Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = B. D. Ford

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2843 KiB  
Article
Addressing Food Insecurity Through Community Kitchens During the COVID-19 Pandemic: A Case Study from the Eastern Cape, South Africa
by Joana Carlos Bezerra, Thandiswa Nqowana, Rene Oosthuizen, Monica Canca, Nosipho Nkwinti, Sukhmani Kaur Mantel, Mark New, James Ford, Carol Claudia Zavaleta-Cortijo, Eranga K. Galappaththi, Chrishma D. Perera, Sithuni M. Jayasekara, Hans Justus Amukugo, Didacus B. Namanya, Cecil Togarepi, Martha M. Hangula, Jonathan Nkalubo, Francis A. Akugre, Kerrie Pickering, Adelina M. Mensah, Guangqing Chi, Lenworth Reckford, Victoria Chicmana-Zapata, Indunil P. Dharmasiri and Ingrid Arotoma-Rojasadd Show full author list remove Hide full author list
Urban Sci. 2025, 9(2), 37; https://doi.org/10.3390/urbansci9020037 - 7 Feb 2025
Cited by 1 | Viewed by 2322
Abstract
One of the most critical impacts of the COVID-19 pandemic was on food security. Food insecurity increased in many communities, with some showing signs of resilience through autonomously creating community kitchens that enhanced food security and built support networks. These initiatives filled gaps [...] Read more.
One of the most critical impacts of the COVID-19 pandemic was on food security. Food insecurity increased in many communities, with some showing signs of resilience through autonomously creating community kitchens that enhanced food security and built support networks. These initiatives filled gaps left by government programmes and provided a critical lifeline for vulnerable communities during the pandemic, fostering community solidarity. This paper aims to investigate the experiences and perceptions of community kitchen managers in addressing food insecurity during the COVID-19 pandemic by using a town in South Africa in 2020–2022 as a case study. Using arts-based participatory approaches, researchers interviewed 11 community kitchen managers representing 10 community kitchens in four sessions between June and November 2021. The results showed that a lack of jobs and food insecurity were identified as the main threats, whereas COVID-19 was not even identified as a threat by all of the community kitchen managers. Lacking support from the local government, these initiatives depended on individuals and community-based organisations for backing. However, this support decreased in 2021 and 2022, raising concerns about the sustainability of these efforts. Full article
Show Figures

Figure 1

13 pages, 831 KiB  
Article
Associations of Maternal Urinary Concentrations of Phenols, Individually and as a Mixture, with Serum Biomarkers of Thyroid Function and Autoimmunity: Results from the EARTH Study
by Glen McGee, Maximilien Génard-Walton, Paige L. Williams, T. I. M. Korevaar, Jorge E. Chavarro, John D. Meeker, Joseph M. Braun, Maarten A. Broeren, Jennifer B. Ford, Antonia M. Calafat, Irene Souter, Russ Hauser and Lidia Mínguez-Alarcón
Toxics 2023, 11(6), 521; https://doi.org/10.3390/toxics11060521 - 9 Jun 2023
Cited by 4 | Viewed by 3327
Abstract
The associations between urinary phenol concentrations and markers of thyroid function and autoimmunity among potentially susceptible subgroups, such as subfertile women, have been understudied, especially when considering chemical mixtures. We evaluated cross-sectional associations of urinary phenol concentrations, individually and as a mixture, with [...] Read more.
The associations between urinary phenol concentrations and markers of thyroid function and autoimmunity among potentially susceptible subgroups, such as subfertile women, have been understudied, especially when considering chemical mixtures. We evaluated cross-sectional associations of urinary phenol concentrations, individually and as a mixture, with serum markers of thyroid function and autoimmunity. We included 339 women attending a fertility center who provided one spot urine and one blood sample at enrollment (2009–2015). We quantified four phenols in urine using isotope dilution high-performance liquid chromatography–tandem mass spectrometry, and biomarkers of thyroid function (thyroid-stimulating hormone (TSH), free and total thyroxine (fT4, TT4), and triiodothyronine (fT3, TT3)), and autoimmunity (thyroid peroxidase (TPO) and thyroglobulin (Tg) antibodies (Ab)) in serum using electrochemoluminescence assays. We fit linear and additive models to investigate the association between urinary phenols—both individually and as a mixture—and serum thyroid function and autoimmunity, adjusted for confounders. As a sensitivity analysis, we also applied Bayesian Kernel Machine Regression (BKMR) to investigate non-linear and non-additive interactions. Urinary bisphenol A was associated with thyroid function, in particular, fT3 (mean difference for a 1 log unit increase in concentration: −0.088; 95% CI [−0.151, −0.025]) and TT3 (−0.066; 95% CI [−0.112, −0.020]). Urinary methylparaben and triclosan were also associated with several thyroid hormones. The overall mixture was negatively associated with serum fT3 concentrations (mean difference comparing all four mixture components at their 75th vs. 25th percentiles: −0.19, 95% CI [−0.35, −0.03]). We found no evidence of non-linearity or interactions. These results add to the current literature on phenol exposures and thyroid function in women, suggesting that some phenols may alter the thyroid system. Full article
Show Figures

