20] and Waharte and Trigoni [31]
tested humanitarian relief operations with POMDP frameworks in simulation, suggesting the demand to
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validate existing approaches with real flight tests and more realistic disaster situations. Similar advances
on autonomous UAV navigation using POMDP-based theory include POMDP-lite [32], Anytime
Meta PLannEr (AMPLE) [33], Mixed Observability Markov Decision Process (MOMDP) [34] and
decentralised POMDP [35]. Nevertheless, most of the proposed solvers have only been tested in
simulation environments. Validation of these approaches with real UAV flight tests in complex
environments is still an unresolved gap [36,37].

Literature on onboard autonomous UAV decision-making in GNSS-denied environments and
time-critical applications using POMDPs is scarce. The study from Chanel et al. [38] shows one of the
most significant approaches through the development of a multi-car detection application using an
optimised UAV framework. The designed framework allows running a POMDP onboard the UAV
and optimised during execution. However, missing experimentation details such as the UAV frame,
drivers, companion computer and algorithms for computer vision have impeded reproducing their
research work.

This paper describes a UAV framework for autonomous navigation under victim detection and
location uncertainty in complex GNSS-denied scenarios. The framework details a system architecture for
onboard execution of computer vision and decision-making methods in resource-constrained hardware,
removing the dependency of the UAV on external ground control stations and communication systems,
so it can interact with the environment by itself and accomplish the flight mission. The problem is
mathematically formulated as a POMDP, which allows modelling uncertainty using probabilistic
distributions. The POMDP model is implemented in software through the Toolkit for approximating
and Adapting POMDP solutions In Real time (TAPIR) [39], which encapsulates the ABT algorithm for
real-time decision making.

The framework is illustrated with an indoor SAR scenario to detect victims in office buildings.
The UAV system was tested by defining three (3) case studies of situational awareness on the victim
hypothetical location: (i) a single survey patch from the surveyed environment; (ii) two survey patches
covering two areas of interest; (iii) a survey patch covering the entire flying area. The evaluations are
separated into two groups: experiments designed to incorporate Flight Controller Units (FCU) and
companion computers in Hardware in the Loop (HIL) simulations, and experiments with real flight
tests. Experimental results show how the formulation of the problem as a POMDP optimises UAV
behaviour by calculating robust path planning under unstable UAV motion response. More importantly,
the results indicate the potential of the system to ensure rapid monitoring (for the identification and
location of possible victims in office buildings) and personal safety by letting the UAV to explore
dangerous environments without the intervention of the human operator.

This paper extends the published work by Sandino et al. [40] through the following primary contributions:

• A more detailed description of the entire UAV framework and system architecture rather than the
POMDP problem formulation for autonomous UAV navigation in GNSS-denied environments.

• An improved observation model of target detection uncertainty, which introduces a summary
statistic that measures detection frequency (to account for false positive detections).

• An improved cost function which contains more reward variables for better UAV behaviour
(i.e., distance calculation between UAV and victim, and added memory capability for analysis of
traversed path).

• Better onboard object detector performance by applying rotation transformations on input camera
frames to detect victims at various visual perspectives.

• Validation of the proposed framework using real flight tests.

2. Background

This section describes the fundamentals of POMDP planning and Augmented Belief Trees (ABT),
the online solver used in this work. A comprehensive review of POMDP and ABT can be found in the
research works by Dutech and Scherrer [41] and Kurniawati and Yadav [26], respectively.
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2.1. Partially Observable Markov Decision Processes

The main focus of autonomous UAV decision-making systems is to generate sequences of actions
to avoid obstacles, explore unknown areas and detect objects of interest (i.e., victims). The information
acquired about the surveyed environment and their targets is in most cases, however, inaccurate due
to imperfections in the UAV sensor readings, occlusion from obstacles and challenging surveying
conditions. These imperfections restrict the inference of the actual conditions of the environment
(e.g., search extent, obstacles, wind disturbances) and victims (e.g., location, classification, quantity).
A possible approach to model sequential decision-making processes when dealing with high levels of
uncertainty is based on POMDPs [41].

A POMDP is defined by the tuple 〈A, S, O, T,Z , R, b0, γ〉 [42], where A is a finite set of UAV actions,
S is a finite set of states, and O is a finite set of collected observations from the environment. Whenever
the UAV takes an action a ∈ A from a state s ∈ S, the UAV moves to a new state s′ ∈ S with probability
T(s, a, s′) = P(s′ | s, a) and receives an observation o ∈ O with probability Z(s′, a, o) = P [o | s′, a].
Each taken action is also valued with a reward or cost function R, defined as the expected reward after
taking an action a ∈ A from state s ∈ S.

Considering that the UAV is limited to obtain partial information of real system states through
its collected observations, it generates a belief b, defined as a probability distribution over the system
states S. A belief b can be defined as follows:

b(H) = P[s1 | H], · · · ,P[sn | H], (1)

H = a0, o1, R1, · · · , at−1, ot, Rt, (2)

where H is the history of actions, observations and rewards that the UAV has experienced until time
step t. The UAV always starts the planning with an initial belief b0, which is generated based on
the initial conditions (and assumptions) of the problem (i.e., situational awareness). Given a belief
b, a POMDP is solved once it finds a sequence of actions that maximises the discounted cumulative
reward. The motion policy π of the UAV is represented by mapping belief states to actions π : b→ A.
The optimal policy π∗ is calculated as follows:

π∗ := arg max
π

(
E
[

∞

∑
t=0

γtR (St, π (bt)) | b0, π

])
, (3)

where γ ∈ [0, 1] is the discount factor, which determines how much immediate rewards are preferred
over more distant rewards.

2.2. Augmented Belief Trees

Finding the exact solution of a POMDP is deemed to be a computationally intractable problem [43].
However, recent approaches have made substantial progress on creating algorithms that approximate
the solution such as Partially Observable Monte Carlo Planning (POMCP) [25]. Nevertheless, most of
the available online POMDP solvers recompute policies at every time step from scratch, wasting
computational resources which can impact the performance of resource-constrained hardware devices,
such as onboard computers in small UAVs. Therefore, this work uses the ABT solver [26], which contains
methods to reuse previous computed policies and update the policy after detecting changes in the
POMDP model. Compared to other online POMDP solvers, ABT allows declaring continuous variables
for states and actions (rather than discrete values) to calculate the approximated optimal policy.

ABT contains a method for planning and execution in real time with augmented belief trees.
The process is divided into two parts: preprocessing (or offline policy estimation) and runtime (or
online policy update). Once ABT is run to generate an offline policy from the POMDP model, the UAV
executes a first action. Afterwards, the UAV collects an observation and the ABT updates the belief
states based on the collected observation. Subsequently, ABT updates the policy online and executes
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the next action. The solver approximates the optimal motion policy by maintaining a set of multiple
sampled episodes. Instead of providing explicit probability distributions for T and Z , ABT uses a
generative model. A generative model is a black box simulator that outputs observations, rewards and
next states once the UAV performs an action from a current state.

3. System Architecture

The proposed system architecture allows fully autonomous decision-making onboard small
UAVs in unknown GNSS-denied environments. Following the POMDP terminology introduced
in Section 2.1, Figure 1 illustrates the system modules of the UAV (also known as the agent in
sequential decision-making theory), and the interaction between the UAV, the surveyed environment
and the operator.

