Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Christian Mätzler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3785 KiB  
Article
Integrated Water Vapor during Rain and Rain-Free Conditions above the Swiss Plateau
by Klemens Hocke, Leonie Bernet, Wenyue Wang, Christian Mätzler, Maxime Hervo and Alexander Haefele
Climate 2021, 9(7), 105; https://doi.org/10.3390/cli9070105 - 25 Jun 2021
Cited by 5 | Viewed by 3958
Abstract
Water vapor column density, or vertically-integrated water vapor (IWV), is monitored by ground-based microwave radiometers (MWR) and ground-based receivers of the Global Navigation Satellite System (GNSS). For rain periods, the retrieval of IWV from GNSS Zenith Wet Delay (ZWD) neglects the atmospheric propagation [...] Read more.
Water vapor column density, or vertically-integrated water vapor (IWV), is monitored by ground-based microwave radiometers (MWR) and ground-based receivers of the Global Navigation Satellite System (GNSS). For rain periods, the retrieval of IWV from GNSS Zenith Wet Delay (ZWD) neglects the atmospheric propagation delay of the GNSS signal by rain droplets. Similarly, it is difficult for ground-based dual-frequency single-polarisation microwave radiometers to separate the microwave emission of water vapor and cloud droplets from the rather strong microwave emission of rain. For ground-based microwave radiometry at Bern (Switzerland), we take the approach that IWV during rain is derived from linearly interpolated opacities before and after the rain period. The intermittent rain periods often appear as spikes in the time series of integrated liquid water (ILW) and are indicated by ILW ≥ 0.4 mm. In the present study, we assume that IWV measurements from radiosondes are not affected by rain. We intercompare the climatologies of IWV(rain), IWV(no rain), and IWV(all) obtained by radiosonde, ground-based GNSS atmosphere sounding, ground-based MWR, and ECMWF reanalysis (ERA5) at Payerne and Bern in Switzerland. In all seasons, IWV(rain) is 3.75 to 5.94 mm greater than IWV(no rain). The mean IWV differences between GNSS and radiosonde at Payerne are less than 0.26 mm. The datasets at Payerne show a better agreement than the datasets at Bern. However, the MWR at Bern agrees with the radiosonde at Payerne within 0.41 mm for IWV(rain) and 0.02 mm for IWV(no rain). Using the GNSS and rain gauge measurements at Payerne, we find that IWV(rain) increases with increase of the precipitation rate during summer as well as during winter. IWV(rain) above the Swiss Plateau is quite well estimated by GNSS and MWR though the standard retrievals are limited or hampered during rain periods. Full article
(This article belongs to the Special Issue Climate Change Impacts at Various Geographical Scales)
Show Figures

Figure 1

16 pages, 4871 KiB  
Article
Physical Retrieval of Rain Rate from Ground-Based Microwave Radiometry
by Wenyue Wang, Klemens Hocke and Christian Mätzler
Remote Sens. 2021, 13(11), 2217; https://doi.org/10.3390/rs13112217 - 5 Jun 2021
Cited by 15 | Viewed by 3593
Abstract
Because of its clear physical meaning, physical methods are more often used for space-borne microwave radiometers to retrieve the rain rate, but they are rarely used for ground-based microwave radiometers that are very sensitive to rainfall. In this article, an opacity physical retrieval [...] Read more.
Because of its clear physical meaning, physical methods are more often used for space-borne microwave radiometers to retrieve the rain rate, but they are rarely used for ground-based microwave radiometers that are very sensitive to rainfall. In this article, an opacity physical retrieval method is implemented to retrieve the rain rate (denoted as Opa-RR) using ground-based microwave radiometer data (21.4 and 31.5 GHz) of the tropospheric water radiometer (TROWARA) at Bern, Switzerland from 2005 to 2019. The Opa-RR firstly establishes a direct connection between the rain rate and the enhanced atmospheric opacity during rain, then iteratively adjusts the rain effective temperature to determine the rain opacity, based on the radiative transfer equation, and finally estimates the rain rate. These estimations are compared with the available simultaneous rain rate derived from rain gauge data and reanalysis data (ERA5). The results and the intercomparison demonstrate that during moderate rains and at the 31 GHz channel, the Opa-RR method was close to the actual situation and capable of the rain rate estimation. In addition, the Opa-RR method can well derive the changes in cumulative rain over time (day, month, and year), and the monthly rain rate estimation is superior, with the rain gauge validated R2 and the root-mean-square error value of 0.77 and 22.46 mm/month, respectively. Compared with ERA5, Opa-RR at 31GHz achieves a competitive performance. Full article
(This article belongs to the Special Issue Remote Sensing for Precipitation Retrievals)
Show Figures