Figure 1

18 pages, 4067 KiB  
Article
Quantifying Radiosensitization of PSMA-Targeted Gold Nanoparticles on Prostate Cancer Cells at Megavoltage Radiation Energies by Monte Carlo Simulation and Local Effect Model
by Ryder M. Schmidt, Daiki Hara, Jorge D. Vega, Marwan B. Abuhaija, Wensi Tao, Nesrin Dogan, Alan Pollack, John C. Ford and Junwei Shi
Pharmaceutics 2022, 14(10), 2205; https://doi.org/10.3390/pharmaceutics14102205 - 17 Oct 2022
Cited by 17 | Viewed by 3081
Abstract
Active targeting gold nanoparticles (AuNPs) are a very promising avenue for cancer treatment with many publications on AuNP mediated radiosensitization at kilovoltage (kV) photon energies. However, uncertainty on the effectiveness of AuNPs under clinically relevant megavoltage (MV) radiation energies hinders the clinical translation [...] Read more.
Active targeting gold nanoparticles (AuNPs) are a very promising avenue for cancer treatment with many publications on AuNP mediated radiosensitization at kilovoltage (kV) photon energies. However, uncertainty on the effectiveness of AuNPs under clinically relevant megavoltage (MV) radiation energies hinders the clinical translation of AuNP-assisted radiation therapy (RT) paradigm. The aim of this study was to investigate radiosensitization mediated by PSMA-targeted AuNPs irradiated by a 6 MV radiation beam at different depths to explore feasibility of AuNP-assisted prostate cancer RT under clinically relevant conditions. PSMA-targeted AuNPs (PSMA-AuNPs) were synthesized by conjugating PSMA antibodies onto PEGylated AuNPs through EDC/NHS chemistry. Confocal fluorescence microscopy was used to verify the active targeting of the developed PSMA-AuNPs. Transmission electron microscopy (TEM) was used to demonstrate the intracellular biodistribution of PSMA-AuNPs. LNCaP prostate cancer cells treated with PSMA-AuNPs were irradiated on a Varian 6 MV LINAC under varying depths (2.5 cm, 10 cm, 20 cm, 30 cm) of solid water. Clonogenic assays were carried out to determine the in vitro cell survival fractions. A Monte Carlo (MC) model developed on TOPAS platform was then employed to determine the nano-scale radial dose distribution around AuNPs, which was subsequently used to predict the radiation dose response of LNCaP cells treated with AuNPs. Two different cell models, with AuNPs located within the whole cell or only in the cytoplasm, were used to assess how the intracellular PSMA-AuNP biodistribution impacts the prostate cancer radiosensitization. Then, MC-based microdosimetry was combined with the local effect model (LEM) to calculate cell survival fraction, which was benchmarked against the in vitro clonogenic assays at different depths. In vitro clonogenic assay of LNCaP cells demonstrated the depth dependence of AuNP radiosensitization under clinical megavoltage beams, with sensitization enhancement ratio (SER) of 1.14 ± 0.03 and 1.55 ± 0.05 at 2.5 cm depth and 30 cm depth, respectively. The MC microdosimetry model showed the elevated percent of low-energy photons in the MV beams at greater depth, consequently resulting in increased dose enhancement ratio (DER) of AuNPs with depth. The AuNP-induced DER reached ~5.7 and ~8.1 at depths of 2.5 cm and 30 cm, respectively. Microdosimetry based LEM accurately predicted the cell survival under 6 MV beams at different depths, for the cell model with AuNPs placed only in the cell cytoplasm. TEM results demonstrated the distribution of PSMA-AuNPs in the cytoplasm, confirming the accuracy of MC microdosimetry based LEM with modelled AuNPs distributed within the cytoplasm. We conclude that AuNP radiosensitization can be achieved under megavoltage clinical radiotherapy energies with a dependence on tumor depth. Furthermore, the combination of Monte Carlo microdosimetry and LEM will be a valuable tool to assist with developing AuNP-aided radiotherapy paradigm and drive clinical translation. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles)
Show Figures

