Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Authors = Barbara Golińska

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2759 KiB  
Article
Innovative Application of Fermented Red Bean Seeds in Constructing Foods with Increased Biological Activity
by Małgorzata Gumienna, Małgorzata Lasik-Kurdyś, Krystyna Szymandera-Buszka, Barbara Górna-Szweda, Dorota Walkowiak-Tomczak and Anna Jędrusek-Golińska
Foods 2025, 14(1), 88; https://doi.org/10.3390/foods14010088 - 1 Jan 2025
Cited by 2 | Viewed by 1538
Abstract
Legumes are an interesting matrix for food production. The aim of this study was to develop functional plant-based snacks using fermented red bean (RBB) seeds enriched with the following additives: marjoram—RBM (2%); carrot—RBC (30%); and red beetroot—RBRB (15%). In the process of constructing [...] Read more.
Legumes are an interesting matrix for food production. The aim of this study was to develop functional plant-based snacks using fermented red bean (RBB) seeds enriched with the following additives: marjoram—RBM (2%); carrot—RBC (30%); and red beetroot—RBRB (15%). In the process of constructing the snacks, the focus was on the maximum use of the raw material, including aquafaba, to improve nutritional properties, sensory acceptability, and biological activity. The chemical composition, protein digestibility, antioxidant activity, and phenolic content were analyzed. In addition, the effect of the in vitro digestion process on biologically active compounds and their interactions with intestinal microflora was analyzed. Sensory analysis and consumer evaluation were performed. It was found that fermentation with lactic acid bacteria increased the content of total protein (by 2%), reducing the presence of substances (by 8%) and phenolic compounds (by 13%) in red bean seeds. Snacks with marjoram (RBM) showed the highest antioxidant activity (increase by 42%) and content of polyphenolic compounds (increase by 25%) compared to the basic variant (RBB). During digestion, the content of phenolic compounds and antioxidant activity reached the highest values in the last section of the digestive tract, i.e., in the large intestine, with RBM achieving the best results (5.61 mg GAE/g and 28.82 mg TE/g). The snack variants with red beetroot (RBRB) and marjoram (RBM) were rated the best by consumers. The results obtained confirm that the obtained snacks can be innovative products with health-promoting properties, and marjoram turned out to improve their properties, including antibacterial ones. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

19 pages, 4883 KiB  
Article
Structural Characterization and Bioactivity of a Titanium(IV)-Oxo Complex Stabilized by Mandelate Ligands
by Barbara Kubiak, Tadeusz Muzioł, Grzegorz Wrzeszcz, Aleksandra Radtke, Patrycja Golińska, Tomasz Jędrzejewski, Sylwia Wrotek and Piotr Piszczek
Molecules 2024, 29(8), 1736; https://doi.org/10.3390/molecules29081736 - 11 Apr 2024
Cited by 2 | Viewed by 2035
Abstract
Research on titanium-oxo complexes (TOCs) is usually focused on their structure and photocatalytic properties. Findings from these investigations further sparked our interest in exploring their potential biological activities. In this study, we focused on the synthesis and structure of a compound with the [...] Read more.
Research on titanium-oxo complexes (TOCs) is usually focused on their structure and photocatalytic properties. Findings from these investigations further sparked our interest in exploring their potential biological activities. In this study, we focused on the synthesis and structure of a compound with the general formula [Ti8O2(OiPr)20(man)4] (1), which was isolated from the reaction mixture of titanium(IV) isopropoxide with mandelic acid (Hman) in a molar ratio of 4:1. The structure (1) was determined using single-crystal X-ray diffraction, while spectroscopic studies provided insights into its physicochemical properties. To assess the potential practical applications of (1), its microcrystals were incorporated into a polymethyl methacrylate (PMMA) matrix, yielding composite materials of the type PMMA + (1) (2 wt.%, 5 wt.%, 10 wt.%, and 20 wt.%). The next stage of our research involved the evaluation of the antimicrobial activity of the obtained materials. The investigations performed demonstrated the antimicrobial activity of pure (1) and its composites (PMMA + (1)) against both Gram-positive and Gram-negative strains. Furthermore, MTT tests conducted on the L929 murine fibroblast cell line confirmed the lack of cytotoxicity of these composites. Our study identified (1) as a promising antimicrobial agent, which is also may be use for producing composite coatings. Full article
Show Figures

