Green Routes: Exploring Protein-Based Virus-like Nanoparticle Transport and Immune Activation in Nicotiana benthamiana for Biotechnological Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Qβ-VLP Purification
2.2. Electron Microscopy
2.3. Labeling of Qβ-VLPs with Alexa Fluor 488
2.4. Nicotiana benthamiana
2.5. Confocal Microscopy
2.6. RNA Isolation from N. benthamiana Leaves
2.7. Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Expression, Production, and Labeling of Protein-Based Bacteriophage Nanoparticles Qβ-VLPs
3.2. Visualization of Qβ-VLPs in Tobacco Leaves Demonstrates Widespread Distribution
3.3. Induction of Defense Gene Expression by Protein-Based Nanoparticles in N. benthamiana
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Modi, D.; Picot, A. Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. Plants 2023, 12, 2736. [Google Scholar] [CrossRef]
- Chikoti, P.C.; Tembo, M. Expansion and impact of cassava brown streak and cassava mosaic diseases in Africa: A review. Front. Sustain. Food Syst. 2022, 6, 1076364. [Google Scholar] [CrossRef]
- Manjunatha, L.; Rajashekara, H.; Uppala, L.S.; Ambika, D.S.; Patil, B.; Shankarappa, K.S.; Nath, V.S.; Kavitha, T.R.; Mishra, A.K. Mechanisms of Microbial Plant Protection and Control of Plant Viruses. Plants 2022, 11, 3449. [Google Scholar] [CrossRef]
- Nazarov, P.A.; Baleev, D.N.; Ivanova, M.I.; Sokolova, L.M.; Karakozova, M.V. Infectious plant diseases: Etiology, current status, problems and prospects in plant protection. Acta Naturae 2020, 12, 46–59. [Google Scholar] [CrossRef]
- Steinberg, G.; Gurr, S.J. Fungi, fungicide discovery and global food security. Fungal Genet. Biol. 2020, 144, 103476. [Google Scholar] [CrossRef]
- Li, R.; Baysal-Gurel, F.; Abdo, Z.; Miller, S.A.; Ling, K.-S. Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production. Virol. J. 2015, 12, 5. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Pathology; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Ding, L.-N.; Li, Y.-T.; Wu, Y.-Z.; Li, T.; Geng, R.; Cao, J.; Zhang, W.; Tan, X.-L. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. Int. J. Mol. Sci. 2022, 23, 16200. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Tang, Y.; Ding, W. NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes. Biochem. Biophys. Res. Commun. 2019, 508, 940–945. [Google Scholar] [CrossRef]
- Hong, Y.; Zheng, Q.; Cheng, L.; Liu, P.; Xu, G.; Zhang, H.; Cao, P.; Zhou, H. Identification and characterization of TMV-induced volatile signals in Nicotiana benthamiana: Evidence for JA/ET defense pathway priming in congeneric neighbors via airborne (E)-2-octenal. Funct. Integr. Genom. 2023, 23, 272. [Google Scholar] [CrossRef]
- Liu, D.; Shi, L.; Han, C.; Yu, J.; Li, D.; Zhang, Y. Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE 2012, 7, e46451. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Gomes, A.C.; Vogel, M.; Bachmann, M.F. Interaction of Viral Capsid-Derived Virus-Like Particles (VLPs) with the Innate Immune System. Vaccines 2018, 6, 37. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Bachmann, M.F. Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol. 2022, 19, 993–1011. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Heath, M.; Kramer, M.F.; Velazquez, T.C.; Bullimore, A.; Skinner, M.A.; Speiser, D.E.; Bachmann, M.F. In situ delivery of nanoparticles formulated with micron-sized crystals protects from murine melanoma. J. Immunother. Cancer 2022, 10, e004643. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Augusto, G.; Bachmann, M.F. The 3Ds in virus-like particle based-vaccines: “Design, Delivery and Dynamics”. Immunol. Rev. 2020, 296, 155–168. [Google Scholar] [CrossRef]
