Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Arthur Gessler ORCID = 0000-0002-1910-9589

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4991 KiB  
Article
Green Routes: Exploring Protein-Based Virus-like Nanoparticle Transport and Immune Activation in Nicotiana benthamiana for Biotechnological Applications
by Romano Josi, Alessandro Pardini, Alexander Haindrich, Sanjana V. Marar, Anne-Cathrine S. Vogt, Arthur Gessler, Doris Rentsch, Paolo Cherubini, Martin F. Bachmann and Mona O. Mohsen
Vaccines 2024, 12(8), 831; https://doi.org/10.3390/vaccines12080831 - 23 Jul 2024
Viewed by 2626
Abstract
Viral, bacterial, fungal, and nematode infections cause significant agricultural losses, with limited treatment options, necessitating novel approaches to enhance plant defense systems and protection against pathogens. Virus-like nanoparticles (VLPs), extensively used in animal and human therapies (e.g., vaccines and immune enhancers), hold potential [...] Read more.
Viral, bacterial, fungal, and nematode infections cause significant agricultural losses, with limited treatment options, necessitating novel approaches to enhance plant defense systems and protection against pathogens. Virus-like nanoparticles (VLPs), extensively used in animal and human therapies (e.g., vaccines and immune enhancers), hold potential for novel agricultural solutions and advancing plant nanotechnology. This study employed various methodologies, including VLP production, confocal microscopy, and real-time qPCR. Our findings demonstrated the presence of 30 nm Qβ-VLPs, fluorescently labeled, within the intercellular space of Nicotiana benthamiana leaves one hour post-infiltration. Furthermore, infiltration with Qβ-VLPs led to an upregulation of key defense genes (NbPR1a, NbPR5, NbNPR, NbERF1, NbMYC2, and NbLRR2) in treated plants. Using RT-qPCR, a significant increase in the relative expression levels of defense genes was observed, with sustained high levels of NbERF1 and NbLRR2 even after 24 h. These findings suggest that Qβ-VLPs effectively upregulate genes crucial for pathogen defense in N. benthamiana, initiating PAMP-triggered immunity and launching signaling cascades that enhance defense mechanisms. This innovative application of VLPs to activate plant defense programs advances plant nanobiotechnology, offering new agricultural solutions. Full article
Show Figures

Figure 1

17 pages, 2002 KiB  
Article
Nutrient and Growth Response of Fagus sylvatica L. Saplings to Drought Is Modified by Fertilisation
by Mia Marušić, Ivan Seletković, Mladen Ognjenović, Mathieu Jonard, Krunoslav Sever, Marcus Schaub, Arthur Gessler, Mario Šango, Ivana Sirovica, Ivana Zegnal, Robert Bogdanić and Nenad Potočić
Forests 2023, 14(12), 2445; https://doi.org/10.3390/f14122445 - 14 Dec 2023
Cited by 3 | Viewed by 1805
Abstract
The increased frequency of climate change-induced droughts poses a survival challenge for forest trees, particularly for the common beech (Fagus sylvatica L.). Drought conditions adversely affect water supply and nutrient uptake, yet there is limited understanding of the intricate interplay between nutrient [...] Read more.
The increased frequency of climate change-induced droughts poses a survival challenge for forest trees, particularly for the common beech (Fagus sylvatica L.). Drought conditions adversely affect water supply and nutrient uptake, yet there is limited understanding of the intricate interplay between nutrient availability and drought stress on the physiology, growth, and biomass accumulation in young trees. We aimed to address this knowledge gap by examining the effects of irrigation and fertilisation and their interaction with various parameters in common beech saplings, including foliar and root N, P, and K concentrations; height and diameter increments; and aboveground and belowground biomass production. Our findings revealed that a higher fertilisation dose increased nutrient availability, also partially mitigating immediate drought impacts on foliar N concentrations. Also, higher fertilisation supported the post-drought recovery of foliar phosphorus levels in saplings. Prolonged drought affected nitrogen and potassium foliar concentrations, illustrating the lasting physiological impact of drought on beech trees. While drought-stressed beech saplings exhibited reduced height increment and biomass production, increased nutrient availability positively impacted root collar diameters. These insights have potential implications for forest management practices, afforestation strategies, and our broader understanding of the ecological consequences of climate change on forests. Full article
(This article belongs to the Special Issue Advances in Tree Ecophysiology under Drought Stress)
Show Figures