Graphical abstract

21 pages, 3543 KiB  
Article
Photocatalytic and Antimicrobial Activity of Titanium(IV)-Oxo Clusters of Different Core Structure
by Barbara Kubiak, Piotr Piszczek, Aleksandra Radtke, Tadeusz Muzioł, Grzegorz Wrzeszcz and Patrycja Golińska
Crystals 2023, 13(7), 998; https://doi.org/10.3390/cryst13070998 - 22 Jun 2023
Cited by 6 | Viewed by 1868
Abstract
The purpose of this paper is to assess the relationship between the core architecture of titanium(IV)-oxo complexes (TOCs) known as {TiaOb} and their photocatalytic and antimicrobial activity. The following TOCs: [Ti6O4(OiBu)8(O [...] Read more.
The purpose of this paper is to assess the relationship between the core architecture of titanium(IV)-oxo complexes (TOCs) known as {TiaOb} and their photocatalytic and antimicrobial activity. The following TOCs: [Ti6O4(OiBu)8(O2C13H9)8] · 2(CH3)2CO (1), [Ti6O6(OiBu)6(O2C13H9)6] (2), [Ti6O6(OiBu)6(O2C13H9)6] (3), [Ti3O(OiPr)8(O2C13H9)2] (4), and [Ti4O2(OiBu)10(O2C13H9)2] (5), where -O2C13H9represents 9-fluorene-carboxylate ligands, werestudied to investigate thiseffect. The structures of (1)–(5) were confirmed using single-crystal X-ray diffraction and spectroscopic methods. Since TOCs can be sensitive to hydrolysis processes, their photocatalytic and antimicrobial activity was evaluated after dispersing them in a polymer matrix, which acted as a protective agent against the aquatic environment. The results revealed that the photocatalytic activity of the studied TOCs follows the trend (2) > (5) > (4) > (1) in both the UV and visible ranges. All studied oxo complexes exhibited strong antibacterial activity against Gram-positive strains and weaker activity against Gram-negative strains. The proposed mechanism of the antimicrobial activity of TOCs assumes that this effect is associated with the generation of reactive oxygen species (ROS) on the surface of composite samples. Samples of PMMA + (1) 10 wt.% and PMMA + (5) 20 wt.%, in which both O and O2 paramagnetic species were observed in the electron paramagnetic spectroscopy (EPR) spectra, demonstrated the highest antimicrobial activity. Full article
(This article belongs to the Special Issue Metal Oxides: Crystal Structure, Synthesis and Characterization)
Show Figures

Figure 1

14 pages, 679 KiB  
Review
Virtual Fencing Technology for Cattle Management in the Pasture Feeding System—A Review
by Piotr Goliński, Patrycja Sobolewska, Barbara Stefańska and Barbara Golińska
Agriculture 2023, 13(1), 91; https://doi.org/10.3390/agriculture13010091 - 29 Dec 2022
Cited by 40 | Viewed by 12947
Abstract
Maximizing annual pasture consumption without negatively impacting individual cow performance is of great importance in grass-based dairy and beef systems due to pasture being the most cost-effective nutrient source. However, the disadvantages of conventional and electric fencing include material and labor costs and [...] Read more.
Maximizing annual pasture consumption without negatively impacting individual cow performance is of great importance in grass-based dairy and beef systems due to pasture being the most cost-effective nutrient source. However, the disadvantages of conventional and electric fencing include material and labor costs and increased manual labor. Virtual fencing has been developed and evaluated for almost two decades. The evolution of precision livestock farming, specifically virtual fencing, presents new opportunities for maximizing the utilization of available pasture land. Virtual fencing technology decreases the labor involved in physical fencing, provides greater adaptability to changes in pasture conditions, increases precision and efficiency, and offers additional flexibility in grazing management practices. However, that innovative technology should be further developed, and improvements should include decreasing the total costs of the system and increasing its application to other technological groups of ruminants, e.g., suckler cows with calves, increasing the efficiency of the system operation in large areas and a larger number of animals. Recent advancements in electronic communication and device (i.e., collar) design hold the potential to significantly enhance the effectiveness of the technology while also reducing costs. However, it is necessary to conduct a further evaluation to determine their utility in precision agricultural systems. This review paper aims to present an innovative concept of virtual fencing technology for pastures, compare currently available systems of this type, and indicate areas where further research and development should be carried out using Internet of Things (IoT) systems. Full article
Show Figures