- Kushnir, N.; Streatfield, S.J.; Yusibov, V. Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine 2012, 31, 58–83. [Google Scholar] [CrossRef]
- Pumpens, P. Viral Nanotechnology; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2016. [Google Scholar]
- Mohsen, M.O.; Balke, I.; Zinkhan, S.; Zeltina, V.; Liu, X.; Chang, X.; Krenger, P.S.; Plattner, K.; Gharailoo, Z.; Vogt, A.-C.S.; et al. A scalable and highly immunogenic virus-like particle-based vaccine against SARS-CoV-2. Allergy 2022, 77, 243–257. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Brown, S.D.; Fiedler, J.D.; Finn, M.G. Assembly of hybrid bacteriophage Qbeta virus-like particles. Biochemistry 2009, 48, 11155–11157. [Google Scholar] [CrossRef]
- Pumpens, P. Single-Stranded RNA Phages; Pumpens, P., Ed.; CRC Press: Boca Raton, FL, USA, 2020; 616p. [Google Scholar]
- Flavell, R.B.; Bennett, M.D.; Smith, J.B.; Smith, D.B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 1974, 12, 257–269. [Google Scholar] [CrossRef]
- Flavell, R.; Sabo, D.; Bandle, E.; Weissmann, C. Site-Directed Mutagenesis. Experientia 1974, 30, 702. [Google Scholar]
- Flavell, R.A.; Sabo, D.L.; Bandle, E.F.; Weissmann, C. Site-directed mutagenesis: Generation of an extracistronic mutation in bacteriophage Q beta RNA. J. Mol. Biol. 1974, 89, 255–272. [Google Scholar] [CrossRef]
- Josi, R.; Speiser, D.E.; de Brot, S.; Vogt, A.-C.; Sevick-Muraca, E.M.; Tolstonog, G.V.; Bachmann, M.F.; Mohsen, M.O. A tetravalent nanovaccine that inhibits growth of HPV-associated head and neck carcinoma via dendritic and T cell activation. iScience 2024, 27, 109439. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Han, H.; Zou, J.; Zhou, J.; Zeng, M.; Zheng, D.; Yuan, X.; Xi, D. The small GTPase NtRHO1 negatively regulates tobacco defense response to tobacco mosaic virus by interacting with NtWRKY50. J. Exp. Bot. 2022, 73, 366–381. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Gomes, A.C.; Cabral-Miranda, G.; Krueger, C.C.; Leoratti, F.M.; Stein, J.V.; Bachmann, M.F. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. J. Control. Release 2017, 251, 92–100. [Google Scholar] [CrossRef]
- Kolkas, H.; Burlat, V.; Jamet, E. Immunochemical Identification of the Main Cell Wall Polysaccharides of the Early Land Plant Marchantia polymorpha. Cells 2023, 12, 1833. [Google Scholar] [CrossRef]
- Parkinson, S.J.; Tungsirisurp, S.; Joshi, C.; Richmond, B.L.; Gifford, M.L.; Sikder, A.; Lynch, I.; O’reilly, R.K.; Napier, R.M. Polymer nanoparticles pass the plant interface. Nat. Commun. 2022, 13, 7385. [Google Scholar] [CrossRef]
- Chincinska, I.A. Leaf infiltration in plant science: Old method, new possibilities. Plant Methods 2021, 17, 83. [Google Scholar] [CrossRef]
- Deguchi, M.; Bogush, D.; Weeden, H.; Spuhler, Z.; Potlakayala, S.; Kondo, T.; Zhang, Z.J.; Rudrabhatla, S. Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Sci. Rep. 2020, 10, 3504. [Google Scholar] [CrossRef]
- Glancy, B. Visualizing Mitochondrial Form and Function within the Cell. Trends Mol. Med. 2019, 26, 58–70. [Google Scholar] [CrossRef]