Figure 1

16 pages, 10268 KiB  
Article
Development of a Flash Drought Intensity Index
by Jason A. Otkin, Yafang Zhong, Eric D. Hunt, Jordan I. Christian, Jeffrey B. Basara, Hanh Nguyen, Matthew C. Wheeler, Trent W. Ford, Andrew Hoell, Mark Svoboda and Martha C. Anderson
Atmosphere 2021, 12(6), 741; https://doi.org/10.3390/atmos12060741 - 9 Jun 2021
Cited by 53 | Viewed by 8444
Abstract
Flash droughts are characterized by a period of rapid intensification over sub-seasonal time scales that culminates in the rapid emergence of new or worsening drought impacts. This study presents a new flash drought intensity index (FDII) that accounts for both the unusually rapid [...] Read more.
Flash droughts are characterized by a period of rapid intensification over sub-seasonal time scales that culminates in the rapid emergence of new or worsening drought impacts. This study presents a new flash drought intensity index (FDII) that accounts for both the unusually rapid rate of drought intensification and its resultant severity. The FDII framework advances our ability to characterize flash drought because it provides a more complete measure of flash drought intensity than existing classification methods that only consider the rate of intensification. The FDII is computed using two terms measuring the maximum rate of intensification (FD_INT) and average drought severity (DRO_SEV). A climatological analysis using soil moisture data from the Noah land surface model from 1979–2017 revealed large regional and interannual variability in the spatial extent and intensity of soil moisture flash drought across the US. Overall, DRO_SEV is slightly larger over the western and central US where droughts tend to last longer and FD_INT is ~75% larger across the eastern US where soil moisture variability is greater. Comparison of the FD_INT and DRO_SEV terms showed that they are strongly correlated (r = 0.82 to 0.90) at regional scales, which indicates that the subsequent drought severity is closely related to the magnitude of the rapid intensification preceding it. Analysis of the 2012 US flash drought showed that the FDII depiction of severe drought conditions aligned more closely with regions containing poor crop conditions and large yield losses than that captured by the intensification rate component (FD_INT) alone. Full article
(This article belongs to the Special Issue Advances in Drought Monitoring, Simulation and Prediction)
Show Figures

Figure 1

14 pages, 1660 KiB  
Article
Alterations in the Human Plasma Lipidome in Response to Tularemia Vaccination
by Kristal M. Maner-Smith, Johannes B. Goll, Manoj Khadka, Travis L. Jensen, Jennifer K. Colucci, Casey E. Gelber, Carolyn J. Albert, Steven E. Bosinger, Jacob D. Franke, Muktha Natrajan, Nadine Rouphael, Robert A. Johnson, Patrick Sanz, Evan J. Anderson, Daniel F. Hoft, Mark J. Mulligan, David A. Ford and Eric A. Ortlund
Vaccines 2020, 8(3), 414; https://doi.org/10.3390/vaccines8030414 - 24 Jul 2020
Cited by 11 | Viewed by 4620
Abstract
Tularemia is a highly infectious and contagious disease caused by the bacterium Francisella tularensis. To better understand human response to a live-attenuated tularemia vaccine and the biological pathways altered post-vaccination, healthy adults were vaccinated, and plasma was collected pre- and post-vaccination for [...] Read more.
Tularemia is a highly infectious and contagious disease caused by the bacterium Francisella tularensis. To better understand human response to a live-attenuated tularemia vaccine and the biological pathways altered post-vaccination, healthy adults were vaccinated, and plasma was collected pre- and post-vaccination for longitudinal lipidomics studies. Using tandem mass spectrometry, we fully characterized individual lipid species within predominant lipid classes to identify changes in the plasma lipidome during the vaccine response. Separately, we targeted oxylipins, a subset of lipid mediators involved in inflammatory pathways. We identified 14 differentially abundant lipid species from eight lipid classes. These included 5-hydroxyeicosatetraenoic acid (5-HETE) which is indicative of lipoxygenase activity and, subsequently, inflammation. Results suggest that 5-HETE was metabolized to a dihydroxyeicosatrienoic acid (DHET) by day 7 post-vaccination, shedding light on the kinetics of the 5-HETE-mediated inflammatory response. In addition to 5-HETE and DHET, we observed pronounced changes in 34:1 phosphatidylinositol, anandamide, oleamide, ceramides, 16:1 cholesteryl ester, and other glycerophospholipids; several of these changes in abundance were correlated with serum cytokines and T cell activation. These data provide new insights into alterations in plasma lipidome post-tularemia vaccination, potentially identifying key mediators and pathways involved in vaccine response and efficacy. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Graphical abstract