Figure 1

24 pages, 2678 KiB  
Article
“Tau-Omega”- and Two-Stream Emission Models Used for Passive L-Band Retrievals: Application to Close-Range Measurements over a Forest
by Mike Schwank, Reza Naderpour and Christian Mätzler
Remote Sens. 2018, 10(12), 1868; https://doi.org/10.3390/rs10121868 - 22 Nov 2018
Cited by 44 | Viewed by 5714
Abstract
Microwave Emission Models (EM) are used in retrieval algorithms to estimate geophysical state parameters such as soil Water Content ( W C ) and vegetation optical depth ( τ ), from brightness temperatures T B p , θ measured at nadir angles [...] Read more.
Microwave Emission Models (EM) are used in retrieval algorithms to estimate geophysical state parameters such as soil Water Content ( W C ) and vegetation optical depth ( τ ), from brightness temperatures T B p , θ measured at nadir angles θ at Horizontal and Vertical polarizations p = { H , V } . An EM adequate for implementation in a retrieval algorithm must capture the responses of T B p , θ to the retrieval parameters, and the EM parameters must be experimentally accessible and representative of the measurement footprint. The objective of this study is to explore the benefits of the multiple-scattering Two-Stream (2S) EM over the “Tau-Omega” (TO) EM considered as the “reference” to retrieve W C and τ from L-band T B p , θ . For sparse and low-scattering vegetation T B , E M p , θ simulated with E M = { TO ,   2 S } converge. This is not the case for dense and strongly scattering vegetation. Two-Parameter (2P) retrievals 2 P R C = ( W C R C , τ R C ) are computed from elevation scans T B p , θ j = T B , TO p , θ j synthesized with TO EM and from T B p , θ j measured from a tower within a deciduous forest. Retrieval Configurations ( R C ) employ either E M = TO or E M = 2 S and assume fixed scattering albedos. W C R C achieved with the 2S RC is marginally lower ( ~ 1   m 3 m 3 ) than if achieved with the “reference” TO RC, while τ R C is reduced considerably when using 2S EM instead of TO EM. Our study outlines a number of advantages of the 2S EM over the TO EM currently implemented in the operational SMOS and SMAP retrieval algorithms. Full article
(This article belongs to the Special Issue Soil Moisture Remote Sensing Across Scales)
Show Figures

Graphical abstract

28 pages, 10174 KiB  
Article
Davos-Laret Remote Sensing Field Laboratory: 2016/2017 Winter Season L-Band Measurements Data-Processing and Analysis
by Reza Naderpour, Mike Schwank and Christian Mätzler
Remote Sens. 2017, 9(11), 1185; https://doi.org/10.3390/rs9111185 - 21 Nov 2017
Cited by 29 | Viewed by 5949
Abstract
The L-band radiometry data and in-situ ground and snow measurements performed during the 2016/2017 winter campaign at the Davos-Laret remote sensing field laboratory are presented and discussed. An improved version of the procedure for the computation of L-band brightness temperatures from ELBARA radiometer [...] Read more.
The L-band radiometry data and in-situ ground and snow measurements performed during the 2016/2017 winter campaign at the Davos-Laret remote sensing field laboratory are presented and discussed. An improved version of the procedure for the computation of L-band brightness temperatures from ELBARA radiometer raw data is introduced. This procedure includes a thorough explanation of the calibration and filtering including a refined radio frequency interference (RFI) mitigation approach. This new mitigation approach not only performs better than conventional “normality” tests (kurtosis and skewness) but also allows for the quantification of measurement uncertainty introduced by non-thermal noise contributions. The brightness temperatures of natural snow covered areas and areas with a reflector beneath the snow are simulated for varying amounts of snow liquid water content distributed across the snow profile. Both measured and simulated brightness temperatures emanating from natural snow covered areas and areas with a reflector beneath the snow reveal noticeable sensitivity with respect to snow liquid water. This indicates the possibility of estimating snow liquid water using L-band radiometry. It is also shown that distinct daily increases in brightness temperatures measured over the areas with the reflector placed on the ground indicate the onset of the snow melting season, also known as “early-spring snow”. Full article
(This article belongs to the Special Issue Snow Remote Sensing)
Show Figures