Operator

Ground Control Station

Environment

Victim

Agent

Small UAV

Computer Vision Module

Raw Frames

CNN Object Detector

Vision Processing
Unit (VPU)

Decision-making Module

Observations

POMDP Solver

Action Commands

Motion Module

Local Position
Estimator

Flight Controller

Motors

A

Drivers

Visual
OdometrySLAM

RC input

IMU Drivers

Telemetry

Distance
Sensor

Wi-Fi

Radio

Companion Computer

Flight Controller Unit (FCU)

Sensors

Actuators
Peripherals

A

Vision-based sensors

Figure 1. Proposed modular system architecture for an autonomous onboard navigation in Global
Navigation Satellite System (GNSS)-denied environments in small Unmanned Aerial Vehicles (UAVs).
It is composed of a computer vision module, which processes raw data from vision-based sensors,
a decision-making module which sends low-level action commands to the flight controller, and a
motion module that controls the dynamics of the UAV via a set of drivers mounted in the UAV frame.

The UAV contains a set of modules to distribute operations such as collecting and processing data
from the environment (computer vision), evaluating the optimal sequence of actions to accomplish
the flight mission (decision-making) and managing the speed of the actuators to control the dynamics
(or motion) of the UAV. The computer vision and decision-making modules are run on a companion
computer attached to the UAV frame, whereas the motion module is managed by the onboard
FCU. The UAV also includes a set of drivers to assist the local position estimation in GNSS-denied
environments and peripherals to establish communication to the operator. The operator receives
real-time telemetry and decides whether to let the UAV interact with the environment or regain
manual control using the remote control.

For every interaction cycle while operating the UAV in autonomous mode, the UAV starts
capturing data from vision-based sensors in the form of image frames. Those frames are read by the
computer vision module which processes these observations into percepts for the decision-making
module. The current implementation of this module uses a Deep Convolutional Neural Network
(D-CNN) to detect victims. A D-CNN is an artificial neural network designed for processing structured
data arrays such as images [44]. The module contains dedicated hardware to meet the computational
demand of running D-CNNs on resource-constrained hardware via Vision Processing Units (VPUs).
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Information produced by the computer vision module details whether a victim is detected in the frame,
and if detected, the estimated location of the victim and a summary statistic about the confidence of
the detection. The decision-making module reads this data as well as the estimated local position
of the UAV (from the motion module) as observations. Then, the POMDP solver determines the
corresponding motion command for the next iteration. Finally, these actions are passed to the flight
controller which ultimately sends appropriate control signals to the actuators and manoeuvre the
aircraft to the desired position.

The UAV requires a set of external sensors from the FCU to successfully operate in GNSS-denied
environments. In this implementation, estimations of local UAV positioning are achieved using Light
Detection and Ranging (LiDAR)-based distance and visual odometry sensors. It is common when
working with visual odometry sensors to externally run (using a companion computer, fox example)
visual Simultaneous Localisation and Mapping (SLAM)-based algorithms to provide the FCU with
relevant pose and twist data. Modern FCUs contain dedicated algorithms to read localisation data
from multiple sensory systems (i.e., IMU, distance sensor and SLAM output) and estimate the local
UAV position in real time.

4. Framework Implementation

The implemented hardware and software (i.e., framework) is designed to be as modular as possible
based on the system architecture presented in Section 3. First, the paper presents UAV frame, drivers
and payload, followed the software communication interface of the system, and software solutions to
implement the computer vision and decision-making modules onboard the UAV companion computer.

4.1. UAV Frame and Drivers

The current implementation consists of but it is not restricted to the UAVs and sensors mentioned
below. The UAV frame used is a Holybro S500 multi-rotor kit (Holybro, China), which offers a
right balance between payload adaptability and size to navigate in cluttered indoor environments.
The aircraft features a Pixhawk 4 R© autopilot (i.e., onboard FCU), 22.86 cm plastic propellers,
2212 KV920 brushless motors, and 433 MHz Telemetry Radio. The aircraft length × width × height
dimensions are of 38.3 cm × 38.5 cm × 24.0 cm, with a total load payload capacity of 0.4 kg. The UAV
uses a four (4) cell 5000 mAh LiPo battery which provides an approximate flight autonomy of 10 min
payload-free and eight minutes with the sensor payload and companion computer mounted in the
frame. An illustration of the UAV frame with its payload, companion computer and drivers is shown
in Figure 2.

The companion computer which runs the computer vision and decision-making modules is an
UP2 (AAEON Technology Inc., New Taipei City, Taiwan). The computer features a 64-bit quad-core
Intel R© Pentium R© N4200 processor at 1.1 GHz, 8 GB DDR3 RAM, 64 GB eMMC SSD, four FL110
USB 3.0 connectors, two Ethernet controllers, two High-Speed UART controllers, an Intel R© Dual
Band Wireless-AC 3165 and one mPCIe connector. The UP2 is selected here against similar computer
boards owing to its competitive price tag for its provided features, peripherals and the familiar 64-bit
CPU architecture.

The UAV requires several sensor drivers to estimate its local position in the absence of GNSS.
For these experiments, the list of sensors is composed by the embedded Pixhawk 4 R© IMU, a TFMini
Plus range sensor (Benewake, Beijing, China) pointing downwards which provides the UAV altitude,
and an Intel R© Realsense

TM
T265 tracking camera (Intel Corp., CA, US) pointing to the front from the

UAV frame. The T265 sensor uses a closed source SLAM software implementation for local position
and motion estimation. Configuring the camera to the front improves the reliability of the sensor
readings by capturing and detecting more objects (e.g., obstacles, walls, floor and victims) than by
pointing the camera to the ground. Collected observations from the environment are performed with
a HBV-1615 Red Green Blue (RGB) camera, mounted in a downward-looking configuration from
the UAV frame (Figure 2b). The camera features a resolution of 640 × 480 pixels, focal length of
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2.484 mm, sensor width of 1.968 mm and sensor height of 1.488 mm. It is worth mentioning that other
multi-rotor UAVs, companion computers and drivers with similar characteristics can also be utilised
for the proposed system architecture depicted in Figure 1.

1

2

3

4

(a)

5

6
7

(b)

Figure 2. Proposed UAV frame with mounted drivers, companion computer and payload. (a) Front
view of the UAV displaying: (1) Holybro S500 frame; (2) Pixhawk 4 R© flight controller; (3) UP2

companion computer; and (4) Intel R© Realsense
TM

T265 tracking camera. (b) Lateral view of the UAV
displaying: (5) 433 MHz telemetry radio; (6) HBV-1615 RGB camera; and (7) TFMini Plus range sensor.

4.2. Operating Systems and Middleware

The system modules implemented in the companion computer are developed for 64-bit Linux
Operating Systems (OS) and run in Ubuntu Server 18.04. Communication between the vision-based
sensors, and computer vision and decision-making modules is achieved using the Robot Operating
System (ROS) Melodic [45] middleware. The flight controller runs under NuttX (a real-time OS) and
the PX4 flight control software [46]. The PX4 architecture consists of: (1) a flight stack layer, which
details a pipeline if flight controllers for multi-rotors, fixed-wing and vertical take-off and landing
(VTOL) UAVs, altitude and position estimators, and; (2) A middleware layer, which contains the
device drivers for multiple UAV sensors, communication interfaces, and a simulation layer to enable
Hardware in the Loop (HIL) capabilities of the FCU.