Figure 1

18 pages, 16140 KiB  
Article
Novel Dicarboximide BK124.1 Breaks Multidrug Resistance and Shows Anticancer Efficacy in Chronic Myeloid Leukemia Preclinical Models and Patients’ CD34+/CD38 Leukemia Stem Cells
by Iga Stukan, Marek Gryzik, Grażyna Hoser, Andrew Want, Wioleta Grabowska-Pyrzewicz, Mikolaj Zdioruk, Mariola Napiórkowska, Marcin Cieślak, Karolina Królewska-Golińska, Barbara Nawrot, Grzegorz Basak and Urszula Wojda
Cancers 2022, 14(15), 3641; https://doi.org/10.3390/cancers14153641 - 27 Jul 2022
Cited by 3 | Viewed by 3150
Abstract
The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel [...] Read more.
The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients’ stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 μM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38 subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs. Full article
(This article belongs to the Collection Drug Resistance and Novel Therapies in Cancers)
Show Figures

Graphical abstract

20 pages, 5152 KiB  
Article
The Composites of PCL and Tetranuclear Titanium(IV)-oxo Complexes as Materials Exhibiting the Photocatalytic and the Antimicrobial Activity
by Barbara Kubiak, Aleksandra Radtke, Adrian Topolski, Grzegorz Wrzeszcz, Patrycja Golińska, Ewelina Kaszkowiak, Michał Sobota, Jakub Włodarczyk, Mateusz Stojko and Piotr Piszczek
Int. J. Mol. Sci. 2021, 22(13), 7021; https://doi.org/10.3390/ijms22137021 - 29 Jun 2021
Cited by 11 | Viewed by 2695
Abstract
Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. [...] Read more.
Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity. TOCs, of the general formula [Ti4O2(OiBu)10(O2CR’)2] (R’ = PhNH2 (1), C13H9 (2)) were synthesized as a result of the direct reaction of titanium(IV) isobutoxide and 4-aminobenzoic acid or 9-fluorenecarboxylic acid. The microcrystalline powders of (1) and (2), whose structures were confirmed by infrared (IR) and Raman spectroscopy, were dispersed in PCL matrixes. In this way, the composites PCL + nTOCs (n = 5 and 20 wt.%) were produced. The structure and physicochemical properties were determined on the basis of Raman microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electron paramagnetic resonance spectroscopy (EPR), and UV–Vis diffuse reflectance spectroscopy (DRS). The degree of TOCs distribution in the polymer matrix was monitored by scanning electron microscopy (SEM). The addition of TOCs micro grains into the PCL matrix only slightly changed the thermal and mechanical properties of the composite compared to the pure PCL. Among the investigated PCL + TOCs systems, promising antibacterial properties were confirmed for samples of PCL + n(2) (n = 5, 20 wt.%) composites, which simultaneously revealed the best photocatalytic activity in the visible range. Full article
Show Figures