Figure 1

17 pages, 4194 KiB  
Article
Mixed-Species Acacia Plantation Decreases Soil Organic Carbon and Total Nitrogen Concentrations but Favors Species Regeneration and Tree Growth over Monoculture: A Thirty-Three-Year Field Experiment in Southern China
by Shengnan Ouyang, Liehua Tie, Xingquan Rao, Xi’an Cai, Suping Liu, Valentina Vitali, Lanying Wei, Qingshui Yu, Dan Sun, Yongbiao Lin, Arun K. Bose, Arthur Gessler and Weijun Shen
Forests 2023, 14(5), 968; https://doi.org/10.3390/f14050968 - 7 May 2023
Cited by 4 | Viewed by 3917
Abstract
Mixed-species plantations of trees with N-fixing species have the potential of promoting forest productivity and soil fertility. However, few studies in the literature have addressed the advantages of mixed-species plantations of leguminous trees over monocultures of leguminous trees based on in situ inventories [...] Read more.
Mixed-species plantations of trees with N-fixing species have the potential of promoting forest productivity and soil fertility. However, few studies in the literature have addressed the advantages of mixed-species plantations of leguminous trees over monocultures of leguminous trees based on in situ inventories over a long time period. Here, we monitored the dynamics of tree community composition, vegetation biomass, soil nutrients, and soil microbial phospholipid fatty acids (PLFAs), in an Acacia mangium monoculture plantation during 33 years of development and compared it with a mixed-species plantation of A. mangium associated with 56 native species which were underplanted 14 years after the initial establishment. Leaf N and phosphorus (P) concentrations of three main species in the overstory and understory of the A. mangium monoculture were measured. Our results showed that the soil organic carbon (SOC), total nitrogen (TN), and available phosphorus (AP) concentrations significantly increased over time during the approximately thirty years of A. mangium monoculture plantation, while the disadvantages were associated with new species regeneration and the increment of vegetation biomass. In the A. mangium monoculture plantation, leaf N concentration of A. mangium,Rhodomyrtus tomentosa, and Dicranopteris dichotoma continuously increased from 21 to 31 years, while the leaf P concentration of A. mangium and R. tomentosa decreased. The mixed-species plantations of A. mangium with native tree species had lower SOC and soil TN concentrations, more new tree species recruitment in the understory, and faster vegetation biomass increment than the A. mangium monoculture. However, the PLFAs of soil microbial groups were slightly different between the two types of plantations. We conclude that improved soil N nutrient condition by A. mangium monoculture benefits N absorption by A. mangium, R. tomentosa, and D. tomentosa, while low soil AP limits P absorption by A. mangium and R. tomentosa. Meanwhile, transforming the A. mangium monoculture into a mixed-species plantation via the introduction of multiple native species into the A. mangium monoculture decreases SOC and TN concentrations but the advantages include improving forest regeneration and maintaining forest growth in a long-term sequence. These findings provide useful and practical suggestions for managing forest monocultures of A. mangium in subtropical regions. Full article
Show Figures

Figure 1

17 pages, 5493 KiB  
Article
Individual Tree-Crown Detection and Species Identification in Heterogeneous Forests Using Aerial RGB Imagery and Deep Learning
by Mirela Beloiu, Lucca Heinzmann, Nataliia Rehush, Arthur Gessler and Verena C. Griess
Remote Sens. 2023, 15(5), 1463; https://doi.org/10.3390/rs15051463 - 6 Mar 2023
Cited by 60 | Viewed by 39993
Abstract
Automatic identification and mapping of tree species is an essential task in forestry and conservation. However, applications that can geolocate individual trees and identify their species in heterogeneous forests on a large scale are lacking. Here, we assessed the potential of the Convolutional [...] Read more.
Automatic identification and mapping of tree species is an essential task in forestry and conservation. However, applications that can geolocate individual trees and identify their species in heterogeneous forests on a large scale are lacking. Here, we assessed the potential of the Convolutional Neural Network algorithm, Faster R-CNN, which is an efficient end-to-end object detection approach, combined with open-source aerial RGB imagery for the identification and geolocation of tree species in the upper canopy layer of heterogeneous temperate forests. We studied four tree species, i.e., Norway spruce (Picea abies (L.) H. Karst.), silver fir (Abies alba Mill.), Scots pine (Pinus sylvestris L.), and European beech (Fagus sylvatica L.), growing in heterogeneous temperate forests. To fully explore the potential of the approach for tree species identification, we trained single-species and multi-species models. For the single-species models, the average detection accuracy (F1 score) was 0.76. Picea abies was detected with the highest accuracy, with an average F1 of 0.86, followed by A. alba (F1 = 0.84), F. sylvatica (F1 = 0.75), and Pinus sylvestris (F1 = 0.59). Detection accuracy increased in multi-species models for Pinus sylvestris (F1 = 0.92), while it remained the same or decreased slightly for the other species. Model performance was more influenced by site conditions, such as forest stand structure, and less by illumination. Moreover, the misidentification of tree species decreased as the number of species included in the models increased. In conclusion, the presented method can accurately map the location of four individual tree species in heterogeneous forests and may serve as a basis for future inventories and targeted management actions to support more resilient forests. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