Communication between the decision-making module (from the companion computer) and the
motion module (from the FCU) is done using MAVROS via a High-Speed UART interface. MAVROS
is a ROS wrapper of the Micro Air Vehicle Link (MAVLink) protocol, an industry standard for UAV
communication [47]. Telemetry to the ground control station was performed using QGroundControl
via Wi-Fi and the Holybro 433 MHz Telemetry Radio (Holybro, China).

4.3. Computer Vision Module

This module consists of a deep learning object detector processing raw frames from the HVB-1615
RGB camera. Taking into account the performance limitations of running deep learning models
in resource-constrained hardware, a Vision Processing Unit (VPU) is installed to the companion
computer. The use of a VPU boosts the computations that allow inference in deep learning models by
optimising convolutional operations in its microprocessor. In this implementation, the selected VPU is
an Intel R© Movidius

TM
Myriad

TM
X, which is connected to the companion computer via the mPCIe slot.

The detection module is programmed in Python and uses the OpenVINO library that allows a direct
interface between various deep learning frameworks and the VPU. OpenVINO supports TensorFlow,
Caffee, PyTorch, among other deep learning frameworks. Standard image processing methods are also
covered by OpenVINO through optimised versions of the OpenCV and OpenVX libraries.

The used deep learning model architecture to detect persons is an off-the-shelf Google MobileNet
Single-Shot Detector (SSD) [48]. This model is deployed in Caffe [49] and tuned with pre-trained weights
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from the PASCAL VOC2012 dataset [50], scoring a mean average precision of 72.7%. The dataset covers
up to 21 class objects (including persons). However, only positive detections for the class person are
evaluated. Acquired camera frames are fitted into the input layer of the neural network (i.e., MobileNet
SSD model) by shirking the frames into dimensions of 300 × 300 pixels. Once inference is performed
onto the fit model, positive detections of persons with a score confidence (from the output layer of the
neural network) greater than 60% are depicted in the processed frame and shown to the human operator
for telemetry purposes, as displayed in Figure 3.

(a) (b)

Figure 3. Victim detection trial using the proposed Google MobileNet Single-Shot Detector (SSD)
architecture from Chuanqi [48]. Detections with an output score confidence greater than 60% are
displayed in the processed frame. (a) Top view of the UAV flying above an adult mannequin. (b) Victim
detected with a confidence score of 78.42% after processing raw frames from the HBV-1615 RGB camera.

Taking into account the nature of PASCAL VOC dataset the object detector was trained for the class
person, the frequency and detection scores are significantly higher when the UAV is aligned with the
mannequin (as shown in Figure 3b) than with other visual representations. Consequently, the object
detector is unable to detect the mannequin if spatial transformations in the x or y axes are applied. Similarly,
there are slight chances to detect the mannequin if its lower body is occluded by other objects. The optimal
distance between the UAV and the mannequin to maximise the detection scores ranges between 1 m
and 10 m. In order to address these limitations on the detections, image rotation transformations are
applied on software for each input frame. A total of six transformations (i.e., image rotations every
60◦) are processed for every read camera frame, achieving, thus, an approximate processing speed of
2.9 Frames per Second (FPS).

4.4. Decision-Making Module

The decision-making module contains algorithms that translate information from the environment
(i.e., observations) into action commands. In this implementation, the decision-making module contains
the POMDP, in which the navigation problem is required to be formulated. The decision-making
module uses ABT—an online POMDP solver [26]—implemented on software using TAPIR [39]. TAPIR
is developed in C++ and requires the tuning of several hyper-parameters to obtain the best possible
approximation of the POMDP solution (i.e., optimal motion policy). Details on assigned hyper-parameter
values for TAPIR can be found in Section 5.2.3.

This paper proposes an approach for a UAV to find a victim in cluttered indoor environments.
An example scenario, which is depicted in Figure 4, consists of a limited flying area, several obstacles
randomly placed, with weak or absent GNSS signal, and a static victim located inside the area to
be surveyed.
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Figure 4. Example of a cluttered indoor environment for UAV Search and Rescue mission. The extent
of the free volumetric space area is restricted by randomly placed obstacles. The victim is always lying
on the ground and its location is static.

The estimation of the optimal motion policy allows the UAV to perform efficient obstacle avoidance,
victim detection and path planning for various uncertainty levels in the location of the victim. The problem
formulation is partially defined based on the following assumptions:

• The UAV pose and motion are estimated by a SLAM-based sensor (i.e., visual odometry) embedded
on the UAV frame.

• Observations come from real-time streaming of processed camera frames and the estimated local
UAV position from the FCU.

• Flying modes such as take-off and landing are also delegated to the FCU and automatically
triggered by the UAV, or the operator if they want to regain control on the UAV motion.

• The task starts after the UAV gets close enough to a chosen starting point.
• The task finishes once the victim is detected with high detection frequency (e.g., exceeding a

minimum threshold detection value), or if the UAV runs out of power resources (or timeout) to
keep flying before a detection is made.

The text below describes the problem formulation for the elements of the POMDP tuple, which consists
of the set of possible taken actions A by the UAV; the system states S; the motion model of the system
after an action a ∈ A is executed by the UAV; the system rewards and cost function R; the collected
observations O from the environment; the observation model; and the initial belief b0. The problem
formulation is presented as generic as possible in this section. Technical details on the assigned values
in the experiments are described in Section 5.

4.4.1. Actions (A)

In the current implementation, the UAV interacts with the environment by applying an action
a ∈ A. As shown in Table 1, seven actions have been selected in this paper. However, more actions
can be added as per problem requirements such as setting UAV yaw orientation and camera gimbal
angle commands.
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Table 1. Set of chosen actions for the problem formulation. Each action is a position command where δ

is the magnitude of change of position coordinates xu, yu and zu from time step k to time step k + 1.
Position values are referenced to the world coordinate frame.

a(k) ∈ A xu(k + 1) yu(k + 1) zu(k + 1)

Forward xu(k) + δx yu(k) zu(k)
Backward xu(k)− δx yu(k) zu(k)

Left xu(k) yu(k) + δy zu(k)
Right xu(k) yu(k)− δy zu(k)

Up xu(k) yu(k) zu(k) + δz
Down xu(k) yu(k) zu(k)− δz
Hover xu(k) yu(k) zu(k)

The above-mentioned actions are position commands defined in the world coordinate frame,
where δ is the magnitude of change of position coordinates xu, yu and zu from time step k to time
step k + 1. Assigning various values for δ allows flexibility in the speed of the UAV for big and small
flying areas. Other standard UAV actions such as take-off and landing are off-the-shelf commands
managed by the onboard FCU and triggered by the system before and after executing the POMDP
solver, respectively. A description of the initial conditions of the UAV is covered in detail in Section 5.

4.4.2. States (S)

For this implementation the system states consist of the UAV and victim states. The state of the
UAV is defined by the position of the UAV pu(xu, yu, zu) in the world coordinate frame; the UAV
instantaneous velocity vu = ṗu; the flag fcrash that defines whether the UAV has collided with an
obstacle; and the flag froi which specifies whether the UAV is navigating out of the limits of the region
to be surveyed. The victim state is defined by the position of the victim pv(xv, yv, zv) in the world
coordinate frame; the flag fdct that determines whether a victim has been detected by the UAV; and the
flag fconf that confirms the detection state of the victim, which is defined as:

fconf =

{
true if ζ ≥ threshold
false otherwise

, (4)

where ζ ∈ [0, 1] is the victim’s detection confidence between time steps. An expanded explanation of ζ

and its usage is covered in Section 4.4.5. In the current formulation, fcrash, froi and fconf are considered
terminal states (or stopping conditions). Other states such as states for a second or more victims can
also be added to the framework.