Figure 1

16 pages, 8571 KiB  
Article
Diurnal Cycle in Atmospheric Water over Switzerland
by Klemens Hocke, Francisco Navas-Guzmán, Lorena Moreira, Leonie Bernet and Christian Mätzler
Remote Sens. 2017, 9(9), 909; https://doi.org/10.3390/rs9090909 - 31 Aug 2017
Cited by 8 | Viewed by 5699
Abstract
The TROpospheric WAter RAdiometer (TROWARA) is a ground-based microwave radiometer with an additional infrared channel observing atmospheric water parameters in Bern, Switzerland. TROWARA measures with nearly all-weather capability during day- and nighttime with a high temporal resolution (about 10 s). Using the almost [...] Read more.
The TROpospheric WAter RAdiometer (TROWARA) is a ground-based microwave radiometer with an additional infrared channel observing atmospheric water parameters in Bern, Switzerland. TROWARA measures with nearly all-weather capability during day- and nighttime with a high temporal resolution (about 10 s). Using the almost complete data set from 2004 to 2016, we derive and discuss the diurnal cycles in cloud fraction (CF), integrated liquid water (ILW) and integrated water vapour (IWV) for different seasons and the annual mean. The amplitude of the mean diurnal cycle in IWV is 0.41 kg/m 2 . The sub-daily minimum of IWV is at 10:00 LT while the maximum of IWV occurs at 19:00 LT. The relative amplitudes of the diurnal cycle in ILW are up to 25% in October, November and January, which is possibly related to a breaking up of the cloud layer at 10:00 LT. The minimum of ILW occurs at 12:00 LT, which is due to cloud solar absorption. In case of cloud fraction of liquid water clouds, maximal values of +10% are reached at 07:00 LT and then a decrease starts towards the minimum of −10%, which is reached at 16:00 LT in autumn. This breakup of cloud layers in the late morning and early afternoon hours seems to be typical for the weather in Bern in autumn. Finally, the diurnal cycle in rain fraction is analysed, which shows an increase of a few percent in the late afternoon hours during summer. Full article
(This article belongs to the Special Issue Earth Observations for Addressing Global Challenges)
Show Figures

Graphical abstract

9 pages, 6856 KiB  
Article
Cloud Fraction of Liquid Water Clouds above Switzerland over the Last 12 Years
by Klemens Hocke, Francisco Navas Guzmán, Federico Cossu and Christian Mätzler
Climate 2016, 4(4), 48; https://doi.org/10.3390/cli4040048 - 22 Sep 2016
Cited by 5 | Viewed by 37085
Abstract
Cloud fraction (CF) plays a crucial role in the Earth’s radiative energy budget and thus in the climate. Reliable long-term measurements of CF are rare. The ground-based TROpospheric WAter RAdiometer (TROWARA) at Bern, Switzerland continuously measures integrated liquid water and infrared brightness temperature [...] Read more.
Cloud fraction (CF) plays a crucial role in the Earth’s radiative energy budget and thus in the climate. Reliable long-term measurements of CF are rare. The ground-based TROpospheric WAter RAdiometer (TROWARA) at Bern, Switzerland continuously measures integrated liquid water and infrared brightness temperature with a time resolution of 6–11 s since 2004. The view direction of TROWARA is constant (zenith angle 50 ), and all radiometer channels see the same volume of the atmosphere. TROWARA is sensitive to liquid water clouds while the microwave signal of ice clouds is negligible. By means of the measurement data we derived CF of thin liquid water clouds (1); thick supercooled liquid water clouds (2); thick warm liquid water clouds (3) and all liquid water clouds (4). The article presents the time series and seasonal climatologies of these four classes of CF. CF of thick supercooled liquid water clouds is larger than 15% from November to March. A significant negative trend of 0 . 29 % ± 0 . 10 %/yr is found for CF of thin liquid water clouds. No trends are found for the other classes (2, 3, 4) since their strong natural variability impedes a significant trend. However, CF of warm liquid water clouds increased by about + 0 . 51 % ± 0 . 27 %/yr from 2004 to 2015. Finally, we performed a Mann-Kendall analysis of seasonal trends which gave several significant trends in the classes 1, 2 and 3. Full article
Show Figures