- Pendle, A.; Shaw, P. Immunolabeling and In Situ Labeling of Isolated Plant Interphase Nuclei. Methods Mol. Biol. 2016, 1429, 65–76. [Google Scholar]
- Scheuring, D.; Scholler, M.; Kleine-Vehn, J.; Lofke, C. Vacuolar staining methods in plant cells. Methods Mol. Biol. 2015, 1242, 83–92. [Google Scholar]
- Ichikawa, S.; Sakata, M.; Oba, T.; Kodama, Y. Fluorescein staining of chloroplast starch granules in living plants. Plant Physiol. 2024, 194, 662–672. [Google Scholar] [CrossRef]
- Spoel, S.H.; Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 2012, 12, 89–100. [Google Scholar] [CrossRef]
- Teixeira, R.M.; Ferreira, M.A.; Raimundo, G.A.S.; Loriato, V.A.P.; Reis, P.A.B.; Fontes, E.P.B. Virus perception at the cell surface: Revisiting the roles of receptor-like kinases as viral pattern recognition receptors. Mol. Plant Pathol. 2019, 20, 1196–1202. [Google Scholar] [CrossRef]
- Zhong, Q.; Hu, H.; Fan, B.; Zhu, C.; Chen, Z. Biosynthesis and Roles of Salicylic Acid in Balancing Stress Response and Growth in Plants. Int. J. Mol. Sci. 2021, 22, 11672. [Google Scholar] [CrossRef]
- Melillo, D.; Marino, R.; Italiani, P.; Boraschi, D. Innate Immune Memory in Invertebrate Metazoans: A Critical Appraisal. Front. Immunol. 2018, 9, 1915. [Google Scholar] [CrossRef]
Gene | Forward Primer (5′–3′) | Reverse Primer (5′–3′) | Reference |
---|---|---|---|
NbPR1a | GATGCCCATAACACAGCTCG | CGAGGTTACAATCTGCAGCC | [10] |
NbNPR1 | GATACACGGTGCTGCATGTT | AAGCCTAGTGAGCCTCTTGG | [10] |
NbERF1 | GGCGAATTTTCCGGGAGACT | GGCTCCGATTTTACTTCGCC | [10] |
NbMYC2 | GAGATTAGCTGCTTCGCACTG | GCCCGTAGTCGCACCCATA | [10] |
NbLRR2 | TGGAAGGGAAGTAGCAGTG | TACAAGGTTTGGATGAGGC | [10] |
NbPR5 | AACTTCAACGGTGGTGGC | TGAGGGATGGACCGCAAT | [27] |
NbGAPDH | AGCTCAAGGGAATTCTCGATG | AACCTTAACCATGTCATCTCCC | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Josi, R.; Pardini, A.; Haindrich, A.; Marar, S.V.; Vogt, A.-C.S.; Gessler, A.; Rentsch, D.; Cherubini, P.; Bachmann, M.F.; Mohsen, M.O. Green Routes: Exploring Protein-Based Virus-like Nanoparticle Transport and Immune Activation in Nicotiana benthamiana for Biotechnological Applications. Vaccines 2024, 12, 831. https://doi.org/10.3390/vaccines12080831
Josi R, Pardini A, Haindrich A, Marar SV, Vogt A-CS, Gessler A, Rentsch D, Cherubini P, Bachmann MF, Mohsen MO. Green Routes: Exploring Protein-Based Virus-like Nanoparticle Transport and Immune Activation in Nicotiana benthamiana for Biotechnological Applications. Vaccines. 2024; 12(8):831. https://doi.org/10.3390/vaccines12080831
Chicago/Turabian StyleJosi, Romano, Alessandro Pardini, Alexander Haindrich, Sanjana V. Marar, Anne-Cathrine S. Vogt, Arthur Gessler, Doris Rentsch, Paolo Cherubini, Martin F. Bachmann, and Mona O. Mohsen. 2024. "Green Routes: Exploring Protein-Based Virus-like Nanoparticle Transport and Immune Activation in Nicotiana benthamiana for Biotechnological Applications" Vaccines 12, no. 8: 831. https://doi.org/10.3390/vaccines12080831
APA StyleJosi, R., Pardini, A., Haindrich, A., Marar, S. V., Vogt, A. -C. S., Gessler, A., Rentsch, D., Cherubini, P., Bachmann, M. F., & Mohsen, M. O. (2024). Green Routes: Exploring Protein-Based Virus-like Nanoparticle Transport and Immune Activation in Nicotiana benthamiana for Biotechnological Applications. Vaccines, 12(8), 831. https://doi.org/10.3390/vaccines12080831