4.4.3. Motion Model

The motion model for a multi-rotor UAV is defined as:

pu(k + 1) = pu(k) + Xu(k)∆pu(k) (5)

which can be expanded as:xu(k + 1)
yu(k + 1)
zu(k + 1)

 =

xu(k)
yu(k)
zu(k)

+

cos(ϕu(k)) − sin(ϕu(k)) 0
sin(ϕu(k)) cos(ϕu(k)) 0

0 0 1


∆xu(k)

∆yu(k)
∆zu(k)

 , (6)

where pu(k) is the UAV’s position at time step k; Xu(k) is a simplified multi-rotor rotation matrix
after assuming changes in the Euler angle values ∆ψ = 0◦, ∆θ = 0◦ and ∆φ = 0◦ [51]; ∆pu(k) is the
change in the UAV’s position from time step k to time step k + 1; and ϕu(k) represents pose estimation
errors in the Euler yaw angle of the UAV. This variable is modelled as a normal distribution with
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a mean of 0◦ and standard deviation of 3.0◦. An approximation of the dynamic model of the UAV
through changes in position (∆pu(k)) was conducted empirically using the UAV frame and a system
identification process. An expanded description for calculation of ∆pu(k) can be found in Section 5.

4.4.4. Rewards and Cost Function (R)

The cost function R is defined as follows:

R = raction + rcrash + rout + rdtc + rζ + rfov, (7)

where raction is the negative reward (or penalty) per action taken to encourage the UAV to find the
victim in the less number of possible action sequences; rcrash is the cost if the UAV crashes itself with
an obstacle; rout is the cost if the UAV flies beyond the survey area limits; rdtc is the reward if a victim
is detected (regardless of the confidence level), defined as follows:

rdtc =

 ρ if victim is detected

−(ρ + rζ)
du

2 · la
otherwise

, (8)

where ρ is the constant reward value assigned to rdtc; du is the Manhattan distance between the UAV
and victim; rζ is the reward if the victim is detected with a high confidence level, defined by the
threshold ζ (as mentioned above in Equation (4)); and la represents the longest length of the search area.
Manhattan distance was chosen over Euclidean distance for du based on better UAV traversed paths
using the former in preliminary simulations. Adding du to the cost function aims to get the UAV closer
to the believed location of the victim and acquire camera frames with clearer visual representations
of them. Nevertheless, du might generate ambiguity and sub-optimal behaviour in the UAV if it is
surrounded by equidistant victim belief particles. In order to add memory about a path previously
traversed by the UAV, R includes rfov, which is the cost for any taken action that places the UAV in a
region that was previously explored. An illustration of the concept is shown in Figure 5.

(a) (b)

Figure 5. Example of a recorded trajectory. (a) Traversed path by the UAV. The figure is composed
by: The path of the UAV (orange splines); the environment obstacles (green blocks); the UAV position
belief (orange point-cloud); the possible victim location coordinates (red point-cloud); and the camera’s
Field of View (FOV) (purple rectangle). (b) Traced footprint using the camera’s Field of View (FOV).
Future actions that place the UAV inside the white areas trigger rfov.
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4.4.5. Observations (O)

The system observations consist of the available information about the state of the environment
and the UAV from its sensors. As previously illustrated in Figure 1, certain observations require a
pre-processing stage such as the detection and localisation of the victim from vision-based camera
frames. The current observations O are defined as:

O = (opu , oobs, odtc, opv , oζ), (9)

where opu is the position of the UAV in the world coordinate frame, which is obtained from the local
position estimator of the motion module; oobs is the flag that defines whether there is an obstacle in
front of the UAV, which is obtained by reading the location of the UAV inside an occupancy map object
(described in Section 4.4.8); odtc is the flag that determines whether a victim has been detected by the
computer vision module; and opv provides the location estimation of the victim, defined as:

opv =

{
(xv, yv, zv) if odtc = true

null otherwise
; (10)

observation oζ is a summary statistic that measures the frequency of victim detections between the last
and current observation calls (and referred as the detection confidence), defined as:

oζ =
∑ victim detections
∑ processed frames

. (11)

Other observations such as the orientation of the victim or similar object detection outputs from
two or more cameras are not implemented but can also be considered in the formulation.

4.4.6. Observation Model

Considering that ABT uses a generative model that outputs an observation o ∈ O, a reward R
and a next state s′ ∈ S based on a taken action a ∈ A from a current state s ∈ S, probabilistic transition
functions T and Z are not required to be explicitly declared. Therefore, the generative model requires
modelling a potential observation o given s′ and a. The observation model is composed by the local
position estimation of the UAV opu in the world coordinate frame, the local position of the victim opv if
it is detected by the vision-based sensors and the detection confidence oζ . Victim detection depends on
the footprint extent of the camera’s Field of View (FOV), which is defined by the sensor properties of
the camera and opu . The vertical and horizontal FOV angles are defined as follows:

FOVV = 2 tan−1
(

w
2 f

)
, (12)

FOVH = 2 tan−1
(

h
2 f

)
, (13)

where w is the sensor width; h is the sensor height; and f is the focal length of the camera. The extent
of the observed FOV area (or footprint) is calculated as:

ltop, bottom = pu(z) · tan(α± 0.5 · FOVH), (14)

lleft, right = pu(z) · tan(α± 0.5 · FOVV), (15)

where l is the footprint extent of the camera frame at its top, right, bottom and left limits, and α is the
pointing angle by the camera gimbal from the vertical z axis, as shown in Figure 6.
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l

Ix

Iy

α

c1

c2c3

c4

Ground

Wx

Wy
Wz

Figure 6. Two-dimensional (2D) projection of vision-based sensors pointing to the ground, where W is
the world coordinate frame, I is the image coordinate frame, α is the camera’s gimbal angle from the
vertical, c∗ are the rectangular corners from the camera’s Field of View (FOV), and l is the footprint
extent of the FOV.