Figure 1

33 pages, 8835 KiB  
Article
Relief Effects on the L-Band Emission of a Bare Soil
by Ingo Völksch, Mike Schwank, Manfred Stähli and Christian Mätzler
Remote Sens. 2015, 7(11), 14327-14359; https://doi.org/10.3390/rs71114327 - 29 Oct 2015
Cited by 7 | Viewed by 4798
Abstract
In a combined experimental and model study, we investigated effects of surface topography (relief) on the thermal L-band emission of a sandy soil. To this end, brightness temperatures of two adjacent footprint areas were measured quasi-simultaneously with an L-band radiometer at the observation [...] Read more.
In a combined experimental and model study, we investigated effects of surface topography (relief) on the thermal L-band emission of a sandy soil. To this end, brightness temperatures of two adjacent footprint areas were measured quasi-simultaneously with an L-band radiometer at the observation angle of 55° relative to nadir for one year. One footprint featured a distinct relief in the form of erosion gullies with steep slopes, whereas the surface of the second footprint was smooth. Additionally, hydrometeorological variables, in situ soil moisture and temperature were measured, and digital terrain models of the two scenes were derived from terrestrial laser scanning. A facet model, taking into account the topography of the footprint surfaces as well as the antenna’s directivity, was developed and brightness temperatures of both footprints were simulated based on the hydrometeorological and in situ soil data. We found that brightness temperatures of the footprint with the distinct surface relief were increased at horizontal and decreased at vertical polarization with respect to those of the plane footprint. The simulations showed that this is mainly due to modifications of local (facet) observation angles and due to polarization mixing caused by the pronounced relief. Measurements furthermore revealed that brightness temperatures of both areas respond differently to changing ambient conditions indicating differences in their hydrological properties. Full article
Show Figures

Graphical abstract

17 pages, 1228 KiB  
Article
A 10-Year Cloud Fraction Climatology of Liquid Water Clouds over Bern Observed by a Ground-Based Microwave Radiometer
by Federico Cossu, Klemens Hocke and Christian Mätzler
Remote Sens. 2015, 7(6), 7768-7784; https://doi.org/10.3390/rs70607768 - 11 Jun 2015
Cited by 14 | Viewed by 6203
Abstract
Cloud fraction (CF) is known as the dominant modulator of Earth’s radiative fluxes. Ground-based CF observations are useful to characterize the cloudiness of a specific site and are valuable for comparison with satellite observations and numerical models. We present for the first time [...] Read more.
Cloud fraction (CF) is known as the dominant modulator of Earth’s radiative fluxes. Ground-based CF observations are useful to characterize the cloudiness of a specific site and are valuable for comparison with satellite observations and numerical models. We present for the first time CF statistics (relative to liquid clouds only) for Bern, Switzerland, derived from the observations of a ground-based microwave radiometer. CF is derived with a new method involving the analysis of the integrated liquid water distribution measured by the radiometer. The 10-year analyzed period (2004–2013) allowed us to compute a CF climatology for Bern, showing a maximum CF of 60.9% in winter and a minimum CF of 42.0% in summer. The CF monthly anomalies are identified with respect to the climatological mean values, and they are confirmed through MeteoSwiss yearly climatological bulletins. The CF monthly mean variations are similar to the observations taken at another Swiss location, Payerne, suggesting a large-scale correlation between different sites on the Swiss Plateau. A CF diurnal cycle is also computed, and large intraseasonal variations are found. The overall mean CF diurnal cycle, however, shows a typical sinusoidal cycle, with higher values in the morning and lower values in the afternoon. Full article
(This article belongs to the Special Issue Aerosol and Cloud Remote Sensing)
Show Figures

Graphical abstract

29 pages, 1202 KiB  
Article
ELBARA II, an L-Band Radiometer System for Soil Moisture Research
by Mike Schwank, Andreas Wiesmann, Charles Werner, Christian Mätzler, Daniel Weber, Axel Murk, Ingo Völksch and Urs Wegmüller
Sensors 2010, 10(1), 584-612; https://doi.org/10.3390/s100100584 - 13 Jan 2010
Cited by 88 | Viewed by 15167
Abstract
L-band (1–2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during [...] Read more.
L-band (1–2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Back to TopTop