12 pages, 1123 KiB  
Article
Intermittent Energy Restriction Attenuates the Loss of Fat Free Mass in Resistance Trained Individuals. A Randomized Controlled Trial
by Bill I. Campbell, Danielle Aguilar, Lauren M. Colenso-Semple, Kevin Hartke, Abby R. Fleming, Carl D. Fox, Jaymes M. Longstrom, Gavin E. Rogers, David B. Mathas, Vickie Wong, Sarah Ford and John Gorman
J. Funct. Morphol. Kinesiol. 2020, 5(1), 19; https://doi.org/10.3390/jfmk5010019 - 8 Mar 2020
Cited by 18 | Viewed by 49233
Abstract
There is a lack of research into how lean, resistance trained (RT) individuals respond to intermittent energy restricted diets. Therefore, we investigated body composition changes in RT-individuals during continuous energy restriction or intermittent restriction. A total of 27 males and females (25 ± [...] Read more.
There is a lack of research into how lean, resistance trained (RT) individuals respond to intermittent energy restricted diets. Therefore, we investigated body composition changes in RT-individuals during continuous energy restriction or intermittent restriction. A total of 27 males and females (25 ± 6.1 years; 169 ± 9.4 cm; 80 ± 15.6 kg) were randomized to a ~25% caloric restricted diet Refeed (RF; n = 13) or Continuous group (CN; n = 14) in conjunction with 4-days/week resistance training for 7-weeks. RF implemented two consecutive days of elevated carbohydrate (CHO) intake, followed by 5-days of caloric restriction each week. CN adhered to a continuous 7-week caloric restriction. Body mass (BM), fat mass (FM), fat-free mass (FFM), dry fat-free mass (dFFM), and resting metabolic rate (RMR) were assessed pre/post-diet. Both groups significantly reduced BM (RF: baseline = 76.4 ± 15.6 kg, post-diet = 73.2 ± 13.8 kg, Δ3.2 kg; CN: baseline = 83.1 ± 15.4 kg, post-diet = 79.5 ± 15 kg, Δ3.6 kg) and FM (RF: baseline = 16.3 ± 4 kg, post-diet = 13.5 ± 3.6 kg, Δ2.8 kg; CN: baseline = 16.7 ± 4.5 kg, post-diet = 14.4 ± 4.9 kg, Δ2.3 kg) with no differences between groups. FFM (RF: baseline = 60.1 ± 13.8 kg, post-diet = 59.7 ± 13.0 kg, 0.4 kg; CN: baseline = 66.4 ± 15.2 kg, post-diet = 65.1 ± 15.2 kg, Δ1.3 kg p = 0.006), dFFM (RF: baseline = 18.7 ± 5.0 kg, post-diet = 18.5 ± 4.5 kg, Δ0.2 kg; CN: baseline =21.9 ± 5.7 kg, post-diet = 20.0 ± 5.7 kg, Δ1.9 kg), and RMR (RF: baseline = 1703 ± 294, post-diet = 1665 ± 270, Δ38 kcals; CN: baseline = 1867 ± 342, post-diet = 1789 ± 409, Δ78 kcals) were better maintained in the RF group. A 2-day carbohydrate refeed preserves FFM, dryFFM, and RMR during energy restriction compared to continuous energy restriction in RT-individuals. Full article
(This article belongs to the Special Issue Research on Sports Nutrition: Body Composition and Performance)
Show Figures