The two-dimensional (2D) projection corner coordinates of the camera’s FOV are defined as:

c1 = (ltop, lleft), (16)

c2 = (ltop, lright), (17)

c3 = (lbottom, lright), (18)

c4 = (lbottom, lleft). (19)

Following Equation (5), a transformation matrix is also applied to link the FOV corners to the
UAV reference frame: [

c′(x)
c′(y)

]
=

[
pu(x)
pu(y)

]
+

[
cos(ϕu) − sin(ϕu)

sin(ϕu) cos(ϕu)

] [
c(x)
c(y)

]
(20)

where ϕu is the pose estimation error in the Euler yaw angle of the UAV (mentioned in Equation (5).
If the projected 2D point coordinate of the victim is located within the corner c points from the formed
rectangular footprint, the victim is assumed to be visualised in the camera’s FOV. As defined in
Equation (21), an angle θ is calculated as the sum of angles between the victim’s position and each pair
of points that comprise the FOV corners [52],

θ =
4

∑
i=1

{
tan−1

[
c′i+1(y)− pv(y)
c′i+1(x)− pv(x)

]
− tan−1

[
c′i(y)− pv(y)
c′i(x)− pv(x)

]}
. (21)

If θ = 2π, the coordinate point of the victim is inside the camera’s FOV. Nevertheless, this calculation
assumes perfect detection outputs from any vision-based model implemented in the computer vision
module. Uncertainty from computer vision models (including deep learning detectors) come from factors
such as noise from the camera frames, poor illumination conditions, low image resolution, occlusion
from obstacles and sub-optimal camera settings. Even though it is possible to allocate extra resources
to improve the performance of these object detection models, this paper presents an approach that
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covers detection uncertainty. Some factors that cause uncertainty such as the display of false positives
are simulated here by incorporating the object detection confidence ζ and evaluating such confidence
with thresholds ζthres in the problem formulation. In this implementation ζ is modelled using a linear
regressor, defined in Equation (22):

ζ =
1− ζmin

maxz −minz − g
(du −minz − g) + ζmin, (22)

where ζmin is the minimum detection confidence threshold; minz and maxz are the minimum and
maximum allowed flying altitudes respectively; g is the distance gap applied to minz; and du is the
Manhattan distance between the UAV and the victim.

4.4.7. Initial Belief (b0)

Formulating the problem as a POMDP allows modelling uncertainty and partial observability with
probabilistic data distributions. The proposed system contains two sets of belief states: The position of
the UAV, and the position of the victim. The position of the UAV is defined as a normal probability
distribution with mean µpu and standard deviation σpu . As previously shown in Figure 5a, the position
of the victim can be defined as a uniform probability distribution or as a set of one or more normal
distributions placed across the flying area. This capability allows the rescue personnel and UAV
operator to freely define possible areas where a victim could be located, following the concept of
situational awareness in SAR operations. Details on the specific configurations used in the experiments
can be found in Section 5.2.2.

4.4.8. Obstacle Avoidance

The decision-making module relies on the concept of occupancy maps for obstacle avoidance.
Occupancy maps are represented in three-dimensional (3D) occupancy grids whose cells contain
binary values for the specific volumetric representation of space such as free, occupied or unknown.
The occupancy map for this task was generated using the Octomap library [53], which allow the
creation of occupancy maps using 3D point clouds, data that is commonly acquired from depth
cameras and LiDAR sensors. In this work, the octomap of the environment was generated manually
and read by the decision-making module prior to any flight campaigns (in simulation and hardware).

5. Experiments

The presented system is tested for a victim finding mission in a cluttered indoor environment
using HIL simulations and real flight tests. The text below describes the environment setup and
assigned values to the formulated POMDP problem presented in Section 4.4.

5.1. Environment Setup

The search area has length×width× height dimensions of 6 m× 6 m× 3 m. As shown in Figure 7,
the surveyed area contains several obstacles in the shape of columns, the victim is lying on the ground
and located at the opposite end from the take-off position of the UAV. The victim and column obstacles
are static and no disturbances such as wind or variable light conditions are applied to the setup.
Due to the limited flying space available in the testing facility for hardware tests, it was not possible to
evaluate the system in an environment with bigger dimensions that suit more realistic SAR operations.
However, the focus and contribution of this paper relies on: introducing a framework for autonomous
UAV operations in GNSS-denied environments under partial observability; illustrating a system
architecture that incorporates and executes computer intensive deep learning models (for realistic
object detection) and online POMDP solvers onboard resource-constrained hardware; and presenting a
proof of concept of the system robustness in SAR scenarios, with the potential of operating the system
in more challenging conditions.
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(a) (b)

Figure 7. Environment setup for autonomous UAV victim finding in HIL simulations and real-flight
tests. The victim is static and is always located at the opposite end from the take-off position of the
UAV. (a) Isometric view of the environment simulated in Gazebo. (b) Top view of the environment
simulated in Gazebo.

The example environment is validated with HIL simulations and hardware experiments. Simulation
experiments are executed using a desktop workstation, replicating the environment setup using the
Gazebo ROS Simulator. The desktop workstation features a 64-bit 12-core Intel R© Core R© i7-8700 CPU at
3.2 GHz, a 32 GB DDR4 RAM, a 512 GB eMMC Solid State Drive, a 6 GB NVIDIA GeForce GTX 1060,
six (6) USB 3.0 ports and an Ethernet controller.

Hardware experiments are conducted at the Queensland University of Technology (QUT) Da Vinci
Precinct (DVP) hangar area, 24/22 Boronia Rd, Brisbane Airport, QLD 4008, Australia. Data collection
campaign occurs in four (4) opportunities from the 25 June 2020 to the 2 July 2020 between 11:00 a.m.
and 3:00 p.m. For safety reasons, an adult mannequin is used as the victim to be detected, as shown
in Figure 8. Illumination conditions are controlled by exposing the setup with a constant light intensity
from fluorescent light bulbs. No external wind disturbances are applied during the data collection process.

(a) (b)

Figure 8. Environment setup for hardware experiments. For safety reasons, an adult mannequin is used
as the victim to be detected and column obstacles are replaced with carpet tiles. (a) UAV navigating
inside a netted area at the Queensland University of Technology (QUT) Da Vinci Precinct (DVP) hangar.
(b) Top view of the setup with the mannequin displayed at the bottom.
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In the setup neither a depth camera nor LiDAR sensor is included in this framework implementation.
The system is therefore limited to operate using a fixed occupancy map of the environment. Despite this
limitation, the proposed framework allows extending the system capabilities by incorporating any of
the above-mentioned sensors to the UAV frame and updating the map mid-flight using the Octomap
library flawlessly. Taking into account that local UAV position estimations from the visual odometry
sensor (i.e., T265 tracking camera) are not corrected from any ground truth data source, the environment
column-shaped obstacles (Figures 7 and 8a) are replaced by carpet tiles to ensure the integrity of the
aircraft in real flight tests (Figure 8b).

5.2. POMDP Problem Formulation

The text below describes the assigned values for variables presented in the POMDP formulation
(Section 4.4). They consist of the approximated response of the controlled UAV dynamic system,
the case studies of situational awareness (or initial belief) on the victim’s position, and TAPIR hyper-
parameter values.

5.2.1. Controlled UAV System Response

In this research, the position changes of the UAV (∆pu(k)) are modelled by identifying the transfer
function of the entire controlled UAV system, composed by the controller, the UAV motors, sensors and
feedback loop. Consider y as the independent position response of the UAV for the x, y and z Cartesian
frame. A step response of the aircraft y(t) is measured after triggering a constant position setpoint
r(t) = 0.5 m. For each coordinate axis, incremental and decremental step responses are recorded for
five seconds between each change using a VICON motion capture system (Vicon, Oxford, UK) as
ground truth. The recorded data is processed using the MATLAB R© System Identification Toolbox

TM
,

which estimates the transfer function of the UAV in the frequency domain (s). The transfer functions
of the UAV for x, y and z in the frequency domain are defined as follows:

Fx(s) =
0.204s + 1.136

s2 + 1.253s + 1.134
, (23)

Fy(s) =
0.2875s + 0.9085

s2 + 0.9825s + 0.9227
, (24)

Fz(s) =
0.8068s3 + 0.7306s2 + 1.041s + 0.1368

s4 + 1.561s3 + 1.653s2 + 1.175s + 0.1367
. (25)

Afterwards, the transfer functions were discretized using the Tustin approximation method,
defined in Equation (26):

s ≈ 2(z− 1)
Ts(z + 1)

, (26)

where Ts (i.e., Ts = 0.1 s) is the sampling period. The UAV motion ∆pu(k) is calculated by obtaining the
difference equation of the discretized system F(z) after applying the inverse Z-transform, as defined
from Equation (27) to Equation (30):

F(z) =
Y(z)
R(z)

, (27)

y(k) = Z−1F(z)Z−1R(z), (28)

y(k) =
N

∑
i=0

air(k− i)−
N

∑
i=1

biy(k− i), (29)

∆pu(k) = y(Ts
−1)− y(0), (30)
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where N is the order of the transfer function F(s); r(k− i) and y(k− i) represent previous setpoint and
response values respectively; and ai and bi are the numerical constants for each r(k− i) and y(k− i)
function variables.