10 pages, 755 KiB  
Article
Circadian Regulation Does Not Optimize Stomatal Behaviour
by Víctor Resco de Dios, William R.L. Anderegg, Ximeng Li, David T. Tissue, Michael Bahn, Damien Landais, Alexandru Milcu, Yinan Yao, Rachael H. Nolan, Jacques Roy and Arthur Gessler
Plants 2020, 9(9), 1091; https://doi.org/10.3390/plants9091091 - 25 Aug 2020
Cited by 8 | Viewed by 4032
Abstract
The circadian clock is a molecular timer of metabolism that affects the diurnal pattern of stomatal conductance (gs), amongst other processes, in a broad array of plant species. The function of circadian gs regulation remains unknown and here, we [...] Read more.
The circadian clock is a molecular timer of metabolism that affects the diurnal pattern of stomatal conductance (gs), amongst other processes, in a broad array of plant species. The function of circadian gs regulation remains unknown and here, we test whether circadian regulation helps to optimize diurnal variations in stomatal conductance. We subjected bean (Phaseolus vulgaris) and cotton (Gossypium hirsutum) canopies to fixed, continuous environmental conditions of photosynthetically active radiation, temperature, and vapour pressure deficit (free-running conditions) over 48 h. We modelled gs variations in free-running conditions to test for two possible optimizations of stomatal behaviour under circadian regulation: (i) that stomata operate to maintain constant marginal water use efficiency; or (ii) that stomata maximize C net gain minus the costs or risks of hydraulic damage. We observed that both optimization models predicted gs poorly under free-running conditions, indicating that circadian regulation does not directly lead to stomatal optimization. We also demonstrate that failure to account for circadian variation in gs could potentially lead to biased parameter estimates during calibrations of stomatal models. More broadly, our results add to the emerging field of plant circadian ecology, where circadian controls may partially explain leaf-level patterns observed in the field. Full article
Show Figures

Graphical abstract

12 pages, 2609 KiB  
Article
No Ontogenetic Shifts in C-, N- and P-Allocation for Two Distinct Tree Species along Elevational Gradients in the Swiss Alps
by Jian-Feng Liu, Ze-Ping Jiang, Marcus Schaub, Arthur Gessler, Yan-Yan Ni, Wen-Fa Xiao and Mai-He Li
Forests 2019, 10(5), 394; https://doi.org/10.3390/f10050394 - 5 May 2019
Cited by 3 | Viewed by 3115
Abstract
Most of our knowledge about forest responses to global environmental changes is based on experiments with seedlings/saplings grown in artificially controlled conditions. We do not know whether this knowledge will allow us to upscale to larger and mature trees growing in situ. In [...] Read more.
Most of our knowledge about forest responses to global environmental changes is based on experiments with seedlings/saplings grown in artificially controlled conditions. We do not know whether this knowledge will allow us to upscale to larger and mature trees growing in situ. In the present study, we used elevation as a proxy of various environmental factors, to examine whether there are ontogenetic differences in carbon and nutrient allocation of two major treeline species (Pinus cembra L. and Larix decidua Mill.) along elevational gradients (i.e., environmental gradient) in the Swiss alpine treeline ecotone (~300 m interval). Young and adult trees grown at the same elevation had similar levels of non-structural carbohydrates (NSCs), total nitrogen (TN), and phosphorus (TP), except for August leaf sugars and August leaf TP in P. cembra at the treeline. We did not detect any interaction between tree age and elevation on tissue concentration of NSCs, TN, and TP across leaf, shoot, and root tissues for both species, indicating that saplings and mature trees did not differ in their carbon and nutrient responses to elevation (i.e., no ontogenetic differences). With respect to carbon and nutrient allocation strategies, our results show that young and adult trees of both deciduous and evergreen tree species respond similarly to environmental changes, suggesting that knowledge gained from controlled experiments with saplings can be upscaled to adult trees, at least if the light is not limited. This finding advances our understanding of plants’ adaptation strategies and has considerable implications for future model-developments. Full article
(This article belongs to the Special Issue Relationship between Forest Ecophysiology and Environment)
Show Figures

Figure 1

Back to TopTop