Figure 1

12 pages, 436 KiB  
Article
Neuregulin 1-Βeta Cytoprotective Role in AML 12 Mouse Hepatocytes Exposed to Pentachlorophenol
by Waneene C. Dorsey, Paul B. Tchounwou and Byron D. Ford
Int. J. Environ. Res. Public Health 2006, 3(1), 11-22; https://doi.org/10.3390/ijerph2006030002 - 31 Mar 2006
Cited by 17 | Viewed by 11559
Abstract
Neuregulins are a family of growth factor domain proteins that are structurally related to the epidermal growth factor. Accumulating evidence has shown that neuregulins have cyto- and neuroprotective properties in various cell types. In particular, the neuregulin-1 βeta (NRG1-β) isoform is well documented [...] Read more.
Neuregulins are a family of growth factor domain proteins that are structurally related to the epidermal growth factor. Accumulating evidence has shown that neuregulins have cyto- and neuroprotective properties in various cell types. In particular, the neuregulin-1 βeta (NRG1-β) isoform is well documented for its antiinflammatory properties in rat brain after acute stroke episodes. Pentachlorophenol (PCP) is an organochlorine compound that has been widely used as a biocide in several industrial, agricultural, and domestic applications. Previous investigations from our laboratory have demonstrated that PCP exerts both cytotoxic and mitogenic effects in human liver carcinoma (HepG2) cells, primary catfish hepatocytes and AML 12 mouse hepatocytes. We have also shown that in HepG2 cells, PCP has the ability to induce stress genes that may play a role in the molecular events leading to toxicity and tumorigenesis. In the present study, we hypothesize that NRG1-β will exert its cytoprotective effects in PCP-treated AML 12 mouse hepatocytes by its ability to suppress the toxic effects of PCP. To test this hypothesis, we performed the MTT-cell respiration assay to assess cell viability, and Western-blot analysis to assess stress-related proteins as a consequence of PCP exposure. Data obtained from 48 h-viability studies demonstrated a biphasic response; showing a dose-dependent increase in cell viability within the range of 0 to 3.87 μg/mL, and a gradual decrease within the concentration range of 7.75 to 31.0 μg/mL in concomitant treatments of NRG1-β+PCP and PCP. Cell viability percentages indicated that NRG1-β+PCPtreated cells were not significantly impaired, while PCP-treated cells were appreciably affected; suggesting that NRG1-β has the ability to suppress the toxic effects of PCP. Western Blot analysis demonstrated the potential of PCP to induce oxidative stress and inflammatory response (c-fos), growth arrest and DNA damage (GADD153), proteotoxic effects (HSP70), cell cycle arrest as consequence of DNA damage (p53), mitogenic response (cyclin-D1), and apoptosis (caspase-3). NRG1-β exposure attenuated stress-related protein expression in PCP-treated AML 12 mouse hepatocytes. Here we provide clear evidence that NRG1-β exerts cytoprotective effects in AML 12 mouse hepatocytes exposed to PCP. Full article
Show Figures

7 pages, 193 KiB  
Article
Induced Mitogenic Activity in AML-12 Mouse Hepatocytes Exposed to Low-dose Ultra-Wideband Electromagnetic Radiation
by W. C. Dorsey, B. D. Ford, L. Roane, D. T. Haynie and P. B. Tchounwou
Int. J. Environ. Res. Public Health 2005, 2(1), 24-30; https://doi.org/10.3390/ijerph2005010024 - 30 Apr 2005
Cited by 11 | Viewed by 11846
Abstract
Ultra–wideband (UWB) technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR) could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we [...] Read more.
Ultra–wideband (UWB) technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR) could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM) cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5-20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8-24 h post exposure. UWBR exerted a statistically significant (p < 0.05) dose-dependent response in cell viability in both serum-treated and serum free medium (SFM) -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma. Full article
Show Figures

Back to TopTop