5.2.2. Uncertainty and Initial Belief (b0)

As shown in Figure 9, the possible location of the victim was evaluated following three case
studies, which are inspired on available information (situational awareness) from a SAR perspective:
(1) single cluster of position points following a normal probability distribution with mean µ1pv

and
standard deviation σpv (Figure 9a); (2) two position clusters defined as normal probability distributions
with the second cluster declared with mean µ2pv

and standard deviation σpv (Figure 9b); (3) a uniform
probability distribution assuming that there is no knowledge of where the victim might be located in the
surveyed area (Figure 9c). It is worth mentioning that the physical mannequin was always located at
position coordinates pv = (1.5,−1.4, 0.0) and orientation ψv = −45◦ from the world coordinate frame.

(a) (b)

(c)

Figure 9. Tested case studies of search and rescue situational awareness regarding the victim location.
Orange splines represent the path of the UAV; green blocks are the environment obstacles; the orange
point-cloud is the UAV position belief; the red point-cloud is the victim position belief; and the purple
rectangle the camera’s Field of View (FOV). (a) Victim position points distributed in a single cluster.
(b) Victim position points distributed in two clusters. (c) Cluster of victim position points uniformly
distributed along the flying area.
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5.2.3. TAPIR Hyper-Parameters

TAPIR requires tuning several hyper-parameters to obtain the best possible approximation of the
POMDP solution (i.e., optimal motion policy). For these experiments, the offline policy timeout is set
to five (5) seconds, the maximum belief tree depth is of 100 nodes, time steps are of one (1) second,
and the discount factor γ = 0.99. The UAV is conditioned to find the victim for a maximum of 480
iterations (equivalent to approx. eight minutes of flight time). The minimum and maximum flying
altitudes of the UAV are of 1.0 m and 1.8 m respectively. Specific values for the POMDP variables
defined in Section 2.1 are shown in Table 2.

Table 2. Hyperparameter values for the Partially Observable Markov Decision Process (POMDP)
formulated problem. The initial belief position and orientation values were defined in reference to the
world coordinate frame.

Category Variable Value Category Variable Value

Actions δ 0.25 States ζthres 0.7

Rewards

raction −2.5

Initial belief (b0)

µpu (−1.8, 1.8, 1.5) m
rcrash −25 σpu 1.0 m
rout −10 µ1pv

(1.5,−1.4, 0.0) m
ρ 25 µ2pv

(−0.9, 0.2, 0.0) m
rζ 75 σpv 1.5 m

r f ov −5 ψv −45◦

Observations g 0.2 m

Where δ is the magnitude of change of UAV position coordinates between time steps (i.e., ∆t(k) =
1 s, ∴ ṗu ≈ 0.25 m/s) for the x, y and z Cartesian axes; the set of r∗ variables constitute the system
rewards defined in Section 4.4.4; ζthres is the minimum victim detection confidence that should be
achieved by the UAV; the set of variables defined in the initial belief defined in Section 5.2.2; and g is
the distance gap applied to the minimum UAV altitude defined in Section 4.4.5; The assigned values
for the system rewards are found after performing grid-search into the ABT solver.

6. Results

A set of success metrics were evaluated for each one of the three situational awareness case studies
regarding the covered area(s) where the victim was believed to be located: victim position points
distributed in single, dual and uniform clusters (as discussed in Section 5.2.2). The metrics consisted
on the victim confirmation rate (i.e., fconf = true), the victim miss rate (i.e., fdtc = false), the UAV
collision rate (i.e., fcrash = true), the UAV navigation rate flying beyond the area limits (i.e., froi = true),
the occurrences where the aircraft followed a sub-optimal path, and the timeout rate (i.e., k > 480 steps,
or t ≥ 480 s). A summary of the collected metrics is shown in Table 3:

Table 3. Performance metrics for Hardware in the Loop (HIL) simulations (S) and real flight tests (FT),
where x̄W is the weighted average of the measured variables.

Belief Cluster Iterations Detections (%) Misses (%) Sub-Optimal Path (%) Timeout (%)

Single (S) 50 100.0 0.0 0.0 0.0
Single (FT) 7 85.7 14.3 0.0 0.0

Dual (S) 44 100.0 0.0 0.0 0.0
Dual (FT) 7 71.4 14.3 14.3 0.0

Uniform (S) 50 92.0 0.0 6.0 2.0
Uniform (FT) 9 88.9 0.0 0.0 11.1

x̄W (S) 144 97.2 0.0 2.1 0.7
x̄W (FT) 23 82.6 8.7 4.4 4.3
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Where “Detections” measures the instances where the victim was detected with ζ ≥ 0.7.
Otherwise, failed instances were either classified as “Misses” if ζ < 0.7, “Sub-optimal Path” if the UAV
got stuck in a patch that does not cover the victim’s location, or “Timeout” if the UAV consumed all
the flying time (k > 480) without detecting the victim.

Overall, the presented system achieved a victim confirmation rate for all the cluster belief configurations
of 97.2% in simulation and 82.6% in flight tests. For experiments with single clusters, a slight difference in the
detection confidence was found between simulation and flight tests. An increase on the setup complexity
by the victim silhouette, scene and camera conditions was attributed to lower victim detection
confidence values during real flight tests. Namely, the imperfect anthropomorphic properties of
the mannequin compared to its simulation counterpart and lower image quality from the RGB camera,
represented a cost in the performance of the computer vision module to detect a person. A similar
finding was discovered in tests with dual but not with uniform declared clusters. This behaviour
could be attributed to the bigger search space required to find the victim using uniform clusters than
with the former. In addition, the UAV was unable to detect a victim in 14.3% of the flight tests with
dual cluster declarations because of a sub-optimal UAV trajectory. This behaviour was also present
but less frequent in 6.0% of HIL simulation experiments under uniform cluster declaration. A few
timeout stopping conditions were also triggered in missions with uniform clusters because the UAV
kept navigating in unexplored areas after flying above and not detecting the mannequin. Lastly, none
of the experiments triggered terminal states caused by collisions or UAV trajectories violating the
flying area limits.

The most frequent trajectories generated by the UAV in experiments with single clusters are
displayed in Figure 10. A set of arrows drawn on top of the UAV path represent the actions taken at
every time step to clarify the influence of the decision-making module over the behaviour and stability
of the aircraft during the missions.