Graphical abstract

23 pages, 2733 KiB  
Article
New Succinimides with Potent Anticancer Activity: Synthesis, Activation of Stress Signaling Pathways and Characterization of Apoptosis in Leukemia and Cervical Cancer Cells
by Marcin Cieślak, Mariola Napiórkowska, Julia Kaźmierczak-Barańska, Karolina Królewska-Golińska, Anna Hawrył, Iwona Wybrańska and Barbara Nawrot
Int. J. Mol. Sci. 2021, 22(9), 4318; https://doi.org/10.3390/ijms22094318 - 21 Apr 2021
Cited by 14 | Viewed by 2722
Abstract
Based on previously identified dicarboximides with significant anticancer and immunomodulatory activities, a series of 26 new derivatives were designed and synthesized by the Diels–Alder reaction between appropriate diene and maleimide or hydroxymaleimide moieties. The resulting imides were functionalized with alkanolamine or alkylamine side [...] Read more.
Based on previously identified dicarboximides with significant anticancer and immunomodulatory activities, a series of 26 new derivatives were designed and synthesized by the Diels–Alder reaction between appropriate diene and maleimide or hydroxymaleimide moieties. The resulting imides were functionalized with alkanolamine or alkylamine side chains and subsequently converted to their hydrochlorides. The structures of the obtained compounds were confirmed by 1H and 13C NMR and by ESI MS spectral analysis. Their cytotoxicity was evaluated in human leukemia (K562, MOLT4), cervical cancer (HeLa), and normal endothelial cells (HUVEC). The majority of derivatives exhibited high to moderate cytotoxicity and induced apoptosis in K562 cells. Microarray gene profiling demonstrated upregulation of proapoptotic genes involved in receptor-mediated and mitochondrial cell death pathways as well as antiapoptotic genes involved in NF-kB signaling. Selected dicarboximides activated JNK and p38 kinases in leukemia cells, suggesting that MAPKs may be involved in the regulation of apoptosis. The tested dicarboximides bind to DNA as assessed by a plasmid DNA cleavage protection assay. The selected dicarboximides offer new scaffolds for further development as anticancer drugs. Full article
Show Figures

Figure 1

18 pages, 3072 KiB  
Article
Oxo-Titanium(IV) Complex/Polymer Composites—Synthesis, Spectroscopic Characterization and Antimicrobial Activity Test
by Piotr Piszczek, Barbara Kubiak, Patrycja Golińska and Aleksandra Radtke
Int. J. Mol. Sci. 2020, 21(24), 9663; https://doi.org/10.3390/ijms21249663 - 18 Dec 2020
Cited by 8 | Viewed by 3037
Abstract
The emergence of a large number of bacterial strains resistant to many drugs or disinfectants currently used contributed to the search of new, more effective antimicrobial agents. In the presented paper, we assessed the microbiocidal activity of tri- and tetranuclear oxo-titanium(IV) complexes (TOCs), [...] Read more.
The emergence of a large number of bacterial strains resistant to many drugs or disinfectants currently used contributed to the search of new, more effective antimicrobial agents. In the presented paper, we assessed the microbiocidal activity of tri- and tetranuclear oxo-titanium(IV) complexes (TOCs), which were dispersed in the poly(methyl methacrylate) (PMMA) matrix. The TOCs were synthesized in reaction to Ti(OR)4 (R = iPr, iBu) and HO2CR’ (R’ = 4-PhNH2 and 4-PhOH) in a 4:1 molar ratio at room temperature and in Ar atmosphere. The structure of isolated oxo-complexes was confirmed by IR and Raman spectroscopy and mass spectrometry. The antimicrobial activity of the produced composites (PMMA + TOCs) was estimated against Gram-positive (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) and Gram-negative (Escherichia coli ATCC 8739 and E. coli ATCC 25922) bacteria and yeasts of Candida albicans ATCC 10231. All produced composites showed biocidal activity against the bacteria. Composites containing {Ti4O2} cores and the {Ti3O} core stabilized by the 4-hydroxybenzoic ligand showed also high activity against yeasts. The results of investigations carried out suggest that produced (PMMA + TOCs) composites, due to their microbiocidal activity, could find an application in the elimination of microbial contaminations in various fields of our lives. Full article
(This article belongs to the Special Issue Antimicrobial Materials with Medical Applications)
Show Figures