(a) (b)

Figure 10. Flight mission examples of most frequent types of UAV trajectories under a single belief
cluster. Orange splines represent the path of the UAV; the blue arrows are action commands per time
step; green blocks are the environment obstacles; the orange point-cloud is the UAV position belief;
the red point-cloud is the victim position belief; and the purple rectangle the camera’s Field of View
(FOV). (a) UAV motion policy which crosses two of the column-shaped obstacles. (b) UAV motion
policy which avoids crossing two of the column-shaped obstacles.

Simulation and flight tests with dual clusters evidenced just one type of generated trajectory as
opposed to the first case study, as shown in Figure 11. Positioning one of the clusters between two
of the environment obstacles caused the UAV to explore such area patch first (owing to be at a closer
distance than the cluster at the top). As expected, the UAV followed the same navigation route once it
cleared the first cluster as this strategy requires less time steps than alternative routes.
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(a) (b)

Figure 11. Flight mission example trajectory under two defined belief clusters. (a) UAV motion policy
status when it reached the first cluster. (b) UAV motion policy after clearing the first cluster and
reaching the second cluster.

The behaviour of the UAV with uniform clusters slightly differed compared to other case studies.
Even though the UAV executed motion policies following similar global trajectories as with the first
discussed case study (crossing and avoiding obstacles), a zigzag pattern was visualised as illustrated
in Figure 12.

(a) (b)

Figure 12. Example global trajectories followed by the UAV under a uniform belief cluster in flight
tests. (a) Motion policy that encourages the UAV to cross over the column obstacles. (b) Motion policy
that encourages the UAV that avoids crossing over the column obstacles.

For real flight tests where the victim was not detected, the traversed path by the UAV followed a
pattern to cover remaining unexplored areas until it reached its maximum endurance, as shown in
Figure 13.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Example traversed path in a real flight test if a victim is undetected under a uniform belief
cluster. (a) Traversed path at time step k = 30; (b) k = 55; (c) k = 75; (d) k = 105; (e) k = 150;
(f) k = 165.

During the data collection process through real flight tests, the UAV experienced small stability
problems in some runs, as seen in Figure 14. The issues altered the smoothness of the UAV trajectory
but did not cause any consequence for the mission goal of finding the victim.
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(a)

(b)

Figure 14. Stability anomalies on the traced UAV trajectory during real flight tests. (a) Noisy UAV
trajectory in a mission with single belief cluster. (b) Noisy UAV trajectory in a mission with dual
belief cluster.

Each one of the displayed arrows illustrate the action commands from the decision-making module
at every time step. The arrows indicate how the UAV was still capable of following a consistent motion
policy despite the added uncertainty by the aggressive motion response of the UAV. An analysis of
recorded flight logs suggests that these perturbations in the UAV motion were caused by a sub- optimal
performance of the FCU position controller. Specifically, the constant mounting and dismounting
of the UAV LiPo battery during real flight tests provoked unintentional balancing issues, which
may have altered the transition function of the UAV from which the flight controller was tuned by
default. A graphical comparison of the UAV position response between two sets of flights is shown
in Figures A1 and A2. The results suggest, however, that the system is robust enough to account for
uncertainties caused by position estimation errors from the UAV motion module and still accomplish
the flight mission.

An analysis of executed time steps to find the victim with a detection confidence ζ ≥ 0.7 was also
conducted to assess the performance of the system by analysing repeatability in the measurements
and gaps between HIL simulations and real flight tests. Box plots summarising the nature of collected
data are shown in Figure 15.

Experiments defined with a single belief cluster (Figure 15a) presented a median of 32 and 31
time steps in simulation and flight tests respectively. Tests with dual (Figure 15b) and uniform belief
clusters (Figure 15c) reported a higher variance with median values of 46.5 and 29 time steps, and 99.5
and 59.5 time steps respectively. The variance in the length of the whiskers between simulation and
flight tests in all the case studies was caused by the equations that define the UAV motion in Gazebo.
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Those functions approximate by default the motion response of a generic multi-rotor UAV rather than
the Holybro S500 frame utilised for this research.
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Figure 15. Data distribution of executed time steps by the POMDP solver until the victim was detected
with a confidence ζ ≥ 0.7 and position coordinate pv = (1.5,−1.4, 0.0). HIL simulations (S) are
indicated in blue and real flight tests (FT) in red. (a) Results under a single victim belief cluster.
(b) Results under two victim belief clusters. (c) Results under a uniform belief cluster.

Bigger top whiskers and several outliers were also present in the distribution of collected data.
These abnormal time step values and data asymmetry occurred as part of the proposed problem
formulation, where victim belief particles are repopulated in the flying area only if the UAV finishes
exploring the area of interest and is unable to find any victims. As a result, the UAV was prompted to
further explore again and iterate around the cluster area. Additional time steps were also registered
in situations where the UAV was able to detect a victim but with a confidence rate below the defined
threshold value. In these situations, the UAV was encouraged to take additional actions in order
to increase the confidence rate and confirm a detection. Some examples of recorded simulation test
outliers are shown in Figure 16.

(a) (b)

Figure 16. Cont.
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(c)

Figure 16. Anomalies on the amount of executed time steps in simulation. (a) Example trajectory with
repopulated single cluster. (b) Example trajectory for an initially defined dual cluster, repopulated after
low detection confidence values. (c) Example abnormal trajectory under a uniform cluster.

7. Discussion

The proposed system architecture represents a competitive approach in the domain of onboard
UAV decision-making under environment uncertainty and partial observability in GNSS-denied
environments. This research extends the contributions of Vanegas and Gonzalez [24] by running the
computer vision and decision-making modules onboard the UAV companion computer instead of using
an external workstation and having a strong dependency from communication modules to transfer and
process the data. Furthermore, the complexity for the target detection task was increased by detecting
an adult mannequin instead of predefined augmented vision markers. Similarly, results obtained
by Sandino et al. [40] are further enhanced by: (1) offering a more robust simulation environment
(PX4 flight controller and onboard computer in HIL) and a more comprehensive system evaluation
illustrating results in both simulation and hardware and; (2) extending the problem formulation
by incorporating detection errors from the computer vision module (through the modelling of the
detection confidence oζ in the problem formulation, covered in Section 4.4.5), rather than assuming
detections with null instances of false positives. Obtained results also suggest that the traced trajectories
by the UAV became smoother after including a concept of memory by recording previously explored
areas from the flying area and adding the reward rfov (defined in Section 4.4.4) in the reward function.

Overall, this study presents a flexible framework that provides scalability through portability
depending on the flight mission goals, provided sensors and run algorithms for vision and decision-
making. The mathematical formulation of the problem as a model-based POMDP brings enough
flexibility to expand the functionality of the system with other multi-rotor UAVs of variable size as
long as the dynamic model of the aerial platform and the environment are available to the researchers.
The problem formulation covered in Section 4.4 is not specific to the scope of the experimental design
of this paper and can be expanded to bigger surveying areas with more complex occupancy map
representations. In fact, the UAV motion and flying boundaries of the UAV and victim can be increased
without impacting the performance of the ABT solver, Octomap and TAPIR toolkits.

Despite the progress discussed in this paper, there are still several challenges which need to
be addressed in the future. First, the occupancy map was provided before flying the aircraft and
it was not updated mid-flight. Even though it is possible to reconstruct occupancy maps by using,
for example, existing building floor plans of the surveyed area, it might not be suitable to fly in
more complex environments with dynamic obstacles. Additionally, not updating the occupancy map
online constitutes a strong dependency on the local position estimation system (i.e., visual odometry
sensor). Indeed, the risk of the UAV colliding with other obstacles increases if position estimation
errors are high. Augmenting the proportion of the obstacles was an applied workaround during
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the data collection process. Under the assumption of operating with preloaded occupancy maps,
the system complexity was simplified by not including UAV actions such changes in its heading
direction. However, it is possible to either incorporate heading actions in the problem formulation
and disregard the backward, left and right action commands, or include additional sensors which
can provide enough sensing coverage around the UAV in future experiments. The use of one or
many depth cameras or a LiDAR sensor to update the occupancy map mid-flight might diminish the
likelihood of collisions, regardless of the error magnitude of the local position estimation algorithm.
Second, the off-the-shelf model to detect persons might not produce the expected performance at more
complex experiment setups. For instance, detections are likely to be poor when the person is visualised
in conditions from which the detector was not trained for such as debris occluding the person and if
the person is observed from other camera perspectives as the one shown in Figure 3b.

Previous research also indicates the convenience of using sensors to detect bio-signals from
humans, such as microphones for audio signals, thermal cameras, gas sensors and Doppler radars
for breathing and heart-beating signals respectively [54–56]. Bio-signals have also been proven to be
detected through the use of computer vision and RGB cameras as long as UAVs are positioned closed
enough to the victims [15]. Even though the employed MobileNet SSD detector is efficient enough
to distinguish the presence of persons regardless of their health conditions, the modularity design
presented in the system architecture allows adding other vision-based detectors without substantial
modifications, so that they could provide further valuable data to the decision-making module (in the
form of observations), UAV operators and SAR squads. Additional sensors such as thermal and depth
cameras can also be added to the UAV frame without altering the workflow of the system architecture.
Moreover, other decision-making algorithms could also be ported to the framework with ease, such as
model-free reinforcement learning, Observe–Orient–Decide–Act (OODA) loops, Bayesian networks,
etc. Nevertheless, a comparison study between the trade-offs of other decision-making algorithms
for UAV navigation under environment uncertainty should be reviewed in future research before
adapting them to the framework.

A successful implementation of the proposed system in real disaster events requires the examination
of various practical challenges, which include but are not limited to:

• The size of UAV, which may restrict the survey in very confined places and compromise the
integrity of the UAV and nearby victims, if any.

• Low lighting conditions, which might decrease the performance of the visual odometry system
and people/object detector.

• The UAV endurance, which could constrain SAR operations if the remote assessment of a
hazardous structure exceeds 20 min of flying time.

• Collisions, which may occur owing to the absence of propeller protectors or if victims make
accidental contact with the UAV.

• Chemical and electrical hazards present in the surveyed area, which may compromise electronic
circuits and sensors.

• Mishandling of LiPo batteries, which might provoke fire hazards if not isolated from impacts and
ignition sources.

An additional extension to the UAV frame could be the incorporation of a front-view camera,
which will aid the assessment and SAR logistics if physical intervention to the surveyed structure
is necessary.

8. Conclusions and Future Work

This paper presented a framework for automated UAV motion planning under target location
uncertainty in cluttered, GNSS-denied environments. The system architecture details the functionality
of system modules for unsupervised decision making onboard resource-constrained hardware
platforms such as small UAVs (MTOW ≤ 13.5 kg). The proposed approach is illustrated in the
SAR context by locating a victim in a simulated office building. The system is validated using HIL
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simulations to ensure a high-fidelity setup against real-world conditions; and real flight tests using a
multi-rotor UAV frame and vision-based sensors for SLAM and collection of system observations.

The problem is mathematically formulated as a POMDP, whose probabilistic model allows
representing uncertainty with probability distributions. This approach allows defining potential
locations of the victim with normal and uniform probabilistic distributions (and, thus, model victim
location uncertainty). The performance of the UAV was evaluated under three case studies of
situational awareness; a single cluster of victim coordinates covering a small patch from the surveyed
environment; two clusters of victim coordinates covering two areas of interest; and a cluster of victim
coordinates uniformly distributed across the flying area. Incorporating the ABT algorithm as the
POMDP solver does not only provide the system with a UAV motion policy in seconds prior to any
flight mission, but it also improves previously computed policies mid-flight by modelling potential
changes in the environment and levels of uncertainty based on possible future actions in its internal
search tree. This feature allows the UAV to optimise its behaviour in various scenarios such as
preserving a constant path under unstable UAV motion response or holding its position while more
episodes and internal simulations are generated to execute a better policy. Ultimately, the system
ensures rapid monitoring and personal safety by letting the UAV to explore the area without UAV
operator intervention.

The primary contributions of this paper are:

1. A UAV framework for autonomous navigation under target detection uncertainty. The computer
vision and decision-making modules run onboard resource-constrained hardware (i.e., a companion
computer mounted to the UAV), discarding the dependency of the UAV from third-party systems
to perform its motion policy calculations. The framework offers enough flexibility to expand or
adapt the functionality of the system by using other vision or light-based sensors, UAV frames and
onboard computing hardware.

2. An approach to handle target detection uncertainty from false positive detection instances through
the concept of detection confidence and the definition of a confirmed detection in the POMDP
problem formulation.

3. A detailed case study of the implementation of the system modules for a simulated land
SAR mission in GNSS-denied environments, which allows integrating the flight controller and
companion computer under HIL simulations to bridge the gap between simulations and real
flight tests.

A recorded system demonstration can be observed using the following link: https://youtu.be/
fEWVd-GC7Fs.

Future avenues for research include evaluation of the performance of the system with an unknown
environment map, dynamic obstacles and the robustness of the POMDP solver under environment
changes by updating the occupancy map mid-flight. An additional system performance analysis by
locating the victim at various locations and finding multiple victims might help to understand the
limits of the proposed framework. A study comparing the performance between the ABT solver and
other model-based POMDP solvers, and other decision-making algorithms should also be conducted.
Evaluating the performance of the UAV using an object detector tuned with a domain-specific dataset
(i.e., footage of people in distress and at various occlusion levels) will aid the understanding of the
UAV capacity to detect victims under more challenging scenarios. Incorporating widely used sensors
for land SAR such as thermal cameras as well as processing camera frames at variable gimbal angle
configurations is expected to be conducted in future system implementations.
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Abbreviations

The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
ABT Augmented Belief Trees
D-CNN Deep Convolutional Neural Network
FCU Flight Controller Unit
FOV Field of View
FPS Frames per Second
GNSS Global Navigation Satellite System
HIL Hardware in the Loop
LiDAR Light Detection and Ranging
MDP Markov Decision Process
MTOW Maximum Take-off Weight
OS Operating System
POMCP Partially Observable Monte Carlo Planning
POMDP Partially Observable Markov Decision Process
RGB Red, Green, Blue
ROI Region of Interest
ROS Robot Operating System
SAR Search and Rescue
SIL Software in the Loop
SLAM Simultaneous Localisation and Mapping
SSD Single Shot Detector
TAPIR Toolkit for approximating and Adapting POMDP solutions In Real time
UAV Unmanned Aerial Vehicle
VPU Vision Processing Unit

Appendix A

Figures A1 and A2 show an example UAV position response comparison between a smooth and a
noisy traversed path.
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Figure A1. UAV position response for a smooth traversed path for (a) x and (b) y axes.
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Figure A2. UAV position response for a noisy traversed path for (a) x and (b) y axes.
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