Graphical abstract

29 pages, 7079 KiB  
Article
New Thalidomide-Resembling Dicarboximides Target ABC50 Protein and Show Antileukemic and Immunomodulatory Activities
by Marcin Cieślak, Julia Kaźmierczak-Barańska, Karolina Królewska-Golińska, Mariola Napiórkowska, Iga Stukan, Urszula Wojda and Barbara Nawrot
Biomolecules 2019, 9(9), 446; https://doi.org/10.3390/biom9090446 - 4 Sep 2019
Cited by 10 | Viewed by 4761
Abstract
We identified novel dicarboximides that were selectively cytotoxic towards human leukemia cells. Using chemical and biological methods, we characterized the biological activity, identified cellular protein targets and defined the mechanism of action of the test dicarboximides. The reported IC50 values (concentration required [...] Read more.
We identified novel dicarboximides that were selectively cytotoxic towards human leukemia cells. Using chemical and biological methods, we characterized the biological activity, identified cellular protein targets and defined the mechanism of action of the test dicarboximides. The reported IC50 values (concentration required to reduce cell survival fraction to 50% of control) of selected dicarboximides were similar or lower than IC50 of registered anticancer drugs, for example cytarabine, sorafenib, irinotecan. Test compounds induced apoptosis in chronic myelogenous (K562) and acute lymphoblastic (MOLT-4) leukemia cells by activation of receptor and mitochondrial apoptotic pathways and increased the expression of proapoptotic genes (BAX, NOXA, HTRA2, TNFRSF10B, ESRRBL1). Selected dicarboximides displayed immunomodulatory activity and downregulated IKZF1 and IKZF3 transcription factors in K562 and MOLT-4 leukemia cells. ATP-binding cassette protein 50 (ABC50) was identified as a target for dicarboximides. Cancer cells with knocked down ABC50 showed increased resistance to dicarboximides. Based on the structure of dicarboximides and thalidomide, novel proteolysis-targeting chimeras (PROTACs) were synthesized and used as tools to downregulate ABC50 in leukemia cells. Full article
Show Figures

Figure 1

16 pages, 2190 KiB  
Article
Synthesis of New Derivatives of Benzofuran as Potential Anticancer Agents
by Mariola Napiórkowska, Marcin Cieślak, Julia Kaźmierczak-Barańska, Karolina Królewska-Golińska and Barbara Nawrot
Molecules 2019, 24(8), 1529; https://doi.org/10.3390/molecules24081529 - 18 Apr 2019
Cited by 33 | Viewed by 5663
Abstract
The results of our previous research indicated that some derivatives of benzofurans, particularly halogeno-derivatives, are selectively toxic towards human leukemia cells. Continuing our work with this group of compounds we here report new data on the synthesis as well as regarding the physico-chemical [...] Read more.
The results of our previous research indicated that some derivatives of benzofurans, particularly halogeno-derivatives, are selectively toxic towards human leukemia cells. Continuing our work with this group of compounds we here report new data on the synthesis as well as regarding the physico-chemical and biological characterization of fourteen new derivatives of benzofurans, including six brominated compounds. The structures of all new compounds were established by spectroscopic methods (1H- and, 13C-NMR, ESI MS), and elemental analyses. Their cytotoxicity was evaluated against K562 (leukemia), MOLT-4 (leukemia), HeLa (cervix carcinoma), and normal cells (HUVEC). Five compounds (1c, 1e, 2d, 3a, 3d) showed significant cytotoxic activity against all tested cell lines and selectivity for cancer cell lines. The SAR analysis (structure-activity relationship analysis) indicated that the presence of bromine introduced to a methyl or acetyl group that was attached to the benzofuran system increased their cytotoxicity both in normal and cancer cells. Full article
(This article belongs to the Special Issue Anticancer Agents: Design, Synthesis and Evaluation)
Show Figures

Graphical abstract

Back